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Single-electron charge exchange between ions having a charge Z >  6 and atoms is considered at 
relative velocities v < Z 'I2. An analytic method is developed for the solution of a multilevel prob- 
lem that is a generalization of the decay model and of the approximation of nonadiabatic coupling 
between two states. Expressions are obtained for the reaction-product distributions in the princi- 
pal and angular quantum numbers. The calculated total cross sections agree well with the experi- 
mental data on charge exchange of hydrogen atoms and molecules with nuclei. The theory de- 
scribes the oscillations of the total cross section against the background of a monotonic growth as 
the charge is increased. 

PACS numbers: 34.70. + e 

INTRODUCTION system leads, on account of the change of syinrnetry, to the 
In slow collisions of a multiply charged ion with an presence of a larger number of quasicrossings, so that the 

atom the dominant process is single-electron charge ex- applicability of the generalized decay model proposed in the 
change with capture of one of the outer electrons of the atom present paper is extended to lower velocities (9 3). The ques- 
by highly excited states of the atom. From among the meth- tion of the distribution of the reaction products among the 
ods developed by now to analyze this process, notice should orbital quantum numbers is also connected with the symme- 
be taken of two approaches that make it possible to establish try properties, and the answer to it leads to a difference 
the general dependences of the transition probabilities and of 
the cross sections on the physical parameters of the problem. 
The first is based on the Landau-Zener theory,'.' which sin- 
gles out the quantum transitions in an isolated region where 
the adiabatic terms of the atom + ion system intersect. The 
second takes into account the quasistationary character of 
the state of the atomic electron in the slowly varying field of 
the ion, and leads to the decay of the charge-ex- 
change process. The various existing models and practical 
calculations (see, e.g., the review6) take one of the two indi- 
cated charge-exchange models into account. This leads, even 
for purely Coulomb system (H atom + nucleus with charge 
Z ), to contradictions in the dependences of the cross sections 
on the relative velocity. In the low-velocity limit, the theory 
of nonadiabatic transitions in isolated regions of term quasi- 
crossings leads to an exponential decrease of the cross sec- 
tions,' whereas the decay model calls for them to increase 
logarithmi~ally.~.~ It is important that this difference is real- 
ized in the ion kinetic-energy region that is of interest for 
astrophysical and laboratory applications. 

It is useful to develop for the study of the charge-ex- 
change process a more general approach that combines the 
rational elements of the two foregoing ones and establishes 
the relation between them. This problem is solved in the 
present paper for the charge exchange of multiply charged 
(Z> 10) ions with atoms at relative velocities u < Z 'I2; we use 
the general properties of the quasiclassical motion of a high- 
ly excited electron in a finite reaction channel. The solution 
obtained ($8 1,2) reflects, in the low-velocity limit, the domi- 
nant influence of quantum transitions in isolated level-cross- 
ing terms with allowance for the proximity of the turning 
point to the crossing point, and yields a natural generaliza- 
tion of the decay model with increasing velocity. 

The departure from the framework of pure Coulomb 

between the results for systems with and without Coulomb 
symmetry ($ 1). 

Other characteristics of the charge exchange process, 
determined mainly by the binding energy of the initial and 
final states and by the relative velocity, are common to all 
systems. These include the distribution of the reaction pro- 
ducts in the principal quantum numbers, as well as the na- 
ture of the oscillations of the total charge-exchange cross 
sections against the background of their growth with in- 
creasing ion charge, recently investigated experimentally9 at 
low velocities. The solution of the oscillation problem ($ 3), 
by confirming the accuracy (within a factor of 2) of our ear- 
lier cal~ulation, '~ shows that their behavior is closely con- 
nencted with the discrete character of the multiply charged 
ions. 

81. FORMULATION OF PROBLEM AND DERIVATION OF THE 
BASIC EQUATIONS 

When analyzing the charge exchange 
i ( Z - 1 )  A+B+' -+ A++Bn,q , (1) 

where n is the principal quantum number and q is the set of 
angular (and spin) quantum numbers of the produced ion, we 
shall consider the interaction of the initial state of the system 
(i) with a group of final states (nq) corresponding to excited 
states of the ion ( n s l )  in the internuclear distance range 
R < (22)'l2. In this region we can use a diabatic basis,'.' 
which leads to the following system of equations for the 
probability amplitudes: 
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where VY, (R ) is the exchange interaction of the initial state 
with the final state, and w:, is the energy distance between 
these states. It is assumed here that the main contribution to 
the solution of the dynamic problem (2) and (3) is made by the 
vicinities of the crossing points of the terms o:, (R z )  = 0. In 
these regions the exchange-interaction coefficients V R  are 
determined uniquely in the nultilevel problem 83'1s12 at rela- 
tive velocities v (Z ' /~ .  At the crossing points themselves 
they are equal to half the exchange spliting of the two-center 
(adiabatic) electronic terms, and the electronic wave func- 
tions used for their calculation are orthogonal to within ex- 
ponentially small corrections. 

A number of the properties of the solutions of the sys- 
tem (2), (3) can be obtained under rather general assumptions 
concerning its coefficients. Since the motion of the highly 
excited electron is quasiclassical, the dependence on the an- 
gular quantum numbers q in the exchange interaction V:, 
can be separated as a factor, so that 

viaq(R) =f (q ,  n )  Vtn ( R )  . (5) 
The actual choice of the quantum number q and the form of 
the coefficients f are determined by the symmetry of the sys- 
tem, including the spin symmetry. In particular, for LS cou- 
pling of the angular momenta this problem was solved in 
Refs. 11 and 12. In most cases the dependence of my,, on the 
angular quantum numbers can be neglected, and we can put 

o,9(R) =oin(R).  (6) 

In the approximation (5) and (6), a simple algebraic 
transformation reduces the system (2), (3) to the form 

where 

and the amplitudes b, are independent of q. 
Equation (10) allows us to express the partial cross sec- 

tions with respect to the angular quantum numbers in term 
of the total cross section for populating a level with a given n: 

It is important that (22) does not depend on the method of 
solving the dynamic problem. 

For pure Coulomb systems (e.g., H(1s) + Z ), the condi- 
tions (5) and (6) are elementary. Owing to the symmetry, the 
initial term interacts only with the terms corresponding to 
the Stark states with n, = n - 1, and the transformations (9) 
and (19) correspond to a transition from a spherical to a para- 
bolic basis. In this case Eq. (1 1) yields the Coulomb distribu- 

tion of the products of the reaction (1) in the orbital quantum 
numbers: 

(12) 
When the Coulomb symmetry is violated, e.g., for the 

interaction between a hydrogen atom in the ground state and 
an ion that has no electrons outside the closed shells, we can 
use for the coefficient f (q, n) an approximate result" ob- 
tained in the I representation: 

f (q ,  n )  =f ( 1 )  = (21+1)'" exp [ - I  (1+1) 1221. (1 3) 

As a result we obtain from (1 1) 

on,= [ (214- 1) /Z]  esp [-1 (l+ 1) lZ]  on, (14) 
which confirms the I-distribution of the partial cross sec- 
tions obtained in first-order perturbation theory." Equa- 
tions (12) and (14) were obtained under different physical 
assumptions, but lead to numerically close values of the 
cross sections in the vicinity of the maximum of the distribu- 
tion in I. 

Transformation from Eqs. (2) and (3) to the system (7) 
and (8) greatly simplifies the solution of the problem. The 
principal approximation in this transition is the equality (6), 
violation of which requires an additional investigation for 
non-Coulomb systems in the low-velocity region. 

We consider now the multilevel system (7) and (8) in the 
internuclear-distance interval (22) '"  < R < 22, using the 
general properties that follow for its coefficients from the 
quasiclassical character of the motion of the highly excited 
electrons. In this region, the main dependence of the ex- 
change matrix elements on the principal quantum number is 
of the form' '-I3 

V ,  ( R )  =n-"U (R ,  2) .  (15) 
For a group of highly excited ionic levels with principal 
quantum numbers n -no# 1, where no is the center of this 
group, it follows that 

v n ( R )  =~,'u(R, 2) [l+O(A?z/rzo) I -n," U ( R ,  z), (16) 
a,.,, ( R )  - (Z- l)I'R+I,-ZV12n2 

x (2-1) lR+I,-Z2/2n02+~An=o,,, ( R )  f &An; 

An=n-no, E =Z2/no3, (17) 

where IA is the ionization potential of the atom. 
We change now from the multilevel system of differen- 

tial equations (7) and (8) to a two-level system that describes 
the interaction of the initial state with the final state b , ,  with 
allowance for the influence of all the remaining final states. 
Substituting (8) with n #no in (7) we obtain 
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The approximation (19) corresponds to the condition 
n) In - nol, i.e., it is valid for the analysis ofquantum transi- 
tions to a.group of highly excited levels with n , - ~ ~ / ~  in 
multicharged (Z) 1) ions (see the Appendix). 

The system of two equations obtained with the aid of 
(19) ( a z a i ,  6 ,  zb,", W, =win,) 

dbn 
-=- iv. (t)  exp [ i  J w. (r) d r ]  a. 

d t  

where 

has a simple physical meaning: the transition to this final 
state takes into account the attenuation of the initial one on 
account of the interaction with all the remaining final states. 
In the case r< I V,, / an interaction between two stationary 
states is realized with predominant (at low velocities) transi- 
tions in the vicinity of the term crossing points w, (R,) = 0. 
The opposite limiting case / V, 1 <r at all n reflects predomi- 
nance of the decay m e c h a n i ~ m . ~ . ~ . ' ~  

In the zeroth approximation, substituting in the right- 
hand side of the equation for a(t ) the initial conditions, we 
obtain for the initial-state amplitude and for the total (in all 
states) charge-exchange probability 

I +- 
a ( t j  = - t t  ] , ~ ( ~ ) = l - - e x p [  -2 1 r ( t )  d t ]  . 

- m - rn 

(21) 
which is the final result of the decay 

The solutions obtained in first-order perturbation the- 
ory without damping (r = 0) were artificially reduced to the 
form (2 1) under the assumption that the function o( t  ) is inde- 
pendent of time.'' In all the listed cases one finds in the 
population of the excited levels, as expected, a broad distri- 
bution in n as a result of charge exchange, and a logarithmic 
divergence of the total cross section in the low-velocity limit. 
These singularities are due to neglect of the strong coupling 
of the states in the vicinity of the term-crossing points, since 
the influence of the coupling restricts significantly the region 
of applicability of the approximation (2 1) on the low-velocity 
side. 

52. INFLUENCE OF THE TURNING POINT AND OF THE 
DAMPING ON THE CHARGE-EXCHANGE PROBABILITY AND 
CROSS SECTION 

To solve the system (20) with allowance for the damping 
and of term-crossing points located at a distance R,, i.e., 

a ,  (R,)  =0, R,=2 ( 2 - 1 ) /  (Z2/n2-21A),  (22) 
we must take into account those trajectories with impact 
parameter p-R, which correspond to proximity of the 
turning point (along the radial coordinate) to the quasicross- 
ing region. This leads to a splitting, quadratic in time, of the 

diabatic terms w,(t ) (Refs. 7, 15, 16): 

2- 1 
2 2 ( t )  = -[Rn2-p2-v t  J. 

2R, 

It is known7 that the proximity of the spinode to the crossing 
point leads to substantial differences of the solutions from 
those obtained in the framework of the linear models, where 
w - (t  - to). The limiting cases were investigated without 
allowance for damping," but the range of parameters where 
the probabilities (and cross sections) reach the maximum 
value does not have an exact analytic description. 

Nor are there any interpolation formulas for the transi- 
tion from the adiabatic limit to the perturbation-theory re- 
g i ~ n . ~  Parametrization of the model problem without damp- 
ing (r = 0) and its numerical solutionI6 show that in the 
reaction of the cross-section maximum the Landau-Zener 
linear model lowers the result by one-half. 

The optimal among the approximate methods is the one 
used in Ref. 17. It gives exact results in the perturbation- 
theory region, the correct value of the adiabatic exponent in 
the opposite limit, and a reasonable interpolation in the in- 
termediate region.'* Under the same assumptions as in Ref. 
17, the transition probability obtained from the system (1 8) is 
given by the integral 

i (24) 
Q ( t )  = J [ a n 2 ( t r )  +4Vn2( t f )  ] 'dlt. 

In view of the rapid convergence of the integral as a result of 
the quadratic (in time) splitting of the zeroth-approximation 
terms (23), we shall carry out the calculations for the case 
V, (t  ) = V,, (Rn ) = V,, . Carrying out the parametrization 

we reduce the integral (24) to the form 

To compare the results with the known limiting 
 case^,'.'^.'^ we shall first carry out the calculations without 
allowance for the damping. Shifting the integration contour 
in the upper half-plane on a Stokes line that tends to infinity 
along the rays n-(1/2 + 1/3), and approximating R by a 
third-degree polynomial 

Q ( a )  =$ [?/3+d ( a )  ~ ' + g  ( a )  T I ,  (27) 
we obtain 

W,=n"'Ia Ai2 ( E )  exp ( 4 / ,  Re Yh-2 Im S) , 

where S is the value of 0 at the stationary-phase point: 
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Fis  a hypergeometric function, and Ai(x) is an Airy function 
connected with the function @J frequently used in Ref. 3 by 
the relation 

Ai (x) =TC-'~(D (x). 

Since only the positions of the maxima of the oscillations of 
the probability W,, in (28) depend ong and d,  these probabili- 
ties were determined by expanding (26) for large a, with the 
result 

W,=nzp"a Ai2 (-a!") e-', v=2 Im S-'/,PO (-a) I a I", 

To calculate the exponent Y we can use directly Eq. (29), 
from which follow also the limiting cases obtained by var- 
ious methods.' In practical calculations one can use the sim- 
ple interpolation expression obtained in Ref. 19. The resul- 
tant inaccuracies have little effect on the final result. 

The general variation of the probability with changingp 
can be easily tracked where the Airy function assumes its 
asymptotic values. In the subbarrier region ( p  > R , ,  a < 0) 
the value of W,, attenuates exponentially with increasing im- 
pact parameterp, and in the opposite cases of above-barrier 
transitions the probability oscillates with decreasingp: 

To trace the connection with the known limiting formu- 
las it suffices to consider the case of small and large,& Since 
the argument of the exponential in (30) depends linearly on 
0 ,  it follows that at 0 x 1  the exponential becomes equal to 
unity and (30) goes over into the result of the perturbation 
theory. In the second case, 0% 1, which corresponds to adia- 
batically low velocity, Eq. (30) describes the exponential de- 
crease of the probability exactly, but overestimates some- 
what the pre-exponential factor. When the charge-exchange 
cross sections are calculated this does not affect the accuracy 
adversely, inasmuch as at low velocities G(3~1) the contribu- 
tion of the rotational transitions, which has not been ac- 
counted for, increases the cross sections somewhat. A com- 
parison of the calculations with the experimental results 
illustrates this circumstance. The cross section determined 
with the aid of (30) was compared with the exact calcula- 
tion16 in the parameter range where the cross sections differ 
most from the results obtained within the framework of the 

linear model. At the maximum of the cross section the devi- 
ation from Ref. 16 was of the order of 5%; the region where 
the cross section falls off at high velocities is described exact- 
ly. 

We turn now to the general case and determine the 
probability Wn for nonzero r (t ) in Eqs. (20). A similar prob- 
lem, which arises in the investigation of transitions between 
quasistationary levels, was considered in Refs. 20-24. It is 
important that in (20) only the initial state is quasistationary 
and there is no interaction due to the decay ofboth states into 
one continuum.23 For the Landau-Zener model the transi- 
tion probability for a single passage through the crossing 
point of the diabatic terms is independent of r (Refs. 22,23). 
In the more general case the decay of the initial state can 
influence the dynamics of a nonadiabatic transition only at 
large values ofF,  the transition probability is then exponen- 
tially small as a result of the strong damping of the initial 
state. Bearing the foregoing in mind, we shall take the decay 
into account in the form of factors that correspond to the 
change of the value of ai in two successive quasicrossing 
points.20 The integration interval in (24) breaks up into two 
parts containing two nonadiabaticity regions as nuclei, 
which enter with weights y ,  and y, move towards and away 
from each other: 

Leaving out the intermediate calculations, which are similar 
to those used to derive (30), we present the result: 

Let us emphasize the main consequences of the effect of 
the dampingr (t ) on the result (33), which distinguish it from 
(30). In the absence of decay of the initial state, the probabil- 
ity (30) oscillates and takes on zero values at the zeros of the 
Airy function. The influence of r ( t  ), besides the general de- 

FIG. 1. Transition probability W, as a function of the impact parameterp 
at the following parameter values: Z = 20, n = 11, and u = 0, 28 a.u. 1) 
Eq. (30), 2) Eq. (33). 
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crease of the probability, is that the minimum values reached 
in the oscillations are not zero. Figure 1 shows by way of 
example a calculation of the probability (33) as a function of 
the impact parameter for an ion charge Z = 20. 

We note that in the limit as v 4  Eq. (33) corresponds to 
the perturbation theory solution of (20) in first order in the 
interaction V, (t ). It can be easily seen that in this case the 
solution is given as before by the integral (24), with f2 (t ) re- 
placed by Stw, (t ')dt '. In a physical sense this limiting case is 
the simplest generalization of the decay model (21), and 
yields the partial cross sections a,. The total cross sections 
calculated as the sums of the partial ones, contain informa- 
tion more accurate than (1 8) on the dependence of the results 
on the charge of the ion and on the relative velocity. Analysis 
shows that in this case, in particular, the total cross section 
becomes nonmonotonically dependent on the ion charge at a 
given relative velocity. At v > 1 the decay model is incorrect 
even in order of magnitude (see Fig. 2). 

An estimate of the distribution of the reaction products 
in the quantum numbers can be obtained in analytic form. 
Integration of the probability (33) with respect to the impact 
distance with exponential accuracy yields 

2 " r ( R )  
0.-Rn26. e rp  [ -6. - -J v ( ~ 2 ~ ~ ~ 2 )  d ~ ]  ' 

Rn (34) 

The use of the exchange interaction in the form" 

V,  ( R )  = ( 2 Z l n n 3 )  IhR exp ( -R2 /3Z)  (35) 

leads to the following values: 

2 l ' ( H )  6nZ '12 Rn2 :3 2 R  ' f (R2-Rn2)8/2d~= (?) (? +  ex^ (-+) 
n, 

(36) 
6,= (4R,Vn3u) e r p  ( -2RnZi3Z) .  

FIG. 2. Total cross section for the charge exchange of carbon C+b nuclei 
with hydrogen atoms. Points-e~periment,'~ I )  calculation from Eq. (21), 
3) Landau-Zener model," 4) method of strong coupling of 1 1  states,26 5,6) 
method of strong coupling of 6  state^.^',^' 

It is seen from (34) that the level population depends mainly 
on the distance R, to the crossing point of the corresponding 
diabatic terms. With increasing velocity the number of pop- 
ulated levels increases. Calculations have shown that the 
maximum population probability takes place at n -Z  /2 (for 
Z < 25 this value of n practically coincides with Z 3'4). 

For ions with charge Z <  10 Eq. (30) is not directly ap- 
plicable, since the factors y ,  and y, in it were obtained by 
using model assumptions that require a large number of ion 
excited states interacting with the initial atomic state. This 
holds true with sufficient accuracy only for Z > 10. In accord 
with its physical meaning the time integral of the damping 
r ( t  ) at Z < 10 should be replaced by the sum8 

"1:' dn -1  rn 

r d t =  J r(-)  dn=-J n v n 2 [ t ( n )  I dn 
- m +m 

dt  
r > ( f )  

AF, d R l d t  

which leads obviously to a decrease of the influence of the 
decay in the case of a small number of crossings. At Z = 6 
(see Fig. 2), the state populated with the overwhelming prob- 
ability is the one with n = 4, and the sum (37) contains only a 
term with n = 5. Comparison with experimental results25 
and with numerical  calculation^,^^-^^ performed using exact 
Coulomb two-center wave functions by the method of strong 
coupling of five and more states, offer evidence of the suffi- 
cient accuracy of (33). 

53. CHARGE EXCHANGE IN SYSTEMS THAT HAVE NO 
COULOMB SYMMETRY 

For systems that have no Coulomb symmetry the as- 
sumption (6) of orbital degeneracy of ionic terms that inter- 
act with the atomic does not hold. This increases the number 
of spatially separated quasicrossings. Each splitting (at a giv- 
en n)  is determined not by the expression (9) summed over all 
the angle numbers q, but only by that part of (9) which corre- 
sponds to the components that remain degenerate. From the 
formal point of view this means that the strong coupling of 
the final states with the initial one, which is postulated in the 
coupled equations (30) by the coefficient V, (t ), is violated. 
At low velocities this decreases the adiabatic exponent [the 
parameter Y ,  in (33)], and consequently expands the region of 
applicability of perturbation theory, which takes into ac- 
count the damping of the initial state. On the other hand, the 
decay width of the initial s t a t e r  (t ), being an integral charac- 
teristic, depends little on the details of the quasicrossing pic- 
ture. A similar situation is realized in the Demkov-Osherov 
linear modelz9 and in other multilevel problems with term 
crossing (see, e.g., Ref. 8). 

Taking the foregoing into account, we shall solve the 
initial system (2), (3) by using, in this case approximately, Eq. 
(1 8) for the initial state. Retention in its right-hand side of the 
term proportional to b y, is for non-Coulomb systems an ex- 
aggeration of the accuracy in this approximation. Equations 
(2) and (3) take the form 
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where n and q run through all the possible values and the 
function T ( t  ) is defined in Eqs. (20). The solutions corre- 
sponding to the initial conditions (4) 

take into account, for the initial state, all the orders of per- 
turbation theory (in V;,) in the decay approximation. 

For the final states b,, , the phases of the integrands, in 
contrast to (24), do not contain off-diagonal matrix elements. 
The condition for the applicability of (39) are the inequalities 

6,,=n [V,nq(Rnq) ] ' /v2AF,< 1 (40) 
for all values of n and q. It is important that in this case the 
quantity 6, = ZS,, need not be small. Therefore we can neg- 
lect in the equations that follow the small difference between 
the values of a;,, for different q, which lead in (39) to negligi- 
ble quantitative effects, and sum over the angle quantum 
numbers. For the probability of charge exchange on a level 
with principal quantum number n, we thus obtain 

where V, is given by (9). When the approximation (23) and 
the parametrization (25) are used, Eq. (41) reduces to Eq. (33) 
with Y = 0. In view of the non-~ermitian' character of the 
system (38), the condition for normalization ofthe total tran- 
sition probability may generally speaking be violated. In the 
same approximation (39)-(41) we can show 6.17,18 that the 
unitarized probabilities are equal to 

FIG. 3. Total cross section for the charge-exchange reaction 
H, + B +'-+H,f + B + I z +  '1 as a function of the incident-ion energy divid- 
ed by the atomic weight. Individual p~ints-experiment,~'  solid curves- 
calculation. 

FIG. 4. Total cross section for charge exchange H, + B +' 
+HZ + B + ''+ "as a function of the nuclear charge Z a t  a relative veloc- 
ity u = 0.14 a.u. Points-experiment9; 1) calculation with Eqs. (42) and 
(43); 2) decay model [Eq. (21)l. 

The partial and total charge-exchange cross sections are de- 
fined as 

The integrals in (41) were calculated with the aid of Eq. 
(33) with Y = 0, and also numerically without the approxi- 
mation (23), i.e., with V,, (t ) specified by Eq. (35) and 

-on ( t )  = (2-1) /R  ( 1 )  -ZZ/2nZ+ZA. 

We note that in both cases the cross sections (43) are differed 
by not more than 5%. The results were used to calculate the 
charge-exchange cross sections of the hydrogen molecules 
with nuclei for which experimental data are a~ai lable .~ It 
follows from Ref. 12 that the matrix elements V, averaged 
over the angular quantum numbers must contain as a 
factor, where Nis the number of equivalent electrons (N = 2 
in the case of H,). The results are given in Figs. 3 and 4 and 
compared there with the experimental data.9.30 

Greatest interest attaches to the nonmonotonic charac- 
ter of the dependence of the total cross sections on the ion 
charge. Analysis of Eqs. (33) and (34) shows that the reasons 
of the oscillations in Z is the discrete character of the spec- 
trum of the produced ion. The minima of the total cross 
section correspond to the absence, from the discrete spec- 
trum of the ion, of levels with nearly half-integer values of 
the principal quantum numbers, for which the capture prob- 
ability would be a maximum under the given conditions. It 
was indicated earlier (9 2) that a similar nonmonotonicity is 
realized also for pure Coulomb systems. The decay model 
(21) obviously does not take into account the discreteness 
and a ~ s u m e s ~ " ~  that the ion spectrum in quasicontinuous. 
As a result this model yields the maximum estimate of the 
cross section, as shown in Fig. 4. 

With decreasing velocity, the inequalities (40) no longer 
hold, and an exponential fall-off should be observed in the 
partial (and total) cross sections. A quantitative analysis of 
this regions calls, however, for a more accurate picture of the 
behavior of the terms of the ion + atom (molecule) system, 
with account taken of the properties of the cores and of the 
Stark splitting, as well as of the interactions due to the rota- 
tion of the internuclear axis, both between the components 
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of the ionic levels3' and at the points of their crossing with 
the atomic levels having the necessary symmetry. 

The physical nature of the results of the present paper is 
based on the damped (decay) character of the initial state of 
the atom + ion system and on the discreteness of each of the 
final levels at which the electron transition terminates. The 
method developed here admits also of generalization to rela- 
tive velocities v > Z ' I 2 .  In this case it is necessary to take into 
account in the exchange-interaction coefficients the velocity 
dependence due to the momentum transfer to the electron on 
going from one center to another. Another application of the 
results is to ionization in ion-atom collisions and the mutual 
relation between the ionization and charge-exchange chan- 
nel. 

The authors thank V. V. Afrosimov for a discussion of 
the results. 

Appendix 

We introduce the variable x = vt and rewrite Eq. (18) 
with allowance for (8) in the form 

d a ~  .i * 
i-=-?J dx dx'as ( x ' )  F (z, x') Q (x-x') , (A.1) 

uno -, 

i 
F(x, x') =U(X) U (XI) exp [;J oin (Y) dy] (A.2) 

X' 

(Here 2N + 1 is the number of levels). For multiply charged 
(2% 1) ions we can use the limiting value of the function Q: 

m 

lim Q (x-xf ) = - 
N - r -  E 

m--m 
& 

We note that the terms with m < 0 make a zero contribution 
when substituted in the integral of (A.l), since x - xf>O in 
this integral. 

The term of (A.4) with m = 0 corresponds to Eq. (19), 
which is approximate at finite N. The remaining sum can be 
replaced in the limit as 0-0 by the integral 

which yields, together with Eq. (8), the second term of the 
right-hand side of (18). 
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