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The ground-state energy of cold quark-lepton matter is calculated in the SU(2) x U(l)  weak- 
interaction model in the density interval n -m w3 - mX3 (m , ,  are the characteristic electroweak 
and grand-unification energies). I t  is shown that at a baryon/lepton charge ratio B /L #4/3 the 
W- and q-boson condensates produced in the system lead to the appearance of a term propor- 
tional to ait3 in the energy density (a = e2/4r). The behavior of quark-lepton matter is qualita- 
tively analyzed within the framework of the SU(5) model at extremely high densities. 

PACS numbers: 12.10.Ck, 12.35.Kw, 11.30.L~ 

1. INTRODUCTION 

Modern gauge theories of electroweak and strong inter- 
actions allow us to calculate the ground-state energy of 
quark-lepton matter up to extremely high densities. The 
main circumstance that guarantees the success of such cal- 
culations in smallness of the coupling constants of 
electroweak interactions and the asymptotic-freedom prop- 
erty of strong interactions, so that perturbation theory can 
be used in the calculation. 

The first to calculate the thermodynamic potential of a 
cold electron plasma in the two-loop approximation within 
the framework of quantum electrodynamics (QED) were 
Akhiezer and Peletminskii.' The development of the field 
theory of strong interactions-quantum chromodynamics 
(QCD)-made it possible to solve the analogous problem for 
a quark plasma (see, e.g., the review by S h ~ r y a k . ~  In full 
analogy with QED, at high densities, when nonlinear effects 
in QCD can be neglected, the quark-quark correlations 
make a small contribution [on the order of a, = g2(u,)/4r, g 
is the strong-interaction constant and pF is the chemical po- 
tential of the quarks] to the energy of the quark matter. 

When densities F corresponding to the electroweak- 
unification energy F-m w3 are reached, allowance for the 
weak interaction becomes essential. At present the univer- 
sally accepted theory of electroweak interactions is taken to 
be the SU*(2) xU(1)  Weinberg-Salam model, in which spon- 
taneous breaking of the symmetry is reached on account of 
the appearance of the vacuum mean value of the scalar field 
p (see, e.g., Ref. 3). 

The question of the behavior of superdense matter with- 
in the framework of gauge models with spontaneous symme- 
try breaking was first considered by Harrington and Y i l d i ~ , ~  
who deduced the existence of a critical fermion density at 
which the mean scalar field vanishes. Further investiga- 
tions5*" have shown that this statement is not always valid for 
gauge theories. In particular, the converse can occur, where 
the mean scalar field increases with increasing density. 

For the Weinberg-Salam model, the question of the 
phase transition in a cold quark-lepton plasma depends on 
the ratio of the lepton (L ) and baryon (B ) charges (Ref. 7)." 
If 2' (B /L ), = 4, we have at a density LC (Ref. 8) 

[m, is the Higgs-boson mass, mf is the heavy lepton (quark) 
mass, fz 250 GeV] the SU(2) symmetry in electrically neu- 
tral quark-lepton matter is restored (q, = 0) and the effective 
masses of the vector bosons and fermions vanish. The partial 
densities of quarks (leptons) of different sorts and helicities 
are then equal.8 The first correction to the kinetic energy of a 
fermion gas, up to grand-unification energies, is determined 
by the strong quark-quark correlations (-a,). At B /L #4/3 
there is no phase transition in cold matter and the mean 
scalar field increases monotonically with increasing den- 
sity .7.8 

The weakness of the interaction constants of gauge and 
Higgs fields causes the main contribution to the quark-lep- 
ton matter energy to be made by the fermion kinetic energies 

The contribution of these terms, in turn, is a minimum when, 
given L and B, the partial densities of different sorts of 
quarks and leptons are equal (with distinction between right 
and left-hand particles). In electrically neutral matter at B / 
L # 4/3 this can be made possible only because of the forma- 
tion of a condensate of charged W b o s o n ~ ~ . ~  ( Wcondensate). 

The ground-state energy of a superdense (B /L k m w3) 

quark-lepton plasma at B /L # 4/3 can thus depend signifi- 
cantly on the energies of the boson ( W, q) condensates. It will 
be shown below that their contribution is proportional to 
all3 (a = e2/4r) and exceeds, in the indicated density re- 
gion, the contribution due to the quark-quark correlations, 
even though in this energy region the strong-interaction con- 
stant a, is still considerably larger than a. 

What happens to contracting quark-lepton matter 
when the grand-unification density mX3 is reached? At these 
extremal densities, owing to formation of a leptoquark con- 
densate, transitions of quarks (leptons) into antiquarks and 
antileptons become energetically favored. In the SU(5) mod- 
ell0 (see also the reviews") only the difference B - L =A is 
rigorously conserved. In accordance with this conservation 
law there are produced in a cold quark-lepton plasma, at 
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densities higher than mx3, either antileptons (A > 0) or anti- 
quarks (A < 0) with density zf = A /2 + Li (B/ = IA I /  
2 + B,), i.e., particle-antiparticle pairs nli = Li  (n,, = Bi) 
are produced in the system (Li and Bi are the initial densities 
of the lepton and baryon charges). This means that once 
thermodynamic equilibrium sets in the system is character- 
ized by an additional thermodynamic parameter, the tem- 
perature T-L f /3  (T-B,'l3, A<O). If the inequality 
JL, - Bi 1 <B, is satisfied for the bare densities of the leptons 
and quarks we inevitably arrive at a hot quark-lepton plasma 
with restored SU(5) symmetry. 

In the energy region considered, the effects of the 
chemical potential of the conserved charges may turn out to 
be important for the choice of the initial state of a nonadiaba- 
tically expanding universe and for the study of the relativis- 
tic collapse of cold matter. 

In Secs. 2-4 of this paper we calculate, for the standard 
SU,(3) X SU(2) X U(l)  model of strong and electroweak in- 
teractions, the ground-state energy of quark-lepton rratter 
in the density interval F-m w3 - mx3 (m , - lo2 Ge\ --~d 
m,- 1015 GeV are the characteristic energies of tl,, 
electroweak and grand unifications). The behavior of an ex- 
tremely dense (F2 mX3) quark-lepton plasma is analyzed in 
Sec. 5 within the framework of the SU(5) grand-unification 
model. 

2. BOSON CONDENSATES IN A SUPERDENSE QUARK- 
LEPTON PLASMA 

The Lagrangian of the SU(2)XU(1) model of 
electroweak interactions of leptons and quarks is of the fol- 
lowing standard form3: 

Here GPva = a, A v a  - dvAPa + ~E"~'A, bAvc, FPv = aP By 
- awl?,,. L, ,, is an isodoublet of left-hand quarks q (of lep- 

tons I ), R,,, is an isosinglet of right-hand q(l ), Q,,, and Y( ,, are 
the electric charge and weak hypercharge 

and f is the vacuum expectation value of the scalar field @. In 
a unitary gauge 

tm,=2-~(('), ~ = f .  

At nonzero temperature and nonzero density, the mean 
scalar field p differs from f and becomes a function of the 
temperature and of the densities of the conserved (electric, 
lepton, baryon) charges. l2 

It is clear from physical considerations that at weak- 
interaction constants g, g', A, h,,? (1 (at B k m w3 the quark 
strong-interaction constant is also small, a,( 1), the main 
contribution to the energy of a cold quark-lepton plasma is 
made by the fermion energies 

In Eq. (3), n,' are the fermion densities, the superscript labels 
the fermion helicity (L, R ), and the subscript its type. Given 
the total density of the lepton and baryon charges, the sum 
(3) is a minimum when the partial densities of the leptons 
(quarks) are equal. In electrically neutral matter, at an arbi- 
trary ratio of the baryon and lepton charges, this is possible 
only on account of production of a W * conden~ate~ .~  that 
ensures transition between the ano- and cathofermions of 
each doublet of the family (v,+e, + W +, etc). Equaliza- 
tion of the densities of the right- and left-hand fermions is 
due to the existence of a p condensate (e,ae, + p, u,+u, 
+ p,  etc.). 

In what form should the W-condensate field be chosen? 
Finding the equilibrium form of the condensate is always a 
variational problem. In our case physical consideration al- 
lows us to choose four varied variables pertaining to boson 
condensates. All the condensates are spatially homogen- 
e o u ~ , ~  and this simplifies greatly the solution of the problem. 

A condensate of charged W bosons cannot be static3' 
and is described by two parameters, the amplitude w and the 
chemical potential p >m ,: 

The condensate of Higgs mesons is characterized by one pa- 
rameter p .  Finally, in the general case we must assume a 
nonzero mean value of the zeroth component of the field 
ZP((Z0) =z,  (Z,) = 0): 

(3) Z,=-B, sin Ow+A, cos Ow (5) 

(8, is the Weinberg mixing angle), generated by a neutral 
weak charge JoZ (Refs. 5 and 6):  

e 
1.' = -{n,+2 sin2 Own.'-cos 2OWneL 

sin 20w 

Using (I), (4), and ( 6 )  we easily find an expression for the 
energy densities of the boson ( W, p) condensates: 

Here m, and mz are the effective masses of the Wand Z 
bosons: 
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The field Z is not an independent dynamic variable, and in 
accord with the coupling condition that follows from (1) it 
satisfies the equation 

Z(mZ2+2e2o2 ctg O w )  +en ctg Ow+JoZ=O. (9) 

The electric-charge density n of the Wcondensate equals 

3. FERMION SPECTRUM IN THE FIELD OF BOSON 
CONDENSATES 

The next task is to determine the spectrum of the lep- 
tons and quarks in the field of W, Z,  and q, condensates. The 
condensate of the Higgs mesons causes the fermions to ac- 
quire mass. Assuming the Fermi momenta of the particles to 
be much larger than their effective masses mcJ1 = h,,q, (it 
will be seen subsequently that this is indeed the case at h& 1), 
we regard the quarks and leptons as ultrarelativistic. 

The spectrum is easiest to obtain for right-hand fer- 
mions. The corresponding Dirac equation takes according 
to (1) the form 

where (B, ) = 0, (B,) = - sin 6,Z. Since Z is independent 
of the coordinates, Eq. (1 1) is solved in elementary fashion: 

(r, is a constant spinor). When the q, condensate is taken into 
account 

p+ (p2+hrj,rp2) '". (13) 

To determine the energy of the left-hand fermions we 
must solve the Dirac equation in the field of the Wand Z 
condensates. We consider a more general problem, assuming 
a nonzero fermion mass m, 

The spectrum of the phonons in the field of a Wcondensate 
of the form (4) can be determined exactly. Indeed, choosing 
P( ,, in the form 

(7, is a Pauli matrix), we obtain for uj a system of homogen- 
eous algebraic equations 

Du[~)=O, D-p+'/2~s(i+~lq"-m, (16) 

where 2 3 ,  y, , 
e p =  w ( E - -  , y(j,tg0Wz,*) 

e 
a,,= ( p + e ~  ctg 0,. o), g.= (0 2-o) . (17) 

' 'b sin 0,,- 

The spectrum of the energies E is obtained from the 
condition det D = 0. In our case it is more convenient to 
consider the following equivalent equation (see also Ref. 13, 
where a similar method was used to determine the nucleon 
spectrum on a a-condensate field): 

det {y6Dy5D) =O. (18) 

After a number of simple transformations we obtain 

{ ( P,,+'/Z~,,) 2+q~-m2) {(p~-i12ap)2+q~-mZ) 

=4 (ppq,) 2-'/& [ d ,  ?I =. (19) 

Using for the vectors the explicit expressions (17), we obtain 
ultimately for the energies of the left-hand ano- and catho- 
fermions 

where E are positive-frequency solutions (at Z = 0, p = 0, 
w = 0) of the equation 

(21) 
The exact form of the fermion spectrum (20), (21) is too 

unwieldy, but for our purpose an approximate spectrum is 
sufficient. Physical considerations allow us to assume 

In this case we have for the energies of the left-hand ano- and 
cathofermions 

2ezoZ '1% 
(p+eZ ctg OW) - 

sin2 0~ 
cos2 1 )  1 (23) 

where y is the angle between the vectorsp and w .  

4. GROUND-STATE ENERGY OF SUPERDENSE QUARK- 
LEPTON MATTER 

Knowing the fermion spectrum, it is easy to calculate in 
the single-loop approximation the energy density of the gas 
of quarks and leptons 

The summation here is over all types of fermions (but with a 
distinction made between particles of opposite helicity). To 
simplify the calculations, we shall consider hereafter only 
one generation of quarks (u, d ) and leptons (v, e) .  

For the spectrum E [(I l), (23)] it is easy to integrate in 
(24) with respect to the momenta. The system energy density 
E = E~ + E~ expressed in terms of the parameters of the bo- 
son condensates and the lepton and quark densities, is of the 
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form 

t 'e2u2 ) " ( y + e ~  ctg e,)'sin 0, 
sin2 0, + 

2'"eo 
((y+eZ ctg 0,) 2+2e202/sin2 O W )  '" 

X In 
y+eZ ctg 0,- 

To solve our problem we must find the minimum of (25) 
subject to the additional conditions: conservation of thc lep- 
ton and baryon charges, and electroneutrality of the sys, n 

We choose, using (26) and (27), the independent varia- 
bles of the variational problem to be, besides the three pa- 
rameters (p, p ,  w) that characterize the boson condensates, 
the fermion densities neL, neR, n, ', ndR. We recall that the 
field Z is expressed in terms of the independent variables in 
accordance with Eq. (9). 

Before we write down the system of equations that de- 
termine the equilibrium parameters of the boson conden- 
sates, we analyze expression (25). The smallness of the inter- 
action constants in the entire considered energy range allows 
us to assume the main contribution to come from the first 
term of (25) (the sum of the kinetic energies of the right- and 
left-hand leptons and quarks). We thus have in the lowest- 
order approximations~9 

'I. n=Fo=2/s (L-3/,B), p-eZ-eo- (ni-nj) {,+$-o (I) Fo . 
(29) 

Taking (28) and (29) into account, we easily see that to 
obtain the equations in the next order of perturbation theory 
we can neglect the term in the curly brackets of (25). It is 
multiplied by Xi,,(niL - njL) and has therefore a higher or- 
der of smallness. 

We note also that, at the accuracy indicated (we omit 
terms proportional to eZ(ni - n,) 

'/Se tg 0,Z (n,+n,L+2n,R-'lsnuL-'lsndL-'/snUR) 

z-eZJoz/sin 20, (30) 

and (25) takes on an easy-to-interpret form: It is the sum of 
the kinetic energies of the fermions and of the energies of the 

boson condensates, plus the term that accounts for the ener- 
gy of the interaction of the field with the neutral weak 
charge. The system energy in this form is exact in the investi- 
gated approximation at w = 0 (there is no Wcondensate). In 
the latter case Eq. (25) can be easily seen, when account is 
taken of (9), to go over into the standard expression for the 
energy density of ultrarelativistic fermions interacting via a 
massive vector field.5,7,'4 

Varying (25) with respect to all the independent varia- 
bles, we easily obtain a system of equations for the equilibri- 
um amplitudes of the boson condensates and for the fermion 
densities. We write out the the equations that enable us to 
find the lowest approximation the parameters of the boson 
condensates Z, w, p ,  and p: 

z (mZ2+2e2 ctgZ ~ ~ o ~ )  = - 
sin 20, 

eFo, 

e202 1 eZZ2 -- h 
+ -2- (q2-fZ) 4 sin2 Ow 2 sin2 20, 

- - - 

- 
(mz2Z+eFo tg 0,) eZZ 

-. 
F, sin 2 0 ~  

--. 

4e 0,Z2(mZ2Z+ eFo tg 0,) 
y2-mz2 cos2 0,-eZ ctg2 0wZ2+ 

F,  sin OW 

In the derivation of Eq. (32) a&/ap2 = 0 account was taken 
of the fermion masses m, = h,p. The lepton and quark densi- 
ties nfiR in (32) satisfy Eq. (29). 

It follows from (3 1) that the field Z is equal to zero only 
at B /L = 4/3. In this case there is no W condensate, w = 0 
(34), and according to Eq. (32) there exists a critical density 
of the lepton (baryon) charge at which restoration of the 
SU(2) X U(l) symmetry is restored, p = 0 (Ref. 8). 

We shall be interested in the general case B #4L /3, 
when there is no phase transition into a state with restored 
symmetry, and a Wcondensate is produced in the system at 
ultrahigh densities B (L ) 2 m ,3 (Refs. 8 and 9). We assume 
also that the Higgs-boson mass is much less than the charac- 
teristic masses of the electroweak unification and there are 
no superheavy fermions in nature: 

The solution of the system (3 1)-(34) takes then the form 

where x satisfies the equation 

~ 0 ~ ~ 0 ~  
,(1+4 ctg Owx)'=x' - 1 -4) 

(1-4 cos2 0,) ( sin2OW 

- ~ ~ ( 1 - 4 c t g  0,x) [I+ ctg 0,(lf 4 sin2  OW)^] 

sin 20, (1+4 ctg 0wx) (38) 
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and the condition 1 + 4 cotO,x < 0. Taking into account the 
smallness of the Weinberg mixing angle, sin20wz0.23, we 
have 

p x -  42'" ctg 0 ,  cosZ 0 ,  
. =3,9, 

4 c0s"w-1 

k=Ir /  ( 0w) '6=0 .9 .  
2 sin 2Bw 

Using (36), (37), and the equations that follow from (25) 
we can determine in first order in the developed perturbation 
theory the densities of the fermions and quarks. The corre- 
sponding equations are 

wheref,,, (B /L ) are unwieldy functions of the ratio B /L. 
The expressions obtained for the parameters of the bo- 

son condensate and the equilibrium densities of the leptons 
and quarks enable us to determine the energy density of 
quark-lepton matter 

Here do' is the kinetic energy of the gas of leptons and quarks 
(3) with partial densities satisfying (28). We note that Eq. (43) 
corresponds to the single-loop approximation in the pres- 
ence of classical W- and q-condensate fields. Under the con- 
dition Xi h,i, i,e2I3 ( j  is the generation index) Eq. (43) is valid 
also when the next generations of the leptons and quarks are 
taken into account. 

Thus, in the absence of a phase transition (T = 0, B / 
L #4/3), starting with densities corresponding to the 
electroweak unification, terms proportional to all3, due to 
the presence of boson condensates, appear in the energy of 
cold quark-lepton matter. At densities higher than mw3 
these increments exceed the terms due to the quark-quark 
 correlation^.^ 

5. QUARK-LEPTON PLASMA IN GRAND-UNIFICATION SU(5) 
MODEL 

When densities corresponding to the characteristic 
grand-unification energies L, B-mX3, reactions with non- 
conservation of the baryon and lepton charges set in, in addi- 
tion to the processes described by the standard SU,(3) 
x SU(2) x U(l) model. In particular, transitions of quarks 
(leptons) into antiquarks and antileptons become possible. 
This situation takes place in a cold quark-lepton plasma 
when the Fermi energy of the quarks (leptons) becomes com- 
parable with the mass of the lepto-quarks (m, -my - 1015 
GeV). 

In the SU(5) model, only the difference B - L =A is 

rigorously globally conserved. The energy density of three 
generations of colored quarks and leptons, in terms of the 
densities B and L ( j  = e, p ,  r), is 

The minimum of (44) at a given A leads, as can be easily seen, 
to the following equilibrium fermion (antifermion) densities; 

A>O: Bf=Lf=AI2; A<O: Lf=B,= I A 11.2. (45) 

The system contains in this case, in addition to lepton-anti- 
lepton (A > 0) or quark-antiquark (A < 0) pairs with respec- 
tive densities nn = L,,  nqq = B, (L, and B, are the initial 
charge densities. This means that a temperature T-L fI3(T 
- B  !'3) sets in after establishment of thermal equilibrium, 
and if the inequalities JA I (L,, Bi are satisfied we arrive ulti- 
mately at a hot quark-lepton plasma with SU(5) symmetry 
restored via a temperature phase t ransi t i~n. '~. '~  

Expression (45) establishes a natural relation (corre- 
sponding to an energy minimum) between the densities of the 
baryons and leptons of the cold quark-lepton plasma within 
the framework of the SU(5) grand-unification model. It is 
easily seen that in this case the neutral weak charge JoZ [Eq. 
(6)] differs from zero and the scalar field responsible for the 
spontaneous breaking of the SU(2) X U(l) symmetry does not 
vanish at any density whatever. Owing to the Higgs-field- 
potential terms that mix the 5- and 24-plet of the Higgs bo- 
sons, density symmetry in cold matter is likewise not re- 
stored in the sector of heavy Higgs fields. 

Which are the physical processes to which the foregoing 
results can be useful? Such high densities are reached in rela- 
tivistic collapse of matter and could occur during the early 
stages of the expansion of the universe. The model universal- 
ly accepted at present is that of a hot (big-bang) homogen- 
eous and isotropic universe. Although the observational 
data do not contradict a relatively large lepton chemical po- 
tential contained in the neutrino @, 5 0. l T, T is the tem- 
perature),16 from the point of view of the grand unification 
theory (GUT) models, the most natural is the relation p,/ 
T-p,/T (Ref. 17) fp,, are the chemical potentials of the 
leptons and baryons). The currently observed value is p,/ 
T- lo-', so that for an adiabatically expanding universe the 
effects of the chemical potential are negligibly small. At cer- 
tain periods of its evolution, however, the early universe 
could be far from adiabatic expansion, if the symmetry 
breaking processes [SU(2) X U(l), SU(5)I in it were of the 
first-order phase-transition When the ground state 
is chosen in this case, account must be taken of the effect of 
the chemical potential of the conserved charges. In particu- 
lar, the scenario observed does not admit of an initial state in 
which p,-, R T. Indeed, in this case the effects of the 
chemical potential are decisive5.' and, according to the fore- 
going analysis, the minimum of the thermodynamic poten- 
tial always corresponds to a state with broken SU(5) symme- 
try. 

The author is deeply grateful to A. D. Linde and S. V. 
Peletminskiy for interest in the work and for helpful discus- 
sions. 
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"A numerical error was made in the calculation of (B /L ), in Ref. 7. 
*'(B / L  ), = 1 formally for the model with a massive Dirac neutrino. How- 
ever, in view of the extreme suppression of lepton transition into right- 
hand neutrinos in the considered energy region (E-m,) the number of 
the latter can be regarded as constant over times determined by the rate 
of the gravitational collapse of matter. Therefore in realistically conceiv- 
able processes the presence of a small Dirac or Majorana neutrino mass 
does not change the value of (B /L ), . 

"For gauges with a charged component x of the Higgs field @ the entire 
time dependence can be transferred to thex conden~ate.~ 
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