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An equation having the form of the kinetic equation is derived for the Wigner function in the 
geometrical-optics approximation from a quasi-optics-type equation with nonlocal nonlinearity. 
The method proposed by Korobkin and Sazonov [Sov. Phys. JETP 54,636 (1981)l for finding 
exact solutions is generalized for this equation. As an example, the model of stationary thermal 
self-action of light in a medium at rest is considered. Exact solutions, which describe the propaga- 
tion of light beams without self-focusing, are found in these models for certain types of beams. 

PACS numbers: 42.65.B~ 

1. INTRODUCTION 

There are at present no methods that allow an exact 
analytical description of the propagation of wave beams in 
nonlinear media, and therefore various approximate ap- 
proaches to this problem are of interest. In Ref. 1 a proce- 
dure using the Wigner function is proposed for investigating 
a Schrodinger-type equation with a cubic local nonlinearity, 
and a class of exact solutions describing the ray distribution 
function of cylindrically symmetric beams propagating 
without self-focusing in a nonlinear medium is found in the 
geometrical-optics approximation. It is shown that, in prin- 
ciple, the beams can propagate without self-focusing even 
when the intensity is higher than critical. 

We use the method developed in that paper to analyze 
equations with nonlocal nonlinearity. Such equations arise 
in different areas of physics and, in particular, in nonlinear 
optics and in plasma physics: the self-consistent field equa- 
tions, the equations with unitary nonlinearity, e t ~ . ~ . ~  

A fairly general scheme for describing the self-action of 
light beams in nonlinear media is presented in Ref. 4. The 
propagation of light is described in the quasi-optical approx- 
imation, the refractive index being assumed to be a function 
of the temperature and density. These parameters satisfy the 
appropriate material equations with a source which, in the 
case of the heat equation, is the beam intensity. Thus, for 
example, the model of stationary thermal self-action of light 
in a medium at rest is described by a constitutive equation of 
the form 

tion in the beam, in the nonlocal-nonlinearity case the out- 
come of the search for an analytic expression for the solution 
depends most essentially on the form of the initial intensity 
distribution in the beam. Here we can perceive some anal- 
ogy, albeit a fairly remote one, with the scheme for the in- 
verse-problem method.' 

In Sec. 2 we expound, following Ref. 1 as closely as 
possible, and referring the reader to it for details, a scheme 
for obtaining an equation for the Wigner function in the geo- 
metrical-optics approximation, and set forth the kinetic 
analogy. We also consider there the changes that the nonlo- 
cal nonlinearity introduces into the scheme for obtaining the 
exact solutions in this case. In Sec. 3 we find in the model of 
stationary thermal self-action in a medium at rest the exact 
solutions for certain possible forms of the initial intensity 
distribution in the beam. 

2. DERIVATIVE OF THE EQUATION. SCHEME FOR 
OBTAINING THE SOLUTIONS 

We shall consider equations of the form 

where k is the wave number and E = E (z, x). Let us intro- 
duce the Wigner function in the form 

W (z ,  XI I )  = 1 d26e-ik8cE (r, x + 112) E* (z ,  r - Q 2 ) .  (2) 

As is easy to see, it follows from (2) that 

The field E of the light beam satisfies the equation 
I E 2 ( z ,  X )  I = (2n) -lk' J d ' s ~  ( z ,  X ,  S )  . 

aE 1 
(3) 

i- f  - AE+n(T)E=O. 
d z  2k From (1) to (2) we easily obtain an equation for the Wigner 

We consider the case of self-focusing. The nonlocality of the function: 

self-action evidently manifests itself in the fact that the tem- dW aW 
perature is given by the integral of the square of the modulus a, + s - = -  ax ik3 5 w (2,  r, s + ~ 2 )  w (2,  y ,  s l )  
of the field, 1E 1'. In contrast to the local-nonlinearity case IG (, + 512; Y) - G * ( ~  - 512; y)]  elk6ss dzg dzsl dzsz dzy.  
considered in Ref. 1, for which it has been possible to solve in 
the geometrical-optics approximation the equation deter- Expanding Wand G in powers of s, and 6, we obtain in the 
mining the Wigner function for any initial intensity distribu- case when G = G * the equation 
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x! G (x. y) W (i, y. s,)d2yBsI. 

If G = - G *, then only derivatives of even order remain on 
the righthand side of the equation. We shall consider the 
G = G * case. 

Retaining only the first (i.e., n = 0) term on the right- 
hand side, we obtain 

This approximation implies the consideration of the diffu- 
sive divergence and the neglect of the diffraction effects at 
the aperture of the beam. Equation (4) has the form of the 
kinetic equation, and the function 

f(z, x, 0, 9) =(2n)-'k2W(z, X, s(0, 9 ) )~05-~0  

has the meaning of the distribution function for the number 
of rays emanating from the point x. We shall seek the solu- 
tion to Eq. (4) with the condition d W / d z  = 0 and under the 
assumption that the system is cylindrically symmetric. Let 
us introduce the polar coordinates x = ( p, q) in thexy plane. 
Then the vector s has the components 

s,,=u cos q-v sin cp, s ~ , = u  sin q +  u cos cp. 

Here u and u are the radial and azimuthal components of the 
vectors. Let us note that the vectors x, y, s, and lie in thexy 
plane. 

Under these assumptions Eq. (4) has the form 

dW dW d dudv 
u-+ --j G(p. Y) W(Y, u, v)d2y -:=0. (5) 

dp du d p  (an) 

Let us now introduce the function 

Now the solution to Eq. (5) can be represented as 

W(p, u, v) =a (Q (p) -u2/2; v) , 
where we have imposed on the functions Q and @ the self- 
consistency condition 

u2 
Q (p) = (2n) -' JG (P, r )  B ( Q ( r )  - ; V) rdrdudv. (7) 

To simplify the calculations, let us introduce the functions 

F (z) = I B (z, V)  dv, (8) 

We shall assume that the function Q ( p)  decreases at the 
same time as IE I Z ( p )  decreases. In the case of local nonlin- 
earity Q = IE 12, and this requirement is automatically ful- 
filled. It is also fulfilled in the case of thermal self-focusing, 
so that our assumption in fact implies the separating out of 
the self-focusing effect for Eq. (1). Let us also note that if 
IE 1 2 (  p )  = 0 for p>p,, then W ( p, s) = 0 for pap, and all s. 
Let Q, = lim Q ( p) forp-yo,  wherep, can be either finite or 
infinite. Then it is not difficult to deduce from (9) that 

IT '"' F (z) dz 
Z ( P ) = J ( Q ( P I ) = ~  J I Q  

Q o  

The case considered in Ref. 1 corresponds to the situa- 
tion in which G (x, y) = S (x - y), which implies, on the basis 
of (7), that I = Q, and thus leads to the transformation of the 
relation (10) into the easily soluble Abel equation. This is not 
so in the more general case. It follows from (7) and (10) that 

The relation (10) implies that I is a function (not a functional, 
but a function) of Q, and if we can determine this function, 
i.e., find Jsuch that I ( p)  = J [Q ( p)], then, we can, by invert- 
ing the Abel transformation (lo), determine the function 

IT = "r (Q) dQ 
F(x)=- -. 

2,' J (x-Q)'Ia 
Qo 

On the other hand, going over in (12) to integration over 
p, wherep =p(Q)  is determined, for example, from (1 I), we 
obtain 

Thus, ifwe are able to invert the dependence Q = Q ( p), then 
the relation (1 3) gives us the function F (x). After the function 
F has been found, the condition (8) gives us a class of func- 
tions @ satisfying Eq. (5) exactly. 

We shall not consider here the general problems con- 
nected with the inversion of the dependence Q (p); instead, 
we shall proceed to the consideration of a specific model for 
the nonlinear medium. Let us only point out some similarity 
to the scheme for the inverse problem method: the solution 
of Eq. (5) amounts, for a given intensity distribution I ( p)  (the 
"initial data"), to the solution of the inverse problem-the 
determination ofp = p(Q ); further, the inversion of the Abel 
transformation furnishes the function F from, for example, 
(13); and, finally, the solution of Eq. (8) yields the sought 
function @, in the present case a class of functions. 

3. THERMAL SELF-FOCUSING. EXACT SOLUTIONS 

Let us now consider the thermal self-focusing model, 
and give exact solutions for some specific beams, i.e., solu- 
tions exactly satisfying Eq. (5). The main difficulty is the 
determination of the function F. The selection of the func- 
tion @ from the condition (8) is quite a free one, and we shall, 
for convenience of comparison with Ref. 1, decide on the 
same type of functions. 

The model of stationary thermal self-action in a medi- 
um at rest is, as has already been noted, described by the 
following equations: the quasi-optical equation 

and the material equation 

It is clear that we can, using the Green function of Eq. (14), 
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easily reduce this system to the form considered above: 

Let us recall that we shall seek the solutions possessing cylin- 
drical symmetry, and satisfying the condition d W/dz  = 0. 
Let us consider some possible intensity distribution in the 
beam. 

1. Let the cylindrical beam have an intensity distribu- 
tion of the form 

Integrating Eq. (14), we obtain the following expression for 
the temperature: 

aIo  a10 a 
T ( p )  =T (a )  + - (az-pZ)x (a-p) + - aZx (p-a) In - . 

4 2 P 
(16) 

Here T(a) is the temperature at the beam boundary. It fol- 
lows from (3) and (9) that ( E  l2 = k ' I ,  and we find from (6) and 
(1 6) that T = k 2Q. The relation ( 13) then gives the function R 

azofi 
F(x)=- [x-  k-=T ( a )  ] -'I% (5-k-'T (a )  ) . 

2nZk2 

It is clear that only the special form of the initial intensity 
distribution (15) in the beam allows us to avoid considering 
the inversion of the dependence ( 16). The class of functions @ 
satisfying Eq. (8) is now known. We shall, for convenience of 
comparison with Ref. 1, discuss the same type of functions 
discussed in that paper. 

la. Solutions of the "fan" type. In this case we have 

uzo1/2 
(D (x, U) = -[x-k-'T ( a )  ] (x-k-'T ( a )  ) 6 ( u )  , 

2n2kZ 

azO1/G (sin ($-cp)  ) 
f ( P ,  cp ,  0,201 = c0s3 0 

Here, as in Ref. 1, all the rays emanating from an arbitrary 
point x in the xy plane belong to the plane passing through 
this point and the z axis. These rays make with the z axis an 
angle greater than 

0,(p) =arctg [2kwZ ( T  ( p )  -T (a )  ) 1 '". 

Here 8 and II, are the polar and azimuthal angles of a ray 
emanating from the point x. 

lb. Solution of the "bouquet" type. For this solution, 
the function @ has the form 

uZ 
X[ ( ~ - k - ~ ~ ( a ) ) - ~ - - ~ ]  , (D (x, u )  = - 

k" - 

The distribution of the rays in this case differs radically from 
the distribution of the type l a  and the "bouquet7'-type distri- 
bution considered in Ref. 1. It should be noted that the 
"fanw-type distribution obtained in that paper also differs 
greatly from ours. 

2. Let us now consider an initial intensity distribution of 
the following form: 

This distribution indicates that the cylindrical beam propa- 
gates in a circular beam. Proceeding as in Subsec. 1, we easily 
find for the function F the expression 

13 
F ( x )  = ----{all [ x - k - T  ( a )  1-'"x (x-k-'T ( a ) )  +ul, 

2n2kZ 

+aZz [x-k-'T ( d )  ]-'hX[x-k-2T ( d )  I ) .  

An increase in the number of external circular beams leads 
to the appearance of a corresponding number of additional 
terms in the expression for the function F. The expression for 
the function @ can have, besides the above-considered 
forms, a mixed "fan-bouquet'' form: 

a1,1/2 
@ ( x ,  v) = - [x-k-'T ( a )  ] -'"x[x-k-'T ( a )  16 ( u )  

2n2kZ 

The function f correspondingly acquires a mixed structure. 
3. The third type of initial distribution that we shall 

consider has the form 

IE12(p)=~o(aZ-~z)~(a-~). 

The parabolic intensity distribution in the beam corresponds 
more to reality than the rectangular distribution. For this 
case, we find only the function F. Choosing, for the sake of 
simplicity, T(a) = 0, where T(a)  is the temperature at the 
beam boundary, we obtain 

az01/.T. a"2p ( x )  
F(x) = -X (x) arcsin 

n2k [a1+4k2 ( p  (x) - k - '~o )  1'" 

CONCLUSION 

Thus, the main result of the paper is the discovery of the 
possibility of the mutual canceling out of the self-focusing 
and diffusion-divergence effects in media with nonlocal self- 
action, one example of which is the considered model of self- 
action of light in a medium with stationary thermal nonlin- 
earity. 

The author expresses his gratitude to V. I. Tatarskii for 
a discussion and for his attention to the work. 
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