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The excitation of a level + band quantum system in the field of a monochromatic electromagnet- 
ic wave is considered in the case when the density of the levels that are weakly coupled to the 
bound state is high. The asymptotic behavior at low intensity and long time is investigated in 
detail. It is shown that even in the case of an infinite total level density a situation is possible in 
which the population of the ground state assumes a nonzero value. The time dependence of the 
relaxation to the stationary state is determined. The relations derived are used to discuss the 
influence of multiphoton and forbidden rotational transitions on the excitation of lower levels of 
polyatomic molecules and on the formation of a "cold ensemble" of molecules. 

The collisionless dissociation of polyatomic molecules 
by high-power resonant IR laser was intensively in- 
vestigated during the last decade. The presently known ex- 
perimental facts and theoretical models have been gathered 
and expounded in a large number of reviews and mono- 
g r a p h ~ . ~ - ~  At the same time, a number of questions still re- 
main unanswered. These include the question of how an ag- 
gregate of many lower levels of molecules is excited, and 
what is the contribution of m~l t iphoton '~- '~  and weak (for- 
bidden)I3-l4 transitions to the process of molecule excitation 
up to the boundary of the quasic~ntinuum'~~, '~ and to the 
formation of the "cold ensemble,"16 meaning that fraction of 
molecules which are not excited in the laser field above the 
first to the fourth levels. To understand these processes we 
must find rigorous criteria under which a system having a 
complicated spectrum and acomplicated structure of the op- 
erator of the interaction with the field is not excited in the 
field of an electromagnetic wave of a definite intensity. 

Let us recall the main laws governing the formation of 
molecular spectra. By way of example we choose a molecule 
with octahedral symmetry, such as SF,. The Hamiltonian of 
a molecule in the electronic ground state and situated in an 
external electromagnetic field having a frequency on the or- 
der of its natural vibrational frequencies can be represented 
in the form 

A A A A A 

H = H h  + k n h  + Hro, + H,., + Hw 
A A A 

+ kip + v m  + Vn.0 + Hna (a) 
where k,, is the Hamiltonian of the harmonic oscillations, 
H,,, is the Hamiltonian of the tensor anharmonic correc- 
tions, kOt is the rotational Hamiltonian, k,, is the Hamil- 
tonian that-describes the interaction of the vibrations and 
rotations, Hw is the weak-interaction Hamiltonian and in- 
cludes the interaction of the vibrational momenta and the 
angular momenta of the molecule as a w k l e  with the orbital 
motion of the electrons and their spins, Vdi, and Vm are the 
operators of the dipole and multipole transitions, p,,,, is the 
operator of the transitions due to the nonlinear dependence 
of the dipole moment on the displacements of the nuclei, and 

Hna are nonadiabatic increments. The first five terms of the 
expression for the Hamiltonian form an hierarchic spectrym 
of the molecule. The first rank of the hierachy is given by Hh ,  
which ensures formation of the vibrational levels. In the case 
of symmetric molecules the eigenvalues of the operator &,, 
are as a rule multiply degenerate. In the next rank of the 
hierarchy, the operator Ha,, leads to partial lifting of the 
degeneracy, to splitting of the levels, and to formation of 
groups of levels located in the vicinities of harmonic posi- 
tions, i.e., to the formation of the so-called band structure of 
the vibrational spectrum. The third rank, hrOt,  ensures the 
appearance of a rotational structure of the spectrum. The 
Hamiltonian of the vibrational-rotational interaction causes 
a weaker splitting of some of the states that remain degener- 
ate, to which a nonzero vibrational angular momentum Jvib 
can be assigned. The very same interaction leads in the high- 
er perturbation-theory orders to an even weaker (fine, or oc- 
tahedral) splitting due to the lifting of the degeneracy with 
respect to the projections of the angular Fomentum on the 
molecule axis. Finally, the Hamiltonian H, ensures the fin- 
est splitting of the levels. 

The description of such a complicated hierarchic spec- 
trum is carried out with the aid of a large set of quantum 
numbers, most of which correspond to not strictly conserved 
integrals of motion. An additional hierarchy is therefore 
produced in the spectra of the possible transitions, and is due 
to the possible existence of transitions that are forbidden in 
zeroth order of perturbation theory. Thus, for the SF, mole- 
cule in particular, the possibility was discussed of transitions 
with violation of the selection rule with respect to the quan- 
tum number corresponding to the vector R = J - J,, . The 
vector R, in contrast to the total angular momentum veqtor 
J = R + cJvib (cis the tensor of the Coriolis constants) is not 
% conserved quantity, but the weakness of the interaction 
HV,, compared with H,, brings about satisfaction of the selec- 
tion rule AR = 0 with good accuracy, and the cross sections 
for transitions from the ground state with violation of this 
rule are small. 
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When describing the interaction of high-power laser ra- 
diation with a molecule, not all the features of its spectrum 
are used to the fullest extent. Thus, when considering multi- 
photon transitions in the SF, molecule, a large number of the 
results can be obtained by considering only diople transi- 
tions in one triply degenerate IR active vibrational mode v,. 
In fields of fixed intensity, there exists a molecule energy 
above which the Stark linewidths overlap. This region has 
been named the vibrational quasicontinuum. Below the qua- 
sicontinuum boundary are located levels to which transi- 
tions from the ground state can proceed via the multiphoton 
mechanism. The number of such transitions increases rapid- 
ly with increasing degree of "photonicity" n, while the com- 
posite matrix elements of the multiphoton tran:itions, being 
quantities of n-th order perturbation theory in V,,, , decrease 
rapidly. 

In another question dealing with the contribution of 
forbidden transitions with AR #O, on the contrary, the vi- 
brational structure of the molecule is ignored and attention 
is focused on transitions between states with different R un- 
der conditions when a definite vibrational moment corre- 
sponds to the upper level. 

The theory of interaction of laser radiation with spec- 
trally complicated systems was developed in a large number 
of papers. Investigations were made of systems of the band 
type, 17." of systems of single almost resonant  level^,'^*^^ and 
of level + band systems.2'.22 However, the dynamics of the 
excitation of such systems was studied for times much 
shorter than the level densities in the bands (Planck's con- 
stant f i  = I), under the condition that the Stark broadening 
of the levels exceeded considerably the characteristic dis- 
tance between the level or was of its order of magnitude. 
Such models are not suitable for the situation typical of mul- 
tiphoton and weak transitions to lower levels of polyatomic 
molecules, when the level densities g(V), which correspond 
to definite values of the transition matrix elements V, can 
differ substantially for different values of V. Indeed, the den- 
sity of the levels capable of two- and three-photon reson- 
ances with the vibrational ground state is considerably larg- 
er than for single-photon transitions," but the latter 
transitions correspond to small composition matrix ele- 
ments. 

A similar situation obtains for forbidden rotational 
transitions,I3 namely, the number of transitions with viola- 
tion of the selection rule with respect to the rotational quan- 
tum number R, AR = 0, is much larger than the number of 
transitions for which this rule holds, and the corresponding 
matrix elements of the dipole-moment operator are consid- 
erably smaller. To describe the excitation of the lower levels 
and the formation of the cold ensemble it is therefore neces- 
sary to know exactly how the level + band system is excited 
at any dependence of the level density on the value transi- 
tion-operator matrix element. 

Naturally, to determine whether a given system with a 
specified spectrum is excited in a field of given frequency and 
intensity we must know exactly the positions of its levels and 
the matrix elements of the corresponding transitions. How- 
ever, even when high-resolution laser-spectroscopy data are 

used, there is no hope of finding all these quantities. More- 
over, the determination of a large number of quantities that 
differ by many orders of magnitude still does not mean that 
the problem can be numerically analyzed, in view of the lim- 
its on the accuracy and on a reasonable computation time. 
We shall therefore investigate not some definite system hav- 
ing a concrete spectrum, but an averaged system character- 
ized by a level-density distribution function in the transition 
matrix elements V, implying thereby that owing to the ther- 
mal motion of the molecules that starting levels are different, 
the spectra of the transitions from them vary greatly, and 
averaging over the starting states is equivalent to the averag- 
ing to population of one system over the positions of the 
levels in the band and over the values of the transition matrix 
elements corresponding to these levels. 

We shall also assume that the averagings over the spec- 
trum and over the matrix elements of the transitions are sta- 
tistically independent. This assumption excludes immedi- 
ately the possibility of investigating the decay of a level into a 
real ~ont inumm, '~ . '~  where, by virtue of the smooth vari- 
ation of the eigenfunctions of the infinite-motion Hamilton- 
ian with change of energy, a correlation exists between the 
values of the energy and the values of the transition matrix, 
elements. 

Assume that we have a single level whose population 
p,(t ) = 1 at t = 0. After turning on the external field E, this 
level turns out to be coupled to a larger number of levels by 
the transition matrix elements V,,, where the subscript k 
labels these levels. We assume for the sake of argument that 
all the transitions are single-phonon and dipole, that V,, = 

Ep,, , wherep,, is the matrix element of the dipole-moment 
operator, and the levels [ k  ] form a band located a distance 
equal to the laser quantum from the starting state. The band 
width T i s  much less than the laser quantum, but much larg- 
er than all the possible matrix elements Vok . To describe the 
dynamics of the system excitation we can use in this case the 
Schrodinger equation in the quasienergy representation and 
in the resonance approximation: 

where A, is the detuning of the k-th level from exact reso- 
nance, and the operator Vok is real, V,, = V,, . 

We take the Fourier transforms with respect to the time 
t-+E; $, (t )+$, ( E )  of the system of equations (1) and of the 
analogous system of equations for the complex-conjugate 
amplitudes, t-+ - 6; $E(t )+$, ({ ): 

The population of the ground state $,(E) $,({) can be ex- 
pressed as a product of series 
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It is convenient to represent each term of the series for 
go(&) and $,(l) graphically." Each factor V,, contained in 
the terms of the series for $,(0) is represented by a straight 
line joining the points 0  and k,  with the points 0  correspond- 
ing to the factor &-' and the points k  to the factor (E + 
A,) - ' .  For $,(l) the factors V,, are represented by wavy 
lines, and to the corresponding points, are ascribed the mul- 
tipliers l - ' and (6 + A , ) -  I .  Each term of the series, ob- 
tained after term-by-term multiplication of the series for 
$,(E) and $,(g), can then by represented graphically in the 
form 

(4! 
Among the terms of series we encounter some in which 

each Ottk  transition has with both a right-hand and a left- 
hand bracket (4b, c). It is just these terms that make the main 
contribution to the series for the populations at long times. 
Assuming that in some term of the series each of the points k  
is encountered on a straight line n, times and on a wavy line 
m ,  times. Corresponding to this term is then the factor 

The number of series terms to which the factor (5) corre- 
sponds is equal to the number of different dispositions of the 
set ( n ,  ] of points on straight lines and the set ( m ,  1 of points 
on the wavy lines 

The total population of the ground state of the system can 
therefore be represented in the form 

where we have used the integral representations of the fac- 
torials: 

(8) 

Expression (7)  contains factors of the type 

If we average (7) over the position of each level k ,  assuming 
that the possible values of its detuning A ,  are distributed 
with equal probability in the large interval from - I ' / 2  to 
I' / 2  as I'-+ oo and at a fixed total number of the levels of each 
type per unit energy interval 

N ( V ) T  - '=g(V)  = const, 

then each of the factors of the type (7) will become averaged 
independently and its contribution to the product will be 

After substituting (10) in (7),  introducing the new varia- 
bles 5 = { - E and 7 = + 7, integrating over (27i-)-'dq, 
taking into account the fact that the number of levels with 
matrix elements in the interval (V;  V +  d V )  is equal to 
N ( V )d V = g( V )I'd V, and taking the limit as I'-+ oo , expres- 
sion (7)  becomes 

The sum in the square brackets can be represented in the 
form 

where the contours of integration with respect to dy and dx 
start from - oo along the lower edge of the real axis, circle 

535 Sov. Phys. JETP 56 (3). September 1982 V. M. Akulin 535 



around the point 0, and go to - w along the upper edge of 
the real axis. After summing the binomial expression and the 
geometric progression, expression (12) is reduced to 

Expression (13) we obtained with allowance for the fact 
that the integrand and a function of y has two simple poles at 
the points y = 0 and y = xxCy - x)- '. After calculating the 
contribution at the point y = 0, the integrand as a function 
ofx has a pole of second order at zero. The contribution from 
this singularity cancels out the first term in the curly brack- 
ets (1 1). The contribution of the pole at the point 
y = xx - x)-I  leads to an essential singularity of the inte- 
grand as a function of,y at the point x = x, which yields as a 
result of integration Bessel functions of zeroth and first or- 
der. In the upshot, expression (1 1) takes the form 

09 

i 
po (5) = -I exp{ -6-2nicj g (V) VYS-' exp (2195-') 

G o  

At times of the order of (Jg(V) V2dV)-' expression (14) 
coincides with the expressions obtained earlier2'~" for the 
population of a level + band system. Indeed, when the ar- 
gument of the Bessel function is small, we have 

m 
i 6 

PO (S) = -5 exp (-6-2ni -J g(V) V'IV) 
5 " 5 

and 

* I m+io 

po ( t )  = - po ( l )  e-'WG= exp g (v) V Z ~ V }  , (16) 2n 
- o r + i 6  

i.e., the level decays exponentially at a characteristic rate 
equal to the product of the level density by the mean squared 
matrix element of the transition operator: 

For long times, however, the situation is different. In- 
deed, as t+w the small f are important, and we can deform 
the integration contour in the inverse Fourier transform 
with respect to df in such a way that it goes from - i~ to 
the left of the imaginary axis and axis and returns, after cir- 
cling around the point 0, to - ioo on the right of the imagi- 
nary axis. In this case we can assume f in (14) to be pure 
imaginary. At small negative f 2  we use the asymptotic 
expression for the Bessel function. Retaining only the first 
terms of the expansion, we obtain 

It is seen from (17) that 

Denoting the dimensionless parameter by Jg( V) Vd V = N, 
we obtain upon integration 

where @is the probability integral. In the asymptotic limit of 
small N expression ( 19) yields 

and a large N 

pa (t)  I t+,=1/2nNZ. (21) 

The parameter N has a lucid physical meaning-it is the 
mathematical expectation value of the number of levels that 
enter into resonance with the radiation. Indeed, the levels 
having a transition matrix element V turn out to be at reso- 
nance if they are detuned by an amount A 5 V; the probabil- 
ity of this event, at a uniform distribution ofA over the wide 
spectral interval T,  equals Vg(V)dV, and the total number of 
levels that become resonant is equal to the integral of this 
expression over all V. Consequently, at small N the reso- 
nance probability is proportional to N, meaning that this 
fraction of molecules will be excited. Expression (20) corre- 
sponds to this case. In the inverse limiting case (2 1) the phys- 
ical explanation of the dependence is somewhat less clear. 
Indeed, if the number of levels that becomes resonant (A  5 V) 
is N)1, it is natural for the population to approach in the 
course of time the stationary value N -I. But expression (21) 
gives an N - 2  dependence. The reason for this difference that 
cooperative effects becomes substantial when a large num- 
ber of levels becomes resonant simultaneously. 

Let us explain this phenomenon with the following ex- 
ample. Assume that the level + band system consisted ori- 
ginally of a level and an M-fold degenerate level due to lifting 
of the degeneracy. The total with of the produced band is 
expressed in terms of the level density: r g  = M. The transi- 
tion in the level + degenerate level system corresponded to a 
matrix element W that became distributed, after the degen- 
eracy was lifted, equally among all the splitting components 
V- WM -'I2. If the matrix element of the transition is larger 
than the band width, Wk T ,  there is no time for the t+b func- 
tions to become dephased during one transition, the band 
will be perceived by the radiation as a single level, and all M 
of the band components will turn out to be populated. But 
the inequality W k T  means that M " ' v ~ M ~ - ' ,  i.e., 
Vg k M ' I 2 .  Consequently if Vg-N in the level + band sys- 
tem, the number of levels that become resonant will be not N 
but N '. In other words, the number of level that enter into 
resonance on account of the cooperative effect is equal to the 
squared mathematical expectation of the number of reson- 
ances, and the population of the ground state is of the order 
of N -', in accord with the exact expression (21). At small N 
the excitation probability is thus linear in N, and at large N 
the probability of staying in the ground state is quadratically 
small in N. 
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It follows from the foregoing analysis that even in the 
case when the level density is infinitely large and the integral 
$g( V)d V diverges in the region of small V, the population of 
the ground state assumes a nonzero stationary value if the 
integral $g(V) Vd V is bounded. 

From expression (14) we can determine the rate at 
which the population of the ground state approaches its sta- 
tionary value. Let g( V) - Va at small V. From the condition 
that the integral of Vg(,V) converge we get the requirement 
a > - 2. Retaining in (14) the second terms of the asympto- 
tic expansion of the Bessel functions and expanding the ex- 
ponential in a series of these functions, we obtain 

po ( t )  -po ( t=w)  = c o n ~ t . t - ~ - ~ .  (22) 

It was recognized in the derivation of (22) that the integral of 
the second terms of the asymptotic expansion of the Bessel 
functions diverges in (14) at the lower limit and should be 
evaluated over the region V 28{ -2 2 1. 

It follows from these results that besides the rate of the 
excitation of the level at short times, Jg( V) V2d V, the study of 
such properties of the dynamics of excitation of the lower 
levels of polyatomic molecules as the mean values of the 
stationary populations and the temporal dependences of the 
approaches to these values can yield much information on 
the form of the level-density distribution as a function of the 
transition matrix elements and of the mathematical expecta- 
tion value of the number of resonant transition. It seems 
however that, owing to the complexity of the spectra, these 
quantities can be more readily determined by experiment 
than by calculation. 

Nevertheless, one can propose some rather general 
theoretical estimates that reflect the main regularities of the 
expected effects. It is reasonable to assume that the matrix 
elements of the transitions that result from weak interaction 
that lifts the hindrances can be represented in the form 
V (s) = Vil ', where A is a small parameter that characterizes 
the weakness of the interaction and s is the degree of forbi- 
denness of the transition. When considering multiphoton 
transitions, the value ofil can be estimated to be equal to the 
ratio E,u/A. In the case of forbidden rotational transitions, A 
is a parameter characterized by the non-rigidity of the mole- 
cule. For the density of the levels corresponding to a definite 
order of forbidenness s we can expect the relation g(s) - .@K ", 
which takes into account the fact that the number of possible 
transition is increased by a factor K when the next hindrance 
is lifted, and the combinatorial increase of the number of 
levels, which is characterized by the parameter 0. Thus, in 
particular, when considering the influence of multiphoton 
vibrational-rotational transition in a triply degenerate 
mode, we have = 2, and K = 3 because new rotational 
branches are added. Expressing s in terms of Vand substitut- 
ing in the expression for g, we find that 

g ( V )  - (ln V/ ln  A) VVLn K"n '. 

The main contribution to the integral for the mathemat- 
ical expectation of the number of resonances on the lower 
level is made by the power-law dependence in (23). The con- 
dition that the integral be bounded implies that lnK/ 

I d  > - 2, and consequently KA > 1. For the case of multi- 
photon resonances the parameter A decreases with increas- 
ing vibrational quantum number and becomes less than uni- 
ty when the quasicontinuum region is reached. In the 
quasicontinuum, therefore, the multiphoton resonances are 
capable of clear completely even those levels which do not 
decay as a result of single photon cascade transitions. Below 
the quasicontinuum boundary there are present levels that 
do not decay completely and whose population, according to 
(21), can amount to 0 (1) Inp2 (e2K/A ). 

We note now that by virtue of the requirement KA > 1, 
K = 0 (1) the conditions imposed on the "weakw-transition 
strength needed for them the influence substantially the dy- 
namics of the populations are quite stringent. The linear co- 
efficient of absorption on forbidden transition, character- 
ized by the parameter A 2, can be only a few (-K -') times 
smaller than on the allowed transitions. It was reported in 
Ref. 14 that such a situation can obtain for rotational transi- 
tions, starting already with the second vibrational level of 
the band v, of the molecules SF, and SiF,. If, however, the 
"forbidden" transition have smaller absorption cross sec- 
tions, they make no significant contribution to the excitation 
of the lower levels of polyatomic molecules. 

In conclusion, we formulate the main conclusions of the 
study. 

1. A feature of the population of a level decaying under 
the influence of laser radiation and lying above the band is 
that it reaches a nonzero stationary state if the mathematical 
expectation value of the number of resonant levels, which is 
defined by the expression 

is a finite quantity. 
2. The stationary value of the pupulation is close to uni- 

ty in the case of small Nand is proportional to N -' in the 
case of large N. 

3. From the character of the power-law dependence of 
the rate of approach of the level population to its stationary 
value we can assess the form of the distribution function of 
the level density g(V) in the region of small V. 

4. The formation of the cold ensemble is due to incom- 
plete excitation of the vibrational level of the polyatomic 
molecules, on account of multiphoton transitions in the re- 
gion located below the quasicontinuum boundary. The rea- 
son is the existence of spectral and dynamic restrictions that 
exclude the possibility of total excitation of the levels even 
after an infinite time. 

5. Forbidden rotational transitions can make a substan- 
tial contribution to the dynamics of the excitation of the 
lower levels only if the corresponding linear absorption coef- 
ficients differ from the linear absorption coefficients of al- 
lowed transitions by only a few times. 

The author thanks N. V. Karlov and A. M. Dykhne for 
a discussion of the work. 
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