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The influence of the discreteness and periodicity of the potential of atomic chains on the emission 
spectrum of channeled electrons is investigated. The possibility of generating additional coherent 
radiation exceeding the bremsstrahlung background is demonstrated. 

PACS numbers: 61.80.Mk 

The appearance of short-wave electromagnetic radi- 
ation from relativistic electrons and positrons channeled in a 
crystal, predicted in Refs. 1 and 2 and observed experimen- 
tally, particularly in Ref. 3, has been recently attracting 
much a t t e n t i ~ n . ~ . ~  The theoretical models used at prescnt to 
study channeling and radiation are based predominantl- 3n 
the description of the motion of fast particles in the averageu 
potentials of atomic chains or planes.'s5 In the present paper 
we consider axial channeling of relativistic electrons and 
show that the discreteness and periodicity of the potentials 
in the atomic chains can influence substantially, under cer- 
tain conditions, the emission from the electrons. It is shown 
that additional coherent bands appear in the electromagnet- 
ic-radiation spectrum and have energies that exceed sub- 
stantially the energy of the principal band of the spontane- 
ous emission. The existence of analogous bands, produced 
when fast nonrelativistic electrons move through a crystal 
along the atomic axes, was indicated by Ter-Mikaelyan6 
Akhiezer et aL7 have considered the features of the brems- 
strahlung produced when relativistic electrons are scattered 
by an atomic chain, but they did not discuss the specifics of 
the radiation from electrons moving in the channeling re- 
gime. 

Let us bring to light qualitatively the causes and condi- 
tions of the appearance of the investigated coherent-brems- 
strahlung bands that appear in axial channeling of electrons. 
We confine ourselves to electrons trapped by discrete trans- 
verse-motion levels in the channels, and assume that the 
crystal is thick enough for the inelastic processes to cause the 
states of the electrons in the different axial channels not to be 
coherent. Radiative spontaneous transitions of electrons 
from one transverse-motion level to another give rise to pre- 
viously described'.' radiation that takes place without trans- 
fer of momentum to the crystal lattice along the channel 
axis. The discreteness and periodicity of the atomic-chain 
potential make possible also radiative transitions in which 
are transferred to the lattice longitudinal momenta propor- 
tional to the reciprocal-lattice vectors 

(d is the longitudinal-transformation parameter for the in- 
vestigated chain, and n is an integer). If 

momentum Ap,, is captured, with overwhelming probabil- 
ity, by the entire lattice as a whole. This ensures coherence of 
the considered additional emission. It follows from (1) that 
the additional emission bands can be observed only at the 
small values 

n<d/2nA-10. (2) 

Another necessary condition for the appearance of such 
bands is smallness of the transverse momentum acquired by 
the electron as it radiates, compared with its characteristic 
transverse momentum in the axial channel: 

(w is the wave vector of the emitted photon, b is the charac- 
teristic radius of the wave function of the transverse motion 
of the electron in the channel, and 8 is the angle between the 
channel axis and the vector w). 

It will be made clear in what follows that the appear- 
ance of the investigated additional bands is due to coherent 
bremsstrahlung (CBB) of the channeling electrons on the 
chain atoms. This bremsstrahlung is produced under usual 
conditions, when the radiation formation length is equal to 
the interatomic distance. If no account is taken of the fact 
that the electron is channeled along the chain, it is well 
k n ~ w n ~ . ~  that coherent emission is impossible in this case, 
because the interference terms are suppressed as a result of 
integration of the radiation intensity with respect to the mo- 
mentum transferred to the l a t t i ~ e . ~  When the electron is 
channeled, its final state is unambiguously determined by 
the conservation laws, therefore the integral with respect to 
the momentum transfer vanishes and it becomes possible for 
the amplitude of the radiation to be additive in phase for all 
the atoms of the chain. 

61. CLASSICAL DESCRIPTION OF CBB IN AXIAL 
CHANNELING 

The frequency and polarization of the considered CBB 
bands can be easily established from simple quasiclassical 
considerations. The corresponding analysis is easiest to car- 
ry out in the electron comoving reference frame. The main 
spontaneous emission is due to motion of the electron in this 
reference frame along a circle whose plane is perpendicular 
to the atomic chain. The electron revolution frequency 06 ,  
equal in the comoving frame to the frequency of the radiated 

( A  is the amplitude of the atom vibrations in the lattice), the electromagnetic wave, is connected with the frequency w, in 
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the lab by the relation w; = wd( l  - 0 i ) ' I 2 ,  where 
PII = vll /C and vll is the longitudinal velocity of the electron. 
The projections of the dipole moment D in the comoving 
system are given by 

Dxr=Do sin oo't', Dvr=Do cos o,'tf, D,.=O. (4) 

The discreteness of the chain potential leads to addi- 
tional high-frequency radial and longitudinal oscillations of 
the dipole moment, d,(t  ') and d,(t '): 

D,.'= (Do+& (t ' )  ) sin ooft ' ,  

D,.'= (D,+d, (t') ) cos o0'tf,  D,.'=dz (t ') . (5) 

Expanding d,(t  ') and d,(t ') in Fourier series 

di= E d i  ( n )  exp (inS2't1), i=1,2, (6) 

we readily see that in the electron's proper reference frame 
there are present, besides the fundamental radiation fre- 
quency w;, of additional lines with frequencies 

on1(*' = Q f n f o 0 ' ,  (7) 

=Qrn. (8) 

The emission at the frequencies w:' * has angular and 
polarization characteristics similar to those of the funda- 
mental radiation. The emission at the frequency w:(O) is lin- 
early polarized and none exists in the electron-motion direc- 
tion. In the lab, after the appropriate frequency 
transformation, the radiation becomes dependent on the 
photon emission angle 19 and equal to 

(2) on ( 8 )  = (Qn+o,) I' ( I - P s  cos 8 ) ,  (9) 

( 0 )  on (0) =Qn/(l-pll cos 8 ) .  . (10) 

It can be scen that the radiation considered is coherent 
bremsstrahlung that appears under the condition that the 
radiation formation length is equal to the interatomic dis- 
tance. The appearance of the resultant resonant radiation is 
due in this case to the specifics of the electron motion in axial 
channeling and to the periodicity of the atoms [see ( 5 ) ]  in the 
chain. We emphasize once more that when (1) is satisfied the 
transfer of the longitudinal momentum to the lattice when 
the bands under consideration are emitted does not lead to 
loss of coherence. 

Using (9) and (10) and recognizing that in the relativistic 
case f2)o, we obtain from (3) the angle regions in which 
CBB can be observed in the case of axial channeling of elec- 
trons: 

2nb 
0>2 arctg - 

d '  

where E  is the electron energy and m, is its rest mass. 

52. WAVE FUNCTION OF RELATIVISTIC ELECTRON IN AXIAL 
CHANNELING 

Let us investigate in greater detail the wave function of 
a fast electron in an axial channel, with allowance for the 
discreteness and periodicity of the atomic-chain potential. 
Neglecting inelastic processes in the crystals we can assume, 
as shown in Ref. 9, that the electron moves in a strictly peri- 
odic lattice potential averaged over the atomic vibrations. In 
channeling of an electron, in contrast to that of positively 
charged particles, it is localized mainly in the inner regions 
of the atomic chains, where the longitudinal variations of the 
potential are appreciable, and this can lead to a noticeable 
deviation of the wave function of the longitudinal motion of 
the electron from a plane wave. 

The equation for the wave function of a relativistic elec- 
tron in a crystal, under the condition I V / E  14 1 (Vis the po- 
tential of the crystal) can be easily shown in analogy with 
Ref. 2 to have the form of the Schrodinger equation 

where R, and V ,  are the average codrdinate and the averaged 
(over the atomic vibrations9) potential of the jth atomic cen- 
ter. 

We seen for the channeling electron a wave function 
that satisfies the Bloch condition in the direction of the axis 
of the considered atomic chain, in the form 

9,. n (P, 2 )  =L-" exp (iknz) cpr (p) exp [is (p, z) 1, (14) 

where thez axis is directed along the chain axis, the vectors p 
are perpendicular to it, L is the length of the periodicity 
interval along thez axis, the phases ( p, z) is periodic inz with 
a period d: 

S (p, 2 - w  =S (P, 4 ,  (15) 
and the function p, ( p) satisfies the equation for the trans- 
verse motion 

Substituting (14) in (13) and putting 

kn= [2m (E-EA) /AZ] "', (17) 

and taking (16) into account, we obtain an equation for the 
phase function S ( p, z): 

where account is taken of the fact that at msm, we have 
k ,  zmc/li, as follows from (17). 
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It is easily seen that Eq. (18) admits of solutions that 
satisfy the periodicity condition (15), thus confirming the 
correctness of the choice (17) for k ,  . This property of (18) is 
ensured by adding to the average chain potential ( V (  p)) in 
(16) the additional term 

We consider a simple chain with a translation param- 
eter d, made up of atoms with atomic number Z, and show 
that if the condition 

is satisfied the solution of (18) can be represented by an iter- 
ation series - 

where S("'( p, z) - an and Z * is the screened charge of the 
nucleus at a radius of the order of the radius of the trans ~erse 
motion of the electron in the channel. 

We choose the origin halfway between the atoms of thc 
chain and write out the first three terms of the iteration series 
(20), the principle of whose construction is clear from the 
following formulas: 

1 ' 
S"' (p. I )  =o, at) (P. Z) =- -J[v(P, 2) - (v(P)  ) ldz+cI  (P) ,  

tzc 
0 

(21) 

( v;;:" v p  + l A ) [ jS(2) (p, z) dZ+c3 (p) ] S'3) (p, z) = - - 
mc 0 

where the functions p x'( p) satisfy the equations 

and the Ci( p) are integration constants obtained from the 
requirement that the phases S"' be periodic in z. As follows 
from (15) and (21), to satisfy this condition we must have 

j's"' (p, z) dz-0. 
0 

In particular, for S'" the condition (23) is realized in the case 
of the considered chain at Cl( p) = 0. 

As seen from (21), in the internal region of the chain, 
where the channeled electrons move for the most part, 
S'"( p,z) -a. To estimates(')( p,z) and the succeeding terms 
of the iteration series we must recognize that the derivatives 
with respect to p are of the order of b ,  ', where b, is the 

characteristic scale of the spatial variation of the function 
pn( p). It can be concluded from (16) that b f, zdfi2/Z *e2m. 
1t follows hence thatS'2'-a2,S(3'-a3, etc., thus corroborat- 
ing (20). 

We see thus that the degree of deviation of the longitu- 
dinal-motion wave function from a plane wave is determined 
by the value of a and that at a- 1 this deviation becomes 
appreciable. Understandably, in this case the expansion (20) 
converges poorly and we must use other methods to solve 
(18). Without undertaking for the time being the develop- 
ment of these methods, we examine the consequences of the 
deviation of the longitudinal-motion wave function from a 
plane wave for the electron radiation in axial channeling if 
(19) is satisfied. We confine ourselves here to the first-order 
approximation for the function $,, ( p, z): 

where 

k:"= [2m(E-~f '  ) /h2]'! .  

3. EFFECT OF DISCRETENESS OF CHAIN POTENTIAL ON 
THE SPONTANEOUS EMISSION OF CHANNELING 
ELECTRONS 

We write down the matrix element of the spontaneous 
radiative transition, without spin flip, from a state (A,&) into a 
state (A I ,& ' )  with emission of a photon having a momentum 
fix, assuming that #icl~xi (E, moc2<E: 

C a,., = d3re-'xr.p;r.Ar (P, Z ) ~ $ . , A ( P .  2).  (25) 

where is the electron-momentum operator. 
If (19) is satisfied, we confine ourselves to the first-order 

approximation for the function qhE,, (24). Noting that S'"( p, 
z) is practically independent of A and E in the relativistic 
region, we can readily show that 

~A-A=MA,A+I~~A,A, (26) 

C 
MA., = -- J d3re-ixrqAr' (p) exp (-ikA.'z) icp, (P) exp (ikAz), 

EL 

(27) 
ic 

m,,, = - j 
,. 

d3rcpr,' (p) 9, (p) exp[ i (hi-kh,') z- ixrlps (p, z) , 
EL 

(28) 

where k, = k - k = mc/fi, and we omit here and 
elsewhere the superscripts of the functions p"' and S"', 
which indicate the order of the approximation. The matrix 
element M, ., describes the usual spontaneous emission in 
channeling, and m, ., are the additional CBB bands. 

We expand S ( p, z) in a Fourier series: 

where 
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1 * 
S (p, g) = dJ S (p, I) eigzdz 

0 

Integrating (30) by parts, we get 

where 
1 

Qg=gc, Vg (p) = J V (p, Z) eigzdz. 
0 

Substituting (29) and (3 1) in (28) and integrating with respect 
to z we obtain 

where 6 is the Kronecker delta. It is important that the ex- 
pansions in terms of g in (32) and (33) do not contain zeroth 
harmonics. There is therfore no interference between the ad- 
ditional and fundamental radiation. 

If we confine ourselves to consideration of the states 
p, ( p) localized on an isolated atomic chain whose averaged 
potential has axial symmetry V,( p) ,= Vg(p), the indexil in- 
cludes the projection of the orbital angular momentum I of 
the channeling electron on thez axis [A =(n,l), where n is the 
principal quantum number]. The amplitudes mi ., and my ., 
satisfy in this case different selection rules and in the dipole 
approximation (we have 7i1 b, 4 l)m, ., '$0 at I ' = I + 1 and 
m, ., 1 1  $0 at 1 ' = I (we note that in the latter case a photon 
can be emitted without a change of the transverse-motion 
state, il ' = il ). 

It can be seen from (32) and (33) that the emission act is 
accompanied by a transfer of a longitudinal momentum fig 
to the lattice. If (1) is satisfied this momentum is transferred 
to the lattice as a whole, so that the coherence of the radi- 
ation is not violated. 

Of course, besides the longitudinal-momentum conser- 
vation law the expression for the radiation intensity contains 
the energy conservation law 

E'+Ac I x 1 -E=O. (34) 

From (32)-(34) we easily obtain in analogy with Ref. 2 
for the additional-band frequencies expressions that coin- 
cide with those obtained in $1 : 

where 

u o  (A', A) =ti-' 1 E ~ , - E ~  1 
The conservation laws require likewise, as seen from (35) and 
(36), that g be positive. The subscripts and superscripts in 
(35) correspond to E, . - E, > 0 and E, - E, < 0. 

In the dipole approximation, the probability of photon 
emission into a solid angle do per unit time at the frequencies 
(35) and (36) and at the fundamental frequency is equal to 

d ~ j * '  eZ Ogzkoo (A', A) 
-7 - - 
clo d t  2nhc 1-pll cos 0 

d ~ j "  eZ - --- '' z I 1 I d2p rphV'vg(p) TAP,' 12, 
d o d t  2nAc l-$l,cosO 

(39) 
where fl, is the polarization vector of the emitted photon, 
and f l  f and f l  !I are the projections of fl, on the plane perpen- 
dicular to the channel axis and on the z axis. 

Comparison of (38) and (39) is possible on the basis of 
the estimate 

where b, is defined in $2. It follows from (40) that 

To compare (37) and (38) we transform in (37) the radia- 
tive-transition matrix element 

At the same time, since we are interested as a rule in 
small n, for whichgRg 1 (R is the radius of the potential), we 
can, as is clear from the definition of Vg( p) in (3 l), replace 
with good accuracy Vg ( p) in (38) by ( V( p)). Recognizing 
that O,BO,, we easily obtain then a sufficiently accurate 
relation between the probabilities dP, and dPL* ): 

By collimating in the measurements the flux of the emit- 
ted photons, we can make the spectrum of the considered 
CBB monochromatic (in view of the firm connection 
between w and 6 ). The bremsstrahlung background has then 
a continuous spectrum, so that with a detector having a suffi- 
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ciently high resolution we can always register the bands of 
the considered CBB. Since usually the detector resolution 
-w ' I2 ,  the conditions for observation of the CBB will be 
(R,/Ro)"2 times worse than those for spontaneous emission. 

Even without allowance for collimation, however, an 
estimate shows that the radiation considered exceeds the 
bremsstrahlung background. Indeed, the spectral energy 
density of the bremsstrahlung from one particle moving in 
an amorphous medium is equal to (see, e.g., Ref. 10) 

where Nis the crystal density (in cmP3), M is the mass of the 
nucleus, and L is the radiation length (in g/cm2). At the same 
time the spectral energy density of the additional CBB 
bands, as can be easily seen from the formulas above, is equal 
to 

The matrix element (V',), .,, can be estimated with the aid of 
the relation 

(Vg') k,. ~ z V o / b ~ ,  

where Vo is the depth of the chain potential, and b, is defined 
in $2. Substituting next in (44) and (45) the values E = 20 
MeV, Vo = 100 eV, L = 30 g/cm2, and recognizing that 
bA < R, we obtain 

i.e., the additional CBB bands exceed the bremsstrahlung 
background. 
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