
Structure of vacuum states and mechanisms of charge screening in two- 
dimensional massless electrodynamics 

G. E. Danilov, I. T. Dyatlov, and V. Yu. Petrov 

Leningrad Institute of Nuclear Physics 
(Submitted 20 March 198 1; resubmitted 21 December 198 1) 
Zh. Eksp. Teor. Fiz. 83, 859-875 (September 1982) 

Charge screening and confinement of zero-mass fermions (quarks) in two-dimensional electrody- 
namics (QED,) are due to the transition of the local charges into the vacuum of the system under 
the action of a field that changes the topological number. An exact solution of the quark structure 
of vacuum for two QED, variants shows that this problem is consistent with this phenomenon. 
The structure of the vacuum is therefore directly related to the Adler anomaly and to the charac- 
ter of the change of the topological numbers of the fields in dynamic processes. The obtained 
solutions make it possible to investigate in explicit form the properties of the chiral condensate 
whose existence is also a direct consequence of the Adler anomaly. 

PACS numbers: 12.20.D~ 

1. INTRODUCTION 

In the theory with zero-mass fermions, the Adler ano- 
maly" leads to nonconservation of chirality or of the number 
of right-hand (R ) left-hand (L ) particles and charges1' 
(Q,,Q,). An investigation of two-dimensional quantum 
electrodynamics (QED,) (Ref. 2) shows3 that the physical 
phenomenon that explains this nonconservation is precisely 
the one which produces the charges that neutralize and 
screen any local charge introduced into this system. This 
mechanism ensures thus the confinement of the charge (and 
of Q, and Q,) in QED,. The qualitative picture of the pro- 
cesses that occur is more general than its two-dimensional 
framework. 

The gist of the phenomenon is the f~llowing.~ Local 
colored charges produce a colored gauge field (an electro- 
magnetic field for QED,), which in turn begins to create 
quark-antiquark pairs (q,q). It might seem that such a field 
can create only q,q, and q,q, pairs, without changing the 
chirality K = Q, - Q, and the total charge Q = Q, + QL 
of the system. What is then the meaning of the Q, and QL 
nonconservation to which the Adler anomaly leads? An in- 
vestigation3 of the corresponding processes in QED, has 
shown that the change of the topological number of the elec- 
tromagnetic field4 by an amount Q, is evidence that in the 
course of the process the number 1 Q, I of the particles q, and 
SjL (QT > 0) or of qL and q, (Q, < 0) (from among the field- 
produced q, q, and q,q, pairs) turns out to be bound in the 
delocalized complexes that are present in the physical vacu- 
um of the system. In other words, a certain number of R and 
L quarks with their characteristics go off into the vacuum 
plasma and are unobservable, meaning nonconservation of 
the charges Q, and Q,. At the same time, the uncompensat- 
ed right-hand and left-hand charges (again lQ, 1 )  remain in 
the form of quarks with finite momenta in the local regions 
of the field action. These particles inevitably produce a 
screening charge, since they neutralize the field until the 
change of the topological number stops, and with it the tran- 
sition of new R and L charges to the vacuum. 

Charge screening due to polarization of vacuum could 
by itself not lead in QED to a model spectrum consisting, as 
is well known,5 of only bosons that are fully neutral with 
respect to all quantum numbers (including chirality). Only 
the transitions into the vacuum states, introduced by the 
described "topological effect," ensure confinement here. 
The physical aspects of the phenomenon in QED, were in- 
vestigated in Ref. 3. In the present paper the quark structure 
and the properties of the vacuum states for different QED 
models are investigated from the viewpoint of their role in 
the confinement mechanism. These are the properties that 
allow the topological effect to transfer quark characteristics 
to the vacuum and cause their nonconfinement. 

Absorption of particles by delocalized states presup- 
poses degeneracy of the ground state of the system relative to 
the quark characteristics. The existence of vacuum states 
with different quantum numbers (QR and QL or the total 
charge Q and the chirality K ) was proved in QED, in Ref. 3. 
It is precisely these states together with hadrons (neutral 
massive bosons2) which make up the complete system of 
states of the model. 

The considered confinement mechanism requires also 
that the matrix elements of the transitions between local 
packets that carry quark characteristics and states with delo- 
calized quantum numbers be finite, i.e., that they be indepen- 
dent of the volume Vof the system. It is only then that delo- 
calization of the quantum numbers becomes really possible. 
The condensate states are most suitable for this purpose. 

Indeed, the ground state of QED, with one charged 
quark (the Schwinger model2) constitutes a chiral conden- 
sate. The vacuum quantum number ($2 (x)$, ( x ) )  ($,,, (x) 
are the operators of the R and L quarks) is not equal to zero 
here. The chiral vacua absorb the quark chirality and make it 
unobservable. However, the QED, model with several types 
of charged zero-mass quarks7 shows that the topological ef- 
fect can organize delocalization of the quantum numbers 
also in another way. The model has degenerate chiral vacua, 
but these have no chirality condensate. The matrix elements 
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of the transitions into chiral vacua decrease here with like 
Vv; ': -' as V-t rn , where 

g j  is the electromagnetic charge of the quark of type j. But 
the presence in the model of a neutral zero-mass particle 
produces an infrared situation, which cancels out precisely 
the small factors. The system of coherent states, viz., chiral 
vacua + an infinite number of zero-mass particles with 
small momenta, replaces here the chiral condensate states of 
the Schwinger model. The matrix elements of the transition 
of the chirality from localized packets into coherent states 
turn out to be finite, and this allows the chirality to be delo- 
calized, thus realizing confinement of the charges Q, and 
QL. 

We shall not consider here the charged vacua of QED,. 
Their investigation shows the absence of real charged vacua. 
The charges in the model are screened but not delocali ved. 
The quark structure of the charged states of the model cc - 
cides with the quark structure, investigated later, of the un- 
charged states. The entire charge Q of the state is concentrat- 
ed only near the external compensating charges ( - Q),  
without the presence of which a consistent definition of 
charged states in two dimensions is impossible.6 Therefore 
the charge of the state has practically no effect on its struc- 
ture and properties, which are of interest from the confine- 
ment point of view. 

The absence of local charge in vacuum means its strict 
local conservation. Therefore what takes place in the models 
of zero-mass QED, is not the Higgs phenomenon, which 
starting with Ref. 5 was assumed to be the basis of the phy- 
sics of screening, but an entirely different screening mecha- 
nism connected with the topological effect. The latter takes 
place in locally uncharged vacua, since there is no transition 
of the total charge into vacuum in any of its stages. For the 
screening of the charged subsystems it suffices to have the 
chirality change ensured by the Adler anomaly. The screen- 
ing of the charge in zero-mass QED, is not its statistical 
discoloring (as in the Higgs phenomenon), but confinement 
capable of hiding the triality of the confined quarks (see Sec. 
5, where the quantum numbers of the observable states ("fla- 
vors") do not coincide with the flavors of the quarks. 

In the second section of the paper we recall the result of 
the calculation, in Ref. 6, of the evolution operator S (T) of 
the QED, system in a finite time T, and separate the vacuum 
part of S (T ). In the third section this vacuum part allows us 
to construct and study the properties of all the chiral vacua 
of the Schwinger model. Their quark structure points direct- 
ly to the existence here of a vacuum condensate consisting 
mainly of bound qRqL and q,q, pairs. The loss of R and L 
quarks via the Adler anomaly, referred to at the beginning of 
this section, means precisely the formation of such complex- 
es by the electromagnetic field that changes the topological 
number. 

In Sec. 4 we investigate the degeneracy and the quark 
structure of the vacuum state of a model with several elec- 
trons. Here, too, there exist vacua with different quantum 

numbers-the necessary condition for quark confinement- 
but their quark structures differ greatly from one another (in 
contrast to the Schwinger model). The properties of the 
states and the existence of condensates in them are directly 
connected with the topological effect described above. 

In Sec. 5, the bosonization method is used to study the 
confinement phenomenon under conditions when there are 
no vacuum condensates in the model.' Such a system makes 
unobservable to the total charges Q R ,  with the aid of the 
aforementioned mechanism, in which the principal role is 
played by zero-mass excitations. The charges of the individ- 
ual quark types turn out in it observable flavors, and this 
leads to a number of interesting features of the model. The 
partial charges of the physical states, however, differ from 
the quark charges. By the same token, the quark characteris- 
tics manifest themselves here in hidden form (confinement). 

2. THE EVOLUTION OPERATOR S(T) IN QEDl 

As shown in Sec. 1, the main purpose of this paper is to 
bring to light the quark structure of the vacuum states of the 
model, a structure that guarantees in the model quark con- 
finement. To this end we must cite here the result of the 
calculation6 of the operator of the evolution of the QED, 
system within a finite time T. The wave functions of the 
states are obtained from S ( T )  in accord with the known for- 
mula 

En is the energy of the nth physical state, and its wave vec- 
tors I Yn ) and ( Yn V, depend respectively only on the creation 
(a;, ,b 2, ) and annihilation (a,,, ,bRVL) operators of the R 
and L quarks and antiquarks. The quark field $(x)  is ex- 
pressed in terms of these operators in the form 

I$ ( x )  = q R ( x )  u ( ~ ' + I $ ~  ( 5 )  u ( ~ ' ,  ( I f  y5)  utR>  L'=O, 

I c,. ( x )  = yz [exp (*ipnx)aR+ (pn )  + b & ( ~ n )  ~ X P  ( F ~ I J ~ X )  I 
Pn>O 

Calculation ofthe functional integral for S ( T )  in a phys- 
ical (Coulomb) gauge and in a finite volume V yielded in Ref. 
6 an expression in the form of a sum of terms with definite 
number of R and L quarks-antiquarks in the initial and final 
states. The term ("matrix element") with ii, ,ii, (n, ,n, ) 
quarks and 6, ,%,(m, ,mL) antiquarks in the initial (final) 
state is written in the form 
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The coordinates x, (5,) and ykwk) represent respectively the 
R and L quarks in the final (initial) state, and the symbols for 
the antiquarks are x i  (5; ) and y; ( j; ). The operators a+ and 
b + commute with a and b, since they act in different spaces 
of states (final and initial). So(xk ,..., j ; )  is the matrix element 
ofthe evolution operatorS,(T) ofthe system offree fermions: 

ax ax' 
S , ( T )  =exp { J ( T - ~ f x ' - i O ) - ~  

x [a,+ ( x )  aR ( 5 ' )  + b ~ +  ( x )  b~ ( x ' )  

corresponding to the same particle numbers as (3). The coef- 
ficients of the operators in (4) are the Green's functions of the 
free fermions. 

The function I(x,, ..., j ; )  describes the influence of the 
interaction between the quarks. It is of the form 

I (xkr  . . . , ykl) =Z-ie-'EoTSQ exp { - - ; Z [ ~ F ~ ( P ~ ) R ,  (-pn? 

F"f 0 

~ R , ( P . )  +F,(p.) (R,(P.)R,  ( - -P. )+R,(P. )R~ ( - P A  I}. 

(5) 

where the functions F,( p, ) of F2( p, ) are equal to 

1 4 o n  exp ( - i o , T )  
F,  ( ~ ~ ) = ~ e x p ( - i I p . l T ) -  

( ~ n + l ' p n l ) ~ ( ~ - ~ n ~ ) "  

m2 = g 2 / r  is the boson mass in QED,. 
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The renormalization factor 2, the vacuum energy E,, 
and the sources R i ( p n )  and Rf(p,) which depend on the 
quark-antiquark coordinates are given by 

Finally, the factor SQ characterizes the charged states of the 
model.6 Since it suffices for our purposes to consider states 
with Q = 0, we have SQ = 1. 

Equations (3) and (4) indicate clearly that the operator 
S ( T )  in a finite volume conserves the right- and left-hand 
charges, since the only nonzero matrix elements are - - - 
nR - mR = nR - mR nL - m, = iiL - m,, and 
(QR = nR - mR ,QL = nL - mL). The nonconservation of 
the charges QR and QL, which corresponds to the Adler 
anomaly, can be tracked only in the limiting transition 
V--t co in terms with - V particles. 

The time dependence exp( - io  T )  in (6) corresponds to a 
particle with mass. It is well known235 that this is a neutral 
vector boson (Q = K = 0). Its properties and parton wave 
function that stems from (3) were investigated by us earlier. 
The operation of the confinement mechanism is determined 
by the properties of the states without massive particle. We 
omit therefore exp( - i oT)  from all the formulas. The time 
dependence exp( - ipT) in (6) is typical of zero-mass parti- 
cles. For the Schwinger model, however, the time-dependent 
factors that arise in various parts of expressions (4) and (5) 
cancel each other ~ompletely.~ In the Schwinger model we 
have only massive excitations. 

Transformation of expressions (4) and (5) with the aid of 
the formula 

leads to the following form of the time-independent part of 
the operator S (T), which can be designated S,,: 
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We have not written out in (9) the operator part of Eq. (3) and 
consider only the uncharged states: Q = Q, + Q, = 0 
(A = const). 

The function @ (x) characterizes the interaction and is 
eaual to 

The expression under the summation signs in (10) has no 
singularity asp-0. This is the result of a subtraction carried 
out in the exponential factor of (6)  when (3)  was transformed 
into (9). All the numerical factors that arise in this case are 
gathered into the constant factor A that does not depend on 
the volume (at Q = 0). 

Thus, besides the states of massive bosons, the 
Schwinger model has only vacuum states with different 
quantum numbers. These states are of zero momentum in 
any Lorentz system. 

3. CHIRAL CONDENSATE OF MODEL WITH ONE ELECTRON 

We begin with a construction of the simplest vac, .m 
state of the Schwinger model, viz., a vacuum wit11 
Q = K = 0. By observing in it a chiral-condensate quark 
structure, we obtain infinite degeneracy5 of the model with 
respect to the chirality K. 

In expression (9), the variables of the initial and final 
states are explicitly factored out. Therefore, according to Eq. 
(I), the Q = K = 0 sector of (3) is represented by the follow- 
ing vacuum wave function: 

The normalization factor Z defined by (7) increases ex- 
ponentially with volume as V-+ co . Consequently the main 
configuration in (11) is one with a finite quark density 
In, = E, - V). 

We write down 0, in a form analogous to the represen- 
tation that holds for n-particle Green's functions of field the- 
ory, namely as an exponential function of the sum of connec- 
tive vacuum complexes p, (xj ' ;  y, y') : 

A 

Qo=Z-"P(K=O) exp { J q2 ( x ,  Y )  an+ ( X I  bL+ (Y 

d r  dx' + J'% q2 ( I ,  y)aL+ ( y )  bR+ ( x )  + 5 
2n z 

(12) 
By connective complexes we mean those contributions to the 
sum (1 l), in which the integrand p, decreases when any 
group of variables x,x', y, y' is separated from the remaining 
variables of the given term. Owing to the condition K = 0 

and to the existence of chiral quark complexes (with K # 0) in 
the vacuum of the model (this will be proved below), the 
vacuum fl, is not simply an exponential function of such 
complexes, but is a projection of the expznential on the state 
K = 0. The formal projection operator P in (12) emphasizes 
this fact. The proof of (12) is a repetition of the analogous 
proofs for Green's functions. The arbitrary term of the sum 
in (1 1) is represented by a sum of products of all the possible 
connective parts. The combinatorics customarily used for 
such calculations leads then to Eq. (12). 

We now ascertain which vacuum complexes exist in 0,. 
We consider the simplest four-particle complex in (1 1): 

dx  dx' a,+ ( x )  b,+ ( x ' )  dy dy' a,+ ( y )  bL+ ( y ' )  i,= J- 
2.i L-XI-i0 yf-y-i6 ' 

@ (x -  y )  @ (2'- y') 
X 
0 (x'- y )  @ ( x -  y ' )  

The function @ (r) of (lo) takes as r-+CO the asymptotic form 
imr 

cD ( r )  = - ec-'"+const, r B  l l m ,  
2 (14) 

which stems from the contribution of smallp in the integral 
(10) (Cis the Euler constant). Thus, if we consider in (13) the 
variable regions x' -y and x -yl, whereas the distance 
between these two regions of r is large ( r>m- ' ) ,  then the 
functions @ (x - y) - QZ (x' - y') - r. They cancelout thelarge 
denominators Ix - xlI - I y - y'l -r of the integrand in (13). 
The expression for f4 breaks up into two independent parts 
with helicities K = + 2: 

dxdy'  mec-'" 

'4" [ JT m ( x - y l )  aR+ ( x )  b=- ( Y / )  ] 
dx' dy mec-'" (15) 

[I, aL+ ( y )  b,+ ( x r )  ] +(P&. 
@ ( X ' - Y )  

The connective part of p4 is defined by the expression 

dx  dx' dy dy' a,+(x) bR+(x l )  a,+ ( y )  bLf  ( y ' )  
p4= S (2.i)Z - 0 (x- y') 0 (2'- y) 

@ (x -  y )  @ x -  y  ) ( i m )  + - ezc-' 
x [ (x-xr-io) (yf-y- io)  4 1 ,161 

The distances between the particles that make up p4 are of 
the order of the interaction radius m-I .  

It is easy to verify that there are no other possibilities of 
obtaining independent complexes from f4. Any term of (1 1) 
can be investigated in the same manner. It is observed as a 
result that the vacuum of the model contains arbitrary neu- 
tral (K = Q = 0) and chiral (K +O,Q = 0) complexes and has 
no charged complexes. The vacua of the Schwinger model 
comprise a chiral condensate. 

The main properties of the condensate can be investi- 
gated by considering only the first two terms in the exponen- 
tial of (12). This is the approximation of noninteracting 
chiral pairs. With the aid of Eqs. (12) and (15) the vacuum 
state 0, is then written in the pair approximation as 
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CO 

dp o:~'=z-*P^(K=o) {exp [ @ ( p )  an+ ( p )  bL+ ( p ) z ]  
0 

We have changed over in (17) to the momentum representa- 
tion of all the quantities. The function @ ( p )  is equal to 

Expression (17) describes the state of an ideal gas of 
bound qRg, and q,gR pairs with zero total momenta, i.e., a 
Bose condensate of such pairs. Equation (18) represents the 
wave function of a bound pair. An equal number of pairs 
with ovposite chirality ensures a zero total chirality of the - - 
vacuum a,. But there exist, of course, also states with any 
other chirality. 

The momentum distribution of the vacuum quarks is 
determined by the function @(p) .  The density of the R 
quarks over an interval dp/2a is given by the expression well 
known from Fermi statistics 

Equation (19) is derived in the Appendix. It is of interest to 
compare the quark density ( 19) with the exact expression (1 2) 
for the particle density in vacuum, which can be calculated 
in the Schwinger model (see Ref. 3 and the Appendix): 

A numerical comparison of (19) and (20) shows them to be 
practically equal at small p 5; m, i.e., in the region where 
most vacuum particles are concentrated. Only the asympto- 
tic forms (19) and (20) at momentap)m are different: 

nR ( p )  - l / p4 ;  na") ( p )  - l /p6.  

The total densities of the quarks in the vacua (12) and (17) are 
small and close to each other, 

- dp 
OD 

dp pR= J nR ( p )  2n = 0.0284rn. pr' = 5 d'" ( p )  - = 0.0265m. 
2n 

0 0 

The vacuum gas is highly rarefied, and the contribution of 
multiparticle complexes that describe the interaction of the 
condensate pairs is small. 

However, the representation (17) of the QED, vacuum 
as an ideal gas of condensate chiral pairs has its limitations. 
Thus, the QED, correlation functions decrease exponential- 
ly at large distances, whereas in the pair approximation the 
decrease follows only a power law. This statement in proved 
in the Appendix for the simplest correlator of the theory, 
namely the equal-time fermion Green's function. The role of 
the multiparticle complexes in this phenomenon is obviously 
large. 

The importance of multiparticle complex in the vacu- 
um is emphasized also by the absence of a Goldstone particle 
in QED, (Ref. 9). It is precisely the exponential decrease of 
the correlators that confirms rigorously this statement. A 
chiral condensate and spontaneous breaking of the chiral 
symmetry should have yielded in the theory a Goldstone 
particle. Its absence denotes rigidity of the vacuum plasma 
and the long-range correlations between their particles. The 
proximity of many properties of the vacuum states (12) and 
(17) suggests the attractive idea that there might exist in field 
theory a small numerical parameter connected with the den- 
sity of the vacuum particles. For a low-density gas the nor- 
malization factor is connected with the gas density by the 
equation 

~=v- 'e ,pv.  (22) 
Comparison with (7) indicates that the analogous parameter 
for QED, is 

a= (4-n)/4n=0.07. (23) 

The existence of a chiral condensate is a most important 
property of the model, directly connected with the confine- 
ment mechanism. Such a mechanism, as explained in Sec. 1, 
calls for infinite degeneracy of the vacuum states in the 
quark characteristics. A chiral condensate makes natural a 
chirality degeneracy of the Schwinger-model vacuum states. 
In the approximation of an ideal gas of pairs, the degenerate 
states differ from one another only by addition of a certain 
number of pairs. Neither the energy nor the momentum of 
the state is altered thereby, and we have an infinite number 
of degenerate states. 

The exact wave fun3ions of the chiral vacua differ from 
(1 2) only in the projector P (K ) on a state with given chirality; 
this projector is applied to a single state Yo described by the 
exponential in (12). This obvious statement can be obtained 
again directly from the operator S (T) by a method similar to 
the one that leads to 0,. It means that the vacuum complexes 
in all the degenerate vacua are perfectly identical, and the 
structures of the vacua do not differ. In the next section we 
shall see that a different situation arises in the model with 
several electrons. 

The total number of chiral objects in any of the vacua is 
proportional to the volume V. Therefore the matrix elements 
of the transitions between the local chiral packets and the 
chiral vacua remain finite. For example, the matrix element 

This formula is given in Ref. 3 (see also the Appendix). It is 
independent of volume precisely because of the condensate 
nature of the vacua of the model. In this situation, the Bose- 
Einstein principle adds a factor d N -  d V (N is the number 
of condensate particles), which cancels out the factor 1 / d  V 
typical of transitions between local and nonlocal states. 

The discussed property of the matrix element is ex- 
tremely important. The confinement mechanism in QED, 
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(see Sec. 1 and the discussion in Ref. 3) operates precisely 
because of its existence. 

4. VACUUM STATES IN THE MODEL WITH SEVERAL 
ELECTRONS (QUARKS) 

The presence of several types of zero-mass quarks with 
charges gi makes for a number of interesting features of the 
QED, model. We have here excitations of two types, massive 
bosons with mass 

and zero-mass particles.' The confinement phenomenon 
(confinement of total QR and QL charges) proceeds here dif- 
ferently than in the Schwinger model, since the vacuum 
states of the model (at arbitrary g j )  have no chiral corden- 
sate. But before we proceed to this question we must sr . ly  
the physical states of the model. 

TheS ( T )  operator matrix element analogous to the pro- 
duct s , ( ~ ,  ...) Z(x, ...) in Eq. (3) is equal here to the expression 
(again, we consider only states with Q = 0) 

N 

S ( T )  =Z-I exp (-iE.T) ( T )  

Equations (4)-(7) define all the factors of (26) for each type of 
quark j = 1,2, ..., N. In place of the charges g, we use the di- 
mensionless constants 

Expression (26) proves the presence of zero-mass excitations. 
They appear because the factor F,( p,  ) is multiplied here by 
1 q vl I < 1, so that the time dependence exp( - i( p,  I T )  is not 
completely offset by the dependence on Tin SbJ1(T), as was 
the case in the Schwinger model. 

Thus, in the considered case the evolution operator has 
the following structure: 

The zero-mass part of S ( T )  is equal to 

To simplify the notation we have omitted here the particle- 
species labels j and I from all the coordinates. Therefore in 
Eq. (30) the coordinates of the R particles x,i,x',if are 
x, = xk' etc., the coordinates of the L particles y, j,y1,j' are 
y ,  = and so on. All the constant factors that arise when 
(26) is tranformed into (28) are included in (30). The total R 
and L charges of the states are 

j= 1 

and Qi!,  are defined as the differences of the number of 
quarks and antiquarks of type j. 

Inasmuch as in the two-dimensional case any number of 
zero-mass particles all moving in the same direction does not 
differ in energy and momentum from a single particle with 
the same total momentum, it follows that an infinite number 
of different systems of states can be constructed here for 
zero-mass excitations. From (29), by expanding the exponen- 
tial in a series in exp( - ip, T )  and identifying each p,  with 
the momentum of one particle, we obtain a system of states 
of neutral zero-mass bosons. The sum over all such excita- 
tion does indeed yield S,.,, (T),  i.e., they form a complete 
system of states. We shall see later that other choices, greatly 
differing from the one just made by us, are also possible. 

Vacuum states of the model exist for arbitrary Q g',Q y' 
(we confine ourselves as before to the case 
QR + QL = Q = 0). Let us compare the simplest completely 
neutralstateQ$'=Q?'=O,j= 1,2 ,..., N: 

with the vacuum function of the sector in which of the 
charges differs from zero, Q 2' = - Q = 1 : 

{ 
c 2 exp(+:;.l T )  N 

S,,.(T)=exp -- dx dy a,+ ( x )  b,+ ( y )  
n f O  l , l= l  (29) R,= VV-I { 5 - 

2ni [O(x -y ) ] ' ?  

x LR,"' (-P.)R!~' (p.)q,ql-~!" (-P.)RY' (P.) I ) .  a,+ ( x )  bL+ (y)aR+ ( x i )  bR+ ( x l ' )  [ @  ( X ~ ' - Y )  l q / " ~  
x 

(xl-xlf'i0) [ @  (x-y)  I Y [ C D  (x,-y)  ln / "~  ' +...} IQJ. 
and the expression for the makjx element S,,, takes the form (33) 
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In Eqs. (32) and (33) we have again left out the indices j 
and I of the particle species in all the quantities (x=x(j), 
y ~ y ' ~ ' ,  xFxy', x; EX;('); nR=nkl, n,-nf' etc.) and in the 
creation and annihilation operators. 

Only neutral complexes with chirality K = 0 are pre- 
sent in (32) . '~he simplest of them is a four-particle complex 
of the form qk'ifk'qf'ijf'. Such a complex cannot be divided 
into two integral pairs, since the integrand decreases in this 
case with increasing distance r between pairs like r'~"- ', 
and lq ,q, I < 1. There is no chiral condensate in a, ,  nor in 
0,. But in contrast to the Schwinger model, a, contains 
complexes missing froma,, as can be seen directly from (33). 
These complexes constitute a junction of the chiral pair 
qk'ijt7 with the neutral complexes of (32). The total number 
of particles in the principal chiral complexes is quite large,,' 
-In V. Consequently the 0, vacua differ substantially from 
the no vacua and differ from one another (at different j). This 
is radically different from what we have in the Schwinger 
model. 

As ql-1 (q = 0, j# 1) we have a phase transition'' to 
the Schwinger model. The density of the chiral complexes 
jumps from zero to the finite value given in (30). Only in the 
case of constant charges g, does a chiral condensate exist 
also in the model of Ref. 5. For example, for N = 2 and 

- 
ql=q2=1/1/2 (34) 

eight-particle complexes in the state 0, decay into two four- 
particle chiral (K = + 4) complexes of the form 

Similarly in the case of arbitrary Nand at equal g = g there 
arises in the model a condensate of 2N-particle complexes, in 
each of which are represented all N types of chiral quark 
pairs qk'ijy (or qg'qk'). 

A direct connection exists between the properties consi- 
dered above the vacuum state of the model of Ref. 5 and the 
topological effects that arises already in the problem of zero- 
mass free fermions in an external electromagnetic field. 3 It 
is shown in Ref. 3 that an electromagnetic field that changes 
the topological number 

after a time must inevitably produce, via the Adler anomaly, 
a system of free fermions with partially delocalized QR and 
QL charges. The quantity Q,(t ) is precisely the measure of 
this delocalization: 

The explanation of the phenomenon is different in part for 
integer and noninteger Q,. The field corresponding to an 
integer Q,(t ) produces exactly Q, pairs of particles qRqL (or 
qLqR at Q, < 0) with momenta on the order of 1/V. At the 
same time we have an infinite coherent distribution dp/p 
with In Vparticles having small momenta in the case of non- 
integer Q, 

A similar situation obtains with the vacua of the model 
of Ref. 5, and this fact is a direct consequence of the confine- 
ment, based on the mechanism of the topological effect 
(zero-mass quarks). Indeed, as explained in Sec. 1 and in Ref. 
3, and electromagnetic field with Q,#O should produce 
lQ, 1 chiral (qRqL or qLqR ) pairs directly an a delocalized 
state. In the multielectron model5 we shall have for each type 
j of quark a total of Q p' pairs produced in this manner. In the 
case of equal g , [when all the Q P1(t ) are equal to one another 
and become integer simultaneously] only the pair combina- 
tions that are symmetrical about j should be joined to the 
vacuum state. And it is precisely such condensate complexes 
which exist in this case in the vacuum of the model. It suf- 
fices simply that the joined particles form such a complex. It 
is impossible, however, to have equal or integer Q for all j 
simultaneously at arbitrary g,. The electromagnetic field 
should produce in this case a distribution of In V particles 
that is not symmetric in j, and the chiral complexes made up 
of In Vparticles play the principal role, as we have seen in the 
vacua of the model under these conditions. 

We obtain in QED, a direct connection between the 
condensate structure of the vacuum states and the Adler 
anomaly. The vacuum has a condensate structure only when 
all the partial topological charges Q p1(t ) are equal (for all the 
flavors of the j zero-mass  quark^).^' The Adler anomaly for 
an individual flavor j does not depend on j in this case. The 
important consequence is that the topological confinement 
mechanism can lead only to vacuum condensates that are 
symmetric in the flavors, and are characterized by symmet- 
ric vacuum mean values of the type (EuadFs ...) #O (only 
zero-mass quarks should be considered). All the paired and 
other vacuum combinations (such as (Eu), (ad ), etc.) are 
equal to zero. These statements are of interest also from the 
viewpoint of their possible four-dimensional generaliza- 
tions. 

5. CONFINEMENT MECHANISM IN A MODEL WITH SEVERAL 
QUARKS5 

As shown in Sec. 1, the most important feature of the 
discussed confinement mechanism is the finite value of the 
matrix elements of the transition between local packets and 
delocalized vacuum states. It is precisely in such transitions 
that the locally produced quark characteristics vanish. We 
readily obtain the desired result if the vacuum is a conden- 
sate of such characteristics. Just as in the general case, in the 
model of Ref. 5 there is no condensate and the confinement 
mechanics become entirely different. 

The simplest way of casting light on the resultant pic- 
ture is to solve the model by the bosonization of 
solving QED, models. The method itself and an exact solu- 
tion of the Schwinger model were formulated also in Ref. 3. 
The main formula here is the boson representation for fer- 
mion operators: 
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Here P R , ~  are constant operators (a: a, = a: aL = 1, 
(a; ,a: j = 0, a-=a), which mark the vacuum state of the 
model of Ref. 3. The chiral and charged vacua of the 
Schwinger model can be represented in terms of a *  as 
(u; )m(u,+ )"a,. The operators a;, commute with the cre- 
ation and annihilation operators czL ( p) of zero-mass neu- 
tral bosons. The connection between c;, (p)  and the quark 
fields (2) is established by the formulas"*3 

2n '11 

cR* ( p )  = ( - ) Je*ipxpR ( X I  dx ,  
P  

cL* ( p )  = (: ) ' 1 eTipxpL ( x )  dx ,  

( x )  are the R and L charge density operators. 
In the model with several quarkss we must write down 

Eqs. (38) for each type of quark j. The Hamiltonian of the 
model in a Coulomb gauge is diagonalized when Eqs. (37) are 
substituted in it and the operators $2 (p)  are replaced by 
the operators (N = 2) 

and the corresponding c,f ( +p),  c& (p),  c&(p). 
For the Hamiltonian of the model of Ref. 5 this yields 

the expression 

The spectrum of the model thus consists, as already men- 
tioned, of neutral massive and zero-mass mesons. There is 
also an infinite set of vacua defined by the operators a'$'* 
and 4". The total charges QR and QL remain confined. 
The corresponding characteristics should, in accord with 
the foregoing, to be delocalized in the vacuum states with the 
same quantum numbers. 

But substitution of (37) with use of the conditions 
c, ( p) 10,) = c,(p) IR,) = 0 leads to the following result: 

Owing to the absence of chiral condensate in the vacua of the 
model (7: < 1) no direct transition is possible from local chir- 
ality into a delocalized chiral vacuum R ,  = a,+, a,, 1.0,). 

However, chirality delocalization does take place in the 
model of Ref. 5 just the same, owing to the existence in it of 
zero-mass excitations. Indeed, the matrix element of the 
transition from the local chiral state $2, (x)$, , (x)lR,) into 
the coherent state 

turns out to be finite: 

const 
X v  = const ( p , )  qla. 

The state ly,, contains an infinite number of zero-mass parti- 
cles with small momenta I pl <p, over a vacuum R,.  It is a 
state with delocalized Q, and QL, analogous to the chiral 
vacuum 0, of the preceding section. The last statement fol- 
lows from the fact that the electromagnetic densities 

P ( x )  =PR (XI +pL ( x )  and j ( x )  =pR ( x )  -pL ( x )  

depend in the model only on the operators of the massive 
particles c; ( p), as can be easily verified with the aid of (38) 
and (39). At the same time there are no heavy bosons in P@. 
Therefgre the chirality of the state is delocalized in the vacu- 
um 0,. 

Thus, the chirality is delocalized with the aid of the 
coherent states P,, and is not observable in the model of Ref. 
5. But states of this type can be constructed only for the total 
charges Q, and QL . In the model there are no states capable 
of ensuring finite transitions between local packets with par- 
tial charges Q 'J1#O (at Q, ,  = 0) and delocalized vacua with 
Q(J1#O. The partial charges Q'J' [see (31)] are observable if 
the total Q,,  charges of the considered local states are equal 
to zero. We shall now prove this statement with the aid of a 
rather unexpected and instructive example. 

The system of physical states of the (bosons + vacua) 
model considered by us so far is not the only one possible, 
owing to the degeneracy of two-dimensional zero-mass exci- 
tations. From among the infinite choice of the possible sys- 
tems of state there is even a variant in which the zero-mass 
particle is a fermion with nonzero partial charges Q The 
states of such a particle are produced by creation and anni- 
hilation operators az f ) (p )  and b zLo)(p), defined in terms of 
the local operator 

1 
~ R , L  ( r )  = y {a::: (P. )  exp (*ip.x) +b:,? (P.)  exp ('ip.x)} 

Pn>O 

490 Sov. Phys. JETP 56 (3), September 1982 Danilov etal. 490 



These operators of the free fermion field anticommute in the 
usual manner with $ A ,  (x). In the new system of states, the 
Hamiltonian of the model remains diagonalized: 

Massive bosons and zero-mass fermions are now the excita- 
tions of the model. Its vacuum states have charges Q g!, . 

The fermion states (44) have zero Q,,, , but their partial 
charges Q (') are not equal to zero (Q = vlQ "' + v2Q (2)): 

To prove (46) we must calculate the commutator 

p"' ( x )  =p:' ( x )  fpli' ( x )  

with $,,,, ( y) from (44). To this end we expressp("(x) with the 
aid of (38) and (39) in terms of c$ ( p) and c$ (p) .  Integrating 
the obtained commutator with respect to the coordinate x, 
we obtain (46). The charges Q") and Q(2' characterize the 
physical states of the model and can be called flavors. The Q, 
for the states (39) and (44), however, obviously differ from 
the partial charges of the quarks ( + 1). Therefore the quark 
flavor is observable only here in hidden form, meaning con- 
finement. 

The quark structure of the fermion (44) is extremely 
complicated in the case of arbitrary g,, but it becomes very 
simple in several particular cases. Thus, for N = 3 and 
vl  + v2 + v3 = 0 the zero-mass fermion is a "nucleon" neu- 
tral in all the charges and is made up of three quarks. 

We are grateful to E. M. Pavlenko for help with the 
preparation of the article for publication. 

APPENDIX 

The density of R quarks in vacuum 

can be expressed in terms of the Green's function of the fer- 
mion: 

dx dy  nR(p)  = J 7ezp(x-u) (Qol$,+ ( x )  $R(y) lW 

We replace in (A.2) the operators $2 (x) by the representa- 
tion (37). Using formula (39) for the case 77, = O,vl = 1 (they 
go over in this case into the corresponding expressions of the 
Schwinger model), we carry out the calculations in (A.2). We 
obtain expression (20) for n, (p) and the following equation 
for the Green's function: 

('4.3) 
The asymptotic form of G (z) at z)m-' is determined by the 
contribution of the smallp to the integral of (A.3). G (z) de- 
creases exponentially as z+ w : 

e C + l  

G ( z )  = (mz)exp  ( - : m ~ z ~ ) .  
4ni (z-iO) (A-4) 

We carry out the same calculations in the interacting- 
pair approximation [Eqs. (17)-(19)l. We define the state R r' 
with zero chirality: 

For the operators 

AR,L(p)=[I+I @ ( P )  I ~ I - ' ~ [ ~ ~ , ~ ( P )  -@ (~)e*~@bb, t , (p )  I, 

the state 10 ) is then a "vacuum" state: 

A ~ , ~ ( ~ )  10)-BR,L(p) 10)=0. (A.7) 

These operators satisfy the usual commutation relations. 
The operators a;, ( p) of (A. 1) can be expressed in terms ofA 
and B. The quark density in vacuum (A. 1) in vacuum is now 
easily calculated in the considered approximation 

1 I@(p ) lZ  
(01 BL(p)BL+ ( p )  10') - 

0 
v I + l @ ( p )  l 2  

A similar calculation expresses, in the pair approximation, 
the fermion Green's function in terms of the quark density 
(A.8): 

G  (x, y )  =(Q:"' I (aR+ ( x )  +bR (s) ) ( a R ( y )  +bR+ ( y )  ) I ~ b " '  > 

The asymptotic form as z = x - y e w  again depends on the 
behavior of ng)(p) at smallp. From (18) and (A.8) we obtain 

(A. 10) 
Consequently, as z--+ co , the Green's function is 

11 1 1 
G ( z ) = - - w T r  

9 niz (mz )  
(A. 1 1) 

i.e., it decreases only in power-law fashion. The representa- 
tion (37) makes it also easy to verify Eq. (24). The calcula- 
tions are similar to the derivation of Eqs. (A.3) and (20). 

"In a two-dimensional world R and L denote directly particles moving to 
the right and to the left. 
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''To prove this statement it suffices to calculate the contribution made to 
the normalization factor Z by the first terms of expansion (33) for OJ. We 
obtain the dependence of the volume v 2  -41:. This is very small com- 
pared with the normalization condition (0, IQ,) = V2, that follows 
from our choice (2) of the quark operators. Only the terms of the opera- 
tors a+ and b + with In V can compensate for this smallness. 

"Strictly speaking, the Q y(t ) can differ from one another by integers. The 
generalization of the text to include this case is obvious. 
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