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The electronic specific heat c , (T)  of a lightly doped compensated semiconductor is computed in a 
broad range of temperatures with the aid of the method of Monte Carlo computer simulation of 
the impurity band. The results of the simulation of the three-dimensional system confirm the 
existence in the function c , /T  of the low-temperature dip that was predicted earlier on the basis 
of a self-consistent equation for the density of dipole-excitation states. Somewhat unexpected is 
the discovery of a similar dip in the case of the two-dimensional system, for which the self- 
consistent-equation method does not reveal any low-energy anomalies in the density of states of 
the excitations determining the specific heat. New data pertaining to the properties of the ground 
state of the system in question are obtained incidentally. 

PACS numbers: 65.40.Em 

We consider the so-called "classical" impurity band in 
a semiconductor, when the impurity concentration is so low 
that we can neglect the quantum overlap of the wave func- 
tions of neighboring impurities. The semiconductor is as- 
sumed to be compensated, i.e., to contain donor and accep- 
tor impurities. For definiteness, we assume that the donor 
concentration N ,  is higher than the acceptor concentration 
N , .  At low temperatures all the acceptors are negatively 
charged, some of the donors, with concentration N,-N,, 
are neutral, and the rest, with concentration N,  , are ionized 
and positively charged. The spread of the electron levels on 
the donors is established by the random Coulomb potentials 
of the charged impurities, the relative positions of the neu- 
tral and charged donors being found at low temperatures to 
be strongly correlated. It is this correlation that determines 
the low-temperature thermodynamic and kinetic properties 
of the system. 

The energy of the system has the form 

(i-n,) ( I - l z j )  frfc I # ,  r., ,,' I - T i t  

(1) 
The subscripts i and j label the donors, while the subscripts v 
andp label the acceptors; the ri and r, are the coordinates of 
the donors and acceptors, with ru = Iri - r, 1 ;  and the n, are 
the occupation numbers for the donors: ni = 1 if the donor is 
neutral and ni = 0 if the donor is ionized. The electron 
charge is denoted by e; the permittivity, by x. 

In its thermodynamic properties the impurity band re- 
sembles the Ising model with a random magnetic field. An 
important difference consists in the fact that in the case of 
the impurity band Z i n i  is the total number of electrons in the 
band, and is a prescribed quantity, determined by the degree 
of compensation. In the Ising model this quantity is the sys- 
tem's total spin, which is uniquely determined by the tem- 
perature. Another important difference consists in the fact 

that the interaction of the charges in the impurity band has a 
Coulomb, and not a short-range, character. 

As shown in Ref. 1, at low temperatures the dominant 
contribution to the thermodynamics of the system should be 
made by the electron transitions between pairs of donors 
located close to each other. If the temperature of the system 
is low, then these pairs are located far apart in space, and the 
interaction between them has a dipole-dipole character. This 
interaction leads to a situation in which the density @ (w) of 
states of the pairs with low energy (i.e., of the soft pairs) has a 
logarithmic singularity at low excitation-energy values. (The 
same conclusion has been arrived at independently by 
Fisch.l) 

On the basis of this, it is concluded in Ref. 1 that there 
exists a logarithmic singularity in the specific heat of the 
impurity-band electrons. According to Ref. 1, 

C~-T/IIIL T I '  . ( 2 )  

This result pertains only to a three-dimensional system. No 
singularity is predicted there for the two-dimensional sys- 
tem. 

A number of criticisms can be leveled at the results ob- 
tained in Ref. 1. 

1. The existence of a logarithmic singularity in the func- 
tion Q (w) was demonstrated only with the aid of a self-con- 
sistent equation, the applicability of which is not evident. 

2. Strictly speaking, the existence of a singularity in the 
function Q (w) does not say anything about the specific heat 
because the dipole excitations, which the soft pairs consti- 
tute, interact strongly with each other. The logarithmic sin- 
gularity of the function @ (w) is just the result of the fact that 
for each pair the energy of interaction with the other pairs is 
of the order of the excitation energy w.  In such a situation the 
contributions of the various pairs to the total energy of the 
system are not additive. 

3. It can be assumed (although, in our opinion, there are 
no grounds for this) that there exist, besides the compact 
dipole excitations, which are investigated in Ref. 1, excita- 
tions that correspond to the simultaneous permutation of 
the electrons in the entire volume of the system, and are not 
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additively made up of individual compact excitations. The 
classification proposed in Ref. 1 will not be applicable to 
such excitations. 

An answer to the first question is contained in Ref. 3, 
where the results of the simulation of a disordered system 
within the framework of the so-called lattice model are re- 
ported, and it is shown that the pair-excitation distribution 
function @ (w) indeed possesses a logarithmic singularity at 
zero temperature. The remaining questions nevertheless re- 
mained unelucidated,and this stimulated us to carry out a 
simulation of the impurity band at a finite temperature with 
a view to computing the specific heat. 

The main difficulty lay in the fact that, to detect a singu- 
larity in the specific heat, we had to carry out the simulation 
at temperatures that are very low compared to the interac- 
tion energy. The most informative temperature turned out to 
be the temperatures 0.025,0.05, and 0.1 (in units of the ener- 
gy of interaction over the average distance between the do- 
nors). As far as we know,this is the first time that thermo- 
dynamic properties have been simulated at such low 
temperatures. The results of the simulation confirm the exis- 
tence of a low-temperature dip in the function c, /T.  New 
data pertaining to the properties of the ground state of this 
system were incidentally obtained. 

2. THE SIMULATION PROGRAM 

The simulation was carried out for both three- and two- 
dimensional systems. The corresponding programs are en- 
tirely similar, and below we shall, for definiteness, discuss 
the case of the three-dimensional system. 

As the unit of length, we used the mean distance N ,  
between the donors; as the unit of energy and temperature, 
the quantity e 2 ~ b / ' / x .  We randomly located in a cube of 
linear dimension N ' I 3  N donors and KN acceptors (which 
corresponded to unit donor concentration). The quantity N 
(the dimension of the block) ran through the values 200,400, 
and 800. The degree K of compensation was, as a rule, equal 
to 0.5. Separate computations were also carried out for 
K = 0.3 and 0.7. 

Further, N (1 - K )electrons were randomly distributed 
over the N donors. This meant that N (1 - K ) randomly cho- 
sen donors were assigned the value n, = 1; the remaining 
donors, the value n, = 0. After this, using the algorithm pro- 
posed in Refs. 4 and 5, we carried out the minimization of the 
total energy (I), whichamounted to the variation ofthe occu- 
pation numbers at a fixed value of X,n, . The result of such a 
minimization is sets (n, 1 of occupation numbers satisfying 
the conditions 

m2=~~-&,-l/r,,>o (3) 

for all pairs of donors with n, = 1 and n, = 0. Here 

is the potential produced on a donor by all the remaining 
charged impurities under the condition that the occupation 
of the donors is described by the set (n, ) . The quantity wj is 
the work that must be done in order to transfer an electron 

from an occupied donor i to an empty donor j under the 
condition that the population of the other donors does not 
change in the course of the transfer. 

Thus, the state described by the set [n, ) possesses the 
property that the transfer of any electron from an occupied 
to an empty donor increases the total energy of the system. 
The states described by such sets have been called pseudo- 
ground states. They differ from the ground state in that the 
simultaneous transposition of several electrons may result in 
a decrease in the energy of the system. There can be several 
pseudoground states for a given disposition of the donors 
and acceptors. They can be found within the framework of 
the same minimization program. The program gives, gener- 
ally speaking, a different pseudoground state when the ini- 
tial random set of occupation numbers is changed. 

Let us now proceed to describe the simulation process 
at a finite temperature. It was performed by the standard 
Monte-Carlo method. To begin with, we chose donor pairs 
such that the separation inside a pair did not exceed some 
value R. This value was chosen to be so large that the prob- 
ability of finding in the system a donor not participating in 
any pair was negligibly small. Each pair was assigned a num- 
ber, and one and the same donor could figure in several pairs. 
As the initial set of occupation numbers, we always used the 
set corresponding to any of the pseudoground states. One 
Monte-Carlo step consisted in the following. One of the pairs 
was randomly chosen. If both donors of this pair had equal 
occupation numbers, then the step terminated there. If the 
occupation numbers were different, then the quantity o j ,  the 
work done in moving the electron from the occupied site of 
the pair to the empty site, was computed. If it turned out that 
o j  < 0, then the transfer was certainly realized. If it turned 
out that wj > 0, then the transfer occurred only with prob- 
ability expi - wj/r),  where r = kTx/e2N g3 is the tempera- 
ture in dimensionless units. The transfer means that the oc- 
cupation numbers for the donors of the pair in question 
change in the computer memory. After this, all the energies 
E,  and the total energy H of the system are recomputed. 

The main result of the computations was the specific 
heat 

where H,  is the value of the total energy after the step with 
number k and the summation is performed over all the steps, 
regardless of whether an electron transfer occurred in a giv- 
en step or not; M is the number of steps made. The formula 
(5) gives the system's specific heat divided by the total num- 
ber of donors and the Boltzmann constant k .  It is precisely 
this quantity that is depicted below in the graphs. 

Furthermore, we computed the mean value of the ther- 
mal energy per donor: 

Here H,,, is minimum energy value, which is fixed for a 
given disposition of the donors and acceptors. At the begin- 
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ning of the computations, as H,, , we took the energy of the 
lowest of the pseudoground states obtained in the minimiza- 
tion. Further, in the course of the Monte-Carlo procedure, 
after each electron transfer that decreased the total energy 
(i.e., for which o/ < O), the new value of the energy was com- 
pared with H,, . If it turned out to be lower than H,, , then 
it was thereafter taken as the H,,. The final value of H,, 
was substituted into the formula (6). 

For the group of 200 donors the value of Hmin in the 
overwhelming majority of realizations coincided with the 
ground-state energy. We verified that, if we carry out 100 
minimizations, then new pseudoground states with low en- 
ergy scarcely appeared in the last 50 minimizations. This 
verification was carried out for 100 different realizations of 
the coordinates of a system consisting of 200 donors and 100 
acceptors. It shows that the minimization procedure, repeat- 
ed 100 times, yields practically all the pseudoground states, 
of which the one with the lowest energy is the ground state. 
An additional verification is the fact that, in the course of the 
Monte-Carlo procedure, the energy never dropped below 
the energy found in the above-indicated manner. 

For groups consisting of 400 or more donors, the num- 
ber of pseudoground states was so high that we could not 
fully sort them out and find the ground state. If we judge by 
the characteristic energy spread of the pseudoground states, 
then we can assert that the uncertainty in the ground-state 
energy is negligibly small as compared to the energy itself, 
but can be comparable to the thermal energy at low tempera- 
ture (r = 0.025). Thus, in large groups the mean energy is 
known only up to a temperature-independent term, which is 
different for different realizations of the coordinates of the 
donors and acceptors. This circumstance does not prevent us 
from determining the specific heat with the aid of the mean 
energy by taking the difference between the values of E at 
different temperatures. For an infinitely large number M of 
steps this method should yield the same result as the formula 
(5), while for a finite number of steps there can be discrepan- 
cies, which will allow us to estimate the accuracy of the re- 
sults obtained. 

The main difficulty encountered in the simulation of the 
behavior of the system at very low temperatures lies in the 
choice of the optimal conditions under which the system 
goes over into the thermal equilibrium state within an accep- 
table period of time (of the order of an hour of computer 
time). In particular, it is very important to choose the opti- 
mal value for the maximum pair length R. According to the 
theory, the dominant contribution to the specific heat is 
made by the pairs with small lengths (i.e., with lengths 
smaller than unity). From this point of view, by increasing R, 
we force the computer to examine pairs with high energies 
and, thus, do unnecessary work. On the other hand, for small 
R values the mixing of the states separated from each other 
by energy barriers occurs very slowly. In Figs. l(a) and l(b) 
we show the mean energy and the specific heat computed 
respectively from the formulas (6) and (5) as functions of the 
number of steps for r = 0.05 and different values of R. We 
used only one realization of the coordinates of the donors 
and acceptors, carried out 50 minimizations, and obtained 
18 pseudoground states. The continuous curves depict 
Monte-Carlo cycles that were started from the lowest pseu- 
doground state (apparently, the ground state); the dashed 
curves, cycles that were started from the highest pseudo- 
ground state, which lay 0.0039 units (per donor) above the 
lowest state. It can be seen that, for small R values, the sys- 
tem cannot surmount the barriers separating the pseudo- 
ground states during the time of operation of the computer 
(of the order of several hours). But at higher R the system 
goes over into the equilibrium state, which leads to a sharp 
increase in the specific heat. 

As the optimal value of R, we chose R = 2. To speed up 
the transition into the equilibrium state, we also introduce 
into the program steps of another type, in which transitions 
between any two donors are allowed, irrespective of the dis- 
tance between them. The fraction of steps of the second type 
was varied with temperature. At T = 0.025 the fraction of 
steps of the second type was 1/4, at r = 0.05 and 0.1 it was 1/ 
3, at r = 0.2 and 0.4 this fraction was equal to 1/2 of the total 
number of steps, and at temperatures of 0.8 and above only 

28t+ ZY , , 
1' Y B 72 I6 

steps M- K 

FIG. 1. The thermal energy (a) and the specific heat (b) 
as functions of the number of steps in the Monte-Carlo 
cycle for different values of the maximum pair length 
R: 1 )  1.0; 2) 1.45; 3) 2.0; and 4) 3.0. The continuous 
curves correspond to cycles that were started from the 
lowest pseudoground state; the dashed curves, to cy- 
cles that were started from the highest pseudoground 
state; N = 200. 
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steps of the second type were made. In the course of a Monte- 
Carlo cycle the computer recorded the number of steps that 
resulted in the transposition of electrons. 

The operating program with the aid of which the results 
presented below were obtained was organized as follows. 
The Monte-Carlo cycle was started from one of the pseudo- 
ground states. In order that that section of the cycle on 
which the system was still in the nonequilibrium state did 
not contribute to the energy and the specific heat, the averag- 
ing was started after a specific number of dummy steps. This 
number was varied with temperature, and was chosen such 
that several hundred electron transpositions were effected 
during the idling. During the subsequent operation of the 
program three energy and specific-heat values, obtained 
after 4000, 8000, and 12 000 electron transpositions, were 
printed out. At r = 0.025, when the establishment of the 
equilibrium state occurred especially slowly, the entire first 
stage of the calculation, which involved 4000 electron trans- 
positions, was regarded as an "idle operation," and the aver- 
aging was performed over only the results of the next two 
stages, which together involved 8000 transpositions. The in- 
termediate results enabled us to check the convergence of the 
process. We verified the absence of a significant difference 
between the results of the averaging over the various stages 
of the cycle at r)0.05. There was a difference at T = 0.025, 
but it did not have a systematic character. 

The average number of steps per transposition depend- 
ed on the temperature, the chosen R, and the ratio of the 
number of steps of the first type to the number of steps of the 
second type. For R = 2 and the above-indicated fractions of 
the steps of the second type the average number of steps per 
electron transfer was of the order of 1700 at r = 0.025,600 at 
r = 0.05, 170 at T = 0.1, and 60 at r = 0.2. It  is clear that at 
infinite temperature and for the degree of compensation 
K = 0.5 this number should be equal to two, since every sec- 
ond pair will be singly occupied, and the transition probabil- 
ity will be equal to unity in this case. For example, this num- 
ber was equal to 2.018 at T = 200. 

The computer spent 160 psec on a step in which an 
electron transfer did not occur; the time spent on a transfer 
was significantly longer,and depended on the dimension of 
the block under investigation, since it was necessary in this 
case to recalculate the energies of all the donors. For exam- 
ple, in a block with N = 800 the time spent on a transfer was 
143 msec; in a block with N = 400,73 msec. In the case of the 
block with N = 200 we were able to put all the interdonor 
distances in the computer memory, as a result of which this 
time was only 10 msec. The values obtained for the mean 
energy and the specific heat were averaged over the various 
realizations of the coordinates of the donors and acceptors. 
The simulation was performed at T = 0.025; 0.05; 0.1; 0.2; 
0.4; 0.8; 1.6; 3.2; 6.4; 12.8; 25; 50; 100; and 200. 

The molar specific heat c, (T) can be obtained, using the 
function cfr)  complited by us, from the formula 

where v is the volume of a gram-mole of the material. 

3. PROPERTIES OF THE GROUND AND PSEUDOGROUND 
STATES OF THE THREE-DIMENSIONAL SYSTEM 

In the present section we discuss the results obtained at 
the first stage of the operation of the program before the 
incorporation of the Monte-Carlo temperature cycle. As has 
already been indicated, we could determine the ground-state 
energy with a sufficiently high degree of accuracy in all the 
blocks that were studied. For K = 0.5 the ground-state ener- 
gy per donor was equal to - 0.910 i, 0.005 in a block with 
N = 200, - 0.92 -& 0.01 in a block with N = 400, and 
- 0.93 + 0.03 in a block with N = 800. Besides the K = 0.5 

case, we further studied the cases K = 0.3 and 0.7, but only 
in a block with N = 200. For K = 0.3 the ground-state ener- 
gy per donor was equal to - 0.600 It 0.003; for K = 0.7, 
- 1.10 kO.04. 

The ground-state energy of the system can be estimated 
with the aid of the "dipole model" proposed in Ref. 6 for 
electric-field calculations. In this model it is assumed that all 
the charges of the system form dipoles consisting of an ac- 
ceptor and the nearest donor, which is assumed to be 
charged. The intradipole interaction energy is equal to - 1/ 
r, where r is the distance between the donor and the acceptor, 
and the interdipole interaction energy is assumed to be 
small. Using the nearest-neighbor distribution function, we 
find that the mean energy per acceptor is equal to 

- I 4 
-4n -? erp ( - T n r 3 )  dr=-2.18 

r 
(I 

(the length r is measured in units of N ,  Corresponding- 
ly, the energy per donor is equal to - 2.18 K (in units of 
e2N;"/lc). The dipole model should work well in the limit of 
small K. But for K = 0.3 and even for K = 0.5 it yields re- 
sults in surprisingly good agreement with the results of the 
simulation. For K = 0.7 the difference turns out to be signifi- 
cant. As pointed out in Ref. 6, the electric-field calculations 
can also be carried out with the aid of the dipole model for 
K5 0.5. 

Another important characteristic of the system at zero 
temperature is the pseudoground-state spectrum. This spec- 
trum was obtained in full in a block with N = 200. We stu- 
died 100 different realizations of the donor and acceptor co- 
ordinates, carrying out 100 minimizations in each 
realization. We found on the average 11.32 pseudoground 
states per realization. Figure 2 shows the energy distribution 
function of the pseudoground states. As the energy reference 
point in each realization, we took the ground-state energy 
(which varied from realization to realization). It can be seen 
that the distribution function in the region of energies higher 
than 0.1 decreases rapidly with increasing energy. Let us 
emphasize that it is the total energy that figures in this graph, 
and not the energy per donor. The mean ground-state energy 
is equal to - 182, so that the pseudoground-state energies 
differ very little from the ground-state energy. 

In the simplest case the pseudoground state differs from 
the ground state in the occupation numbers of four donors, 
two of which are occupied by electrons and the remaining 
two are empty. The potentials on the donors are such that a 
donor-to-donor transition of one electron is disadvanta- 
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Energy 

FIG. 2. The pseudoground-state-energy distribution function for 
N = 200. Plotted along the abscissa axis is the system's total energy, mea- 
sured from the ground-state energy (which is equal, on the average, to 
- 182). The averaging was performed over 100 coordinate realizations. 

The vertical short lines indicate the limits of the confidence interval. 

geous, whereas the simultaneous transition of the two elec- 
trons decreases the total energy of the system. This type of 
"lock" can also be realized by a large number of donors. 
Unfortunately, we were not able to carry out a detailed in- 
vestigation of the spatial structure of the pseudoground 
states. But the obtained spectrum of the pseudoground states 
allows us to compute their contribution to the thermody- 
namics of the system with the aid of the Gibbs distribution. 
(In this case we cannot, strictly speaking, use the averaged 
distribution function shown in Fig. 2: we must compute the 
specific heat for each realization of the donor and acceptor 
coordinates, and then perform the averaging.) Calculations 
of this kind lead to an important conclusion: the contribu- 
tion of the pseudoground states is roughly an order of magni- 
tude smaller than the specific-heat value obtained by the 
Monte-Carlo method, and given below. This confirms the 
viewpoint, expressed in Ref. 1, that the low-energy excita- 
tions are primarily "soft pairs," and not quadruplets or more 
complicated objects. 

4. SPECIFIC HEAT OF A THREE-DIMENSIONAL IMPURITY 
BAND 

Figure 3 shows C/T versus T curves obtained in the low- 
temperature region with the aid of simulation. The results 
were averaged over the various realizations of the donor and 
acceptor coordinates. For N = 200 we used 75 realizations; 
for N = 400, 22 realizations; and for N = 800, 10 realiza- 
tions. The dark symbols indicate the C/T values obtained 
with the aid of the formula (5); the open symbols, the results 
of the differentiation of the thermal energy computed from 
the formula (6). 

Figure 4 shows data for the reduced specific heat in a 
broader temperature range. 

As can be seen from Fig. 3, the quantity c / r  attains a 
maximum at ~ ~ 0 . 1 ,  and then falls off in the low-tempera- 
ture region. We interpret this decrease as the theoretically 

FIG. 3. The quantity c / r  for a three-dimensional system as a function of 
the temperature: and 0) N = 200, and V) N = 400; A and A) 
N = 800, W and 0) for N = 200 and a screened potential. The dark sym- 
bols correspond to the results obtained with the aid of the formula (5); the 
open symbols, to the results of the differentiation of the thermal energy 
with respect to 7. 

predicted manifestation of the interaction of the soft pairs. 
The dependence given by Eq. (2) is asymptotic, and we can- 
not establish the accuracy with which it is satisfied. But the 
decrease of C/T  with decreasing temperature does appear to 
us to be a reliable result. An alternative explanation could be 
that there exist at low temperatures regions of phase space 
separated by so high barriers that the system does not have 
time to "cross" into these regions during the simulation. 
This would imply the "kinetic freezing" of a definite number 
of degrees of freedom and a false reduction in the specific 
heat. Speaking against such an explanation are the following 
facts: 

1. The barriers should have different heights, so that a 
definite fraction of them would be surmounted upon the in- 

FIG. 4. The specific heat per donor as a function of the temperature. (The 
abscissa scale is logarithmic.) The high-temperature section is shown se- 
parately on an enlarged scale (the right-hand scale). The circles represent 
the results obtained for the three-dimensional system; the squares, for the 
two-dimensional system. The dark circles and squares correspond to the 
results obtained with the aid of the formula (5); the open symbols, to the 
results of the differentiation of the formula (6). 
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crease of the number of steps in the Monte-Carlo cycle. This 
would have led to a monotonic increase of the specific heat 
with increasing number of steps, which was not observed. 

2. As can be seen from Fig. 3, the data obtained through 
the differentiation of the thermal energy with respect to tem- 
perature agree with the data obtained with the aid of the 
formula (5). This indicates that the Monte-Carlo process 
"converges." 

3. Using the curve shown in Fig. 4, we can compute the 
integral 

By definition of specific heat, A = S ( oo ) - S (0), whereS (T) is 
the entropy of the system at the temperature T. 

Contrary to the prediction of some spin-glass models, 
the ground state of a system with randomly disposed 
charged acceptors cannot, it seems to us, be degenerate. 
Therefore, the Nernst theorem is valid, and S(0)  = 0. The 
entropy at infinite temperature is easy to compute. It is equal 
to the logarithm of the number of combinations of N donors 
taken KN (ionized donors) at a time: 

S (m) =ln [ N ! /  ( K N )  ! ( N - K N )  !] . (8) 

For K = 0.5 and N = 200 we obtain, according to (8), 
S(oo) = 135.75. If the area enclosed in Fig. 4 by the curve 
corresponding to the three-dimensional system agrees with 
this value, then this shows conclusively that this curve de- 
scribes the equilibrium specific heat, and should not change 
when the time of observation of the system is increased. We 
can thus show that there indeed exists a dip in the quantity c/ 
r in the low-temperature region. In fact, if we assume that 
the quantity C/T coincides with the computed values at 
0 0 . 1 ,  and is equal to a constant at all lower temperatures, 
i.e., if we assume that the dip does not occur at al1,then we 
find that A = 139.0 _f 0.8, which is significantly greater 
than S ( oo ). But if we assume that C/T coincides with the com- 
puted values in the region ~)0.025 and is equal to a constant 
in the region of lower temperatures, then we obtain 
A = 135.4 f 0.8, which agrees withS ( m ) .  We obtain almost 
the same result (135.0) when we assume that the quantity C/T 

decreases according to a linear law in the region r < 0.025. 
Such an extrapolation yields c/r--,0.6 at r = 0, which is, as 
will be seen below, in good agreement with the theoretical 
predictions. In our opinion, this is the most reliable proof of 
the certainty of a dip in the quantity C/T. 

According to the theory, the logarithmic singularity de- 
scribed by the formula (2) is due to the long-range interac- 
tion. In order to verify whether the dip in C/T at low tempera- 
ture has such a character, we replaced the Coulomb 
potential in the expression (1) for the total energy by the 
screened potential: r-'-+r-'exp( - r/r,). Figure 3 shows 
the results of the calculation with r, = 1.5. It can be seen that 
the dip at low temperatures is, in conformity with the theory, 
significantly smaller. We believe this is an important demon- 
stration of the fact that the phenomenon discovered is con- 
nected with the interaction of the soft pairs. 

Each pair is a two-level system, and its specific heat is 
equal to: 

c' ((I)) =(02/4t2 chZ (a/2t), (9) 
where w is the pair-excitation energy. According to the the- 
ory developed in Ref. 1, the number of pairs excited at a 
temperature T 1s such that the energy of their dipole-dipole 
interaction over the mean distance between them is of the 
order of T. Therefore, the contributions of the individual 
pairs to the specific heat cannot, strictly speaking, be consi- 
dered to be independent. Nevertheless, it is useful to make as 
estimate with the aid of the formula 

c= b ( w )  d(e) dw, ( 10) 

where CP (a) is the pair distribution function computed for 
one donor in the ground state of the system. 

As shown in Ref. 1, the existence of the function Qi (w), 
which does not depend on the block dimension, is itself a 
consequence of the Coulomb interaction. (It should not be 
forgotten that the total number of different pairs in the sys- 
tem is proportional to N 2, and not N.) We should, in comput- 
ing CP (w), take into account only the pairs with length R sig- 
nificantly smaller than l/w. Then, as shown in Ref. 1, the 
number of pairs will be proportional to N, and will not, in the 
first approximation, depend on R.  We computed the func- 
tion @ (w) for an N = 200, K = 0.5 block with no limitation 
placed on the pair length. The length of the block in this case 
is roughly equal to 5.85, and there cannot be pairs of length 
greater than 5 . 8 5 0  in it. Therefore, we should obtain, at 
least for w4O.1, a reasonable approximation for @ (w). The 
results of the @ (w)  calculation are shown in Fig. 5. We ob- 
tained them through averaging over 200 donor- and accep- 
tor-coordinate realizations, computing in each realization 
the pair density for the ground state. The calculations with 
the formula (10) yield for T = 0.025 the value C/T = 0.80 (per 
donor), which satisfactorily agrees with the value 0.84 given 
in Fig. 3. This again shows that the specific heat is largely 
determined by the donor pairs. 

It should be borne in mind that the quantity c/r in a 
finite block should not tend to zero as T-4. According to 
theory (see Ref. I), 

FIG. 5 .  The pair distribution function per donor, computed in the ground 
state for a block with N = 200. 
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For N = 800 we obtain (c/T),=, ~ 0 . 6 4 ,  which, as has 
already been indicated, is in good agreement with the result 
shown in Fig. 3. 

All the results presented above pertain to the case 
K = 0.5. Ir. order to investigate the dependence of the low- 
temperature specific heat on the degree of compensation, we 
also computed the values of c for T = 0.1 and two other val- 
ues of K. For K = 0.3 we found that c = 0.12 0.01; for 
K = 0.7, c = 0.091 + 0.003. In the K = 0.3 case the averag- 
ing was performed over 5 realizations; in the K = 0.7 case, 
over 20 realizations of a block with N = 200. As can be seen 
from Fig. 4, for K = 0.5 and T = 0.1, c = 0.122 + 0.002. 
Naturally, the specific heat should be smaller at very high 
and very low values of the degree of compensation, at which 
the degrees of freedom in the impurity band are few. It is 
natural to conclude on the basis of the above-presented data 
that, for T = 0.1, the specific heat has a maximum at Kz0.4. 

A theory of the specific heat of impurity-band electrons 
is constructed for ~ ) l  in Ref. 7. Unfortunately, a satisfac- 
tory comparison of the results of Ref. 7 with the results of the 
present paper is impossible, since the screening distance is 
large in the T) 1 case, and we need, for the comparison, a 
theory that takes account of the finiteness of the system's 
dimensions. 

5. THE TWO-DIMENSIONAL IMPURITY BAND 

We also considered the case in which the donors and 
acceptors are located in the same plane, and their energy is, 
as before, given by the formula (I), i.e., the interaction has 
the Coulomb form. This model bears a direct relation to the 
impurity band formed by atoms located on the surface of a 
semicond~ctor.~ 

We performed for the two-dimensional system essen- 
tially the same calculations that we performed for the three- 
dimensional system, but the number of calculations was 
smaller. Only the K = 0.5 case was investigated. The 
ground-state energy per donor was found to be equal to 
- 1.12 + 0.03 for a block with N = 200, - 1.23 f 0.02 for 

a block with N = 400, and - 1.29 + 0.03 for a block with 
N = 800. The dipole model yields for this case the value 
- 1.57. The dimensional effect, which is much stronger 

than in the three-dimensional case, is a surprising fact. 
The main purpose of the simulation was to investigate 

the low-temperature specific heat. As has already been indi- 
cated, theory' does not predict in this case a logarithmic 
singularity of the type (2). In Fig. 6 we present the results 
obtained for C/T by means of the simulation in the two-di- 
mensional case. We have also carried over here the results 
for the three-dimensional case. 

As can be seen from Fig. 6, a dip occurs in the low- 
temperature region in the two-dimensional case also, al- 
though it is less pronounced. Unfortunately, we were not 
able to obtain here reliable results for T = 0.025, which, pos- 
sibly, would have clarified the situation. As in the three- 

FIG. 6. The quantity C / T  for two- and three-dimensional systems as a 
function of the temperature. The results are for a block with N = 200 and, 
in the case of the three-dimensional system, a block with N = 800 and 
T = 0.025. and represent the results for a two-dimensional system 
with the Coulomb potential. The averaging was performed over 40 real- 
izations. A and indicate the results for a two-dimensional system with 
a screened potential with r, = 1.5. The averaging was performed over 30 
realizations. The points corresponding to the two other curves pertain to a 
three-dimensional system, and were transferred from Fig. 3. The dark 
symbols correspond to the results obtained with the aid of the formula (5); 
the open symbols, to the results of the differentiation of the thermal energy 
with respect to T. 

lowered in the region T < 0.05 the quantity C/T decreases lin- 
early with slope equal to the slope at r = 0.05. As in the 
three-dimensional case, S ( m ) = 135.75. 

If we compute A under the assumption that C/T does not 
decrease in the region T < 0.1, i.e., that no dip occurs, we 
obtain A = 137.7 + 1, which is greater than S ( m  ). Thus, a 
low-temperature dip evidently occurs in the two-dimension- 
al case as well, although it is less pronounced than in the 
three-dimensional case. 

As in the three-dimensional case, we performed an ex- 
periment with a screened potential. As can be seen from Fig. 
6, the shape of the C/T-versus-T curve reacts more weakly to 
the screening than the shape of the corresponding curve in 
the three-dimensional case. We cannot give the cause of the 
low-temperature dip in the two-dimensional case, but this 
effect seems to us to be genuine. 

Unfortunately, thus far measurements of the low-tem- 
perature electronic specific heat of lightly doped semicon- 
ductors have been performed only on uncompensated sam- 
ples of phosphorus-doped s i l i ~ o n . ~  The measurement of the 
specific heat of compensated samples could play an impor- 
tant role in the solution of the problem, discussed in Refs. 1 
and 2 and in the present paper, of the interaction of the di- 
pole excitations. 

The authors take the opportunity to express their grati- 
tude to B. I. Shklovskii for useful discussions of the results. 
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