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The absorption of light with a photon energy deficit A = E, - W?)?b,, with participation of a 
large number of optical strain phonons at frequency a,, is considered. It is shown that at low 
temperatures T <  fiw, two alternate mechanisms exist. The first is connected with absorption of 
the required number of phonons from the thermostat, and the second with tunnel self-trapping. 
The A-dependent temperature limit T * <h, above and below which the first and second process 
dominate, respectively, is found. The existence of several absorption mechanisms manifests itself 
in the fact that the classical solution that describes a multiphonon transition of an electron- 
phonon system is not unique. The absorption coefficient agrees well with the Urbach rule at 
T * < T < fiw, and becomes practically independent of temperature at T < T *. At T >  %, the 
absorption is accompanied by formation of an optical classical fluctuation that has a level of 
energy - A. 

PACS numbers:42.65.Jx 

1. INTRODUCTION 

Optical absorption has in many crystals an exponential 
long-wave tail frequently described with the aid of the em- 
pirical Urbach rule1 

K,aexp (-GAIT). , (1) 

Here KO is the absorption coefficient, A = Eg - +if2 is the 
photon energy deficit, L? is the light frequency, Eg is the 
fundamental absorption edge, T is the temperature, and u is 
a number of the order of unity and depends frequently on 
temperature, especially at low temperatures. 

The present paper deals with the mechanism of optical 
absorption in nonpolar crystals, wherein many optical strain 
phonons participate in the photon absorption and in the cre- 
ation of an electron-hole pair (exciton). The distinguishing 
feature of strain phonons, for which the electron-phonon 
interaction is short-range, lead to substantial differences 
from the previously considered2 case of polarized optical 
phonons in an ionic crystal. We consider only optical strain 
phonons, since a consistent continual theory can be con- 
structed only for optical phonons. An investigation of the 
contribution of the acoustic phonons shows that an impor- 
tant role is played for the latter by momenta of the order of 
the reciprocal lattice constant, so that inclusion of the acous- 
tic phonons in the theory calls for knowledge of the details of 
the electron and phonon spectra, as well as of the electron- 
phonon interaction at large momenta. Yet the interaction 
between an electron and optical strain phonons does not dif- 
fer in principle from the interaction with Debye acoustic 
phonons (only the phase space can differ substantially). In 
particular, if the coupling is strong both phonon types lead 
to formation of autolocalized states. It is therefore to be 
hoped that the model considered reflects the main features of 
the real situation. 

For simplicity, only the single-particle problem is inves- 
tigated here. This simplification can be justified if at least 

one of the following two conditions is satisfied: 1 .  The ele- 
mentary excitations in the crystal are Frenkel excitons or at 
least excitons having a radius much smaller than the charac- 
teristic spatial scale fi/(mA )'I2 of the problem. To be definite, 
we shall refer hereafter to excitons. Possible two-particle ef- 
fects are discussed in Sec. 4. 2. The interaction of one of the 
produced particles with the phonons is much stronger than 
the interaction of the second. 

A consistent quantitative theory that describes the ex- 
ponential dependence of KO and is valid at arbitrary tem- 
perature Tand at a deficit A)&, is expounded in Sec. 3. It is 
based on the use of the classical solutions for the functional 
integral that represents the exciton Green's function. The 
possibility of using the saddle-point method in the functional 
integral (i.e., of using classical solutions) is ensured by the 
fact that the number of phonons is large, A)%,. A similar 
approach was first applied by Iordanskii and Pitaevskii3 to 
the problem of multiphonon decay of quasiparticles in He 11. 

The distinguishing features of a system consisting of an 
exciton and phonons that interact with the exciton but not 
with one another is the possibility of accurately excluding 
the phonon fields and reducing the role of the phonons to an 
effective self-action of the exciton. It is then possible to seek 
classical solutions for this self-acting field rather than for the 
initial system. In the case of a strong exciton-phonon cou- 
pling, another nontrivial feature is that the classical solution 
is not unique (in contrast to Ref. 2), owing to the presence of 
two "ground" states of the exciton, free and autolocalized." 
The first is metastable4s5 and its decay is due to tunnel self- 
trapping, whose probability was calculated (at T = 0) by Ior- 
danskii and R a ~ h b a . ~  

Assume that an optical transition produced in the crys- 
tal and virtual exciton with a certain energy deficit. For this 
transition to end up in absorption of a photon and produc- 
tion of a real exciton, the latter must go over in one way or 
another into a real state (i.e., a state with non-negative kine- 
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FIG. 1 .  Dependence of the total energy E,,, and of the exciton energy E,, 
on the arbitrary configuration coordinate Q. The light circles show three 
"ground" states of the system: (E,, = 01, self-trapping ( E , ,  <0)  and un- 
stable saddle (E,,, > 0); E, is the exciton energy at the saddle point. The 
possible paths of an exciton with a deficit A are shown: I-self-trapping, II- 
path into a saddle state (unphysical), 111-transition to a free state. The 
picture described is meaningful at Tgfiw,. 

tic energy). Corresponding to the presence of two ground 
states are two possible manners of action for an exciton hav- 
ing an energy deficit A relative to the ground state (Fig. 1). 
The first is to absorb phonons from the thermostat and go 
over to a free state. The second is tunnel self-trapping 
(which, generally speaking, does not call for external ener- 
gy). It is clear that the probability of the first process de- 
creases with decreasing temperature or with increasing A; 
the probability of the second, on the other hand, is small but 
finite, and is practically independent of T and A if they are 
small. At sufficiently low temperature self-trapping is there- 
fore always more probable (as T-0 there are no phonons 
and their absorption, needed for the transition to a free state, 
is impossible). At higher temperature, conversely, the pro- 
cess with phonon absorption is more probable. 

At sufficiently low temperatures, when there are few 
phonons, the transition to the free state proceeds with ab- 
sorption of the minimum number n = A /&2, of phonons. In 
this case the problem can be treated by high-order perturba- 
tion theory, as was done earlier2 (see also Ref. 7). 

With further rise in temperature, perturbation theory 
no longer holds, since processes with reradiation of phonons 
becomes probable. In this situation, however, we can use the 
optimal-fluctuation method. Just as for polarization phon- 
ons, static fluctuations are ensured by the short lifetime of 
the exciton in the fluctuation state compared with the reci- 
procal frequencies of the phonons that make up this state. A 
qualitative investigation of the described limited cases is car- 
ried out in Sec. 2, where all the main results of the study are 
also presented. 

A semiquantitative theory of the Urbach rule with ac- 
count taken of the self-trapping states was first proposed by 
Sumi and ~ o ~ o z a w a . ~  Their model and approximations, 
however, are in our opinion unfounded. They regard the po- 
tential of the exciton-lattice interaction to be static, but we 
shall show this to be valid only at very high temerpatures (see 
Sec. 2). The same holds for the introduction of an interaction 
mode, a procedure permissible, by its very meaning, only in 

the static case. But even in the static case the optimal-fluctu- 
ation method used in Sec. 2 of the present paper and the 
method of Sumi and Toyozawa lead to different depen- 
dences of In K, on A (A in Ref. 8 and A ' I2  in the present 
paper), although their ideas seem close.The point is that 
Sumi and Toyozawa regard the radius of the potential con- 
nected with the interaction mode to be independent of A and 
equal to the lattice constant. It will be shown below, how- 
ever, that although the localized state itself has the same 
scale as the lattice constant, the scale of the optimal fluctu- 
ation is macroscopic (a = fi/(mA )'I2>d ). In this sense there 
exists for each A a separate interaction mode that is no way 
equal to the mode that is essential in the self-trapping state. 
Thus, the single-node approximation of Sumi and 
Toyozawa, wherein the momentum dependence of the self- 
energy is neglected, is incorrect. 

We discuss now the weak-coupling case. If the exciton- 
phonon interaction is not strong enough, there is no trapping 
state, and the only thing the exciton can do is absorb phon- 
ons and go over to a free state. In this case KO-+O as T+O, in 
contrast to the strong-coupling case, when K, is finite at 
T = 0 and is equal to the self-trapping probability. There- 
fore, in terms of the Urbach rule, u is constant as T-0 for 
weak coupling, while u/Tis constant for strong coupling, in 
good agreement with the experimental data (see, e.g., Ref. 8). 
The last result is similar to that obtained in Ref. 2 for polar- 
ization phonons. The difference is that the polarization 
cloud in the ionic crystal is produced without a barrier,9 and 
it is meaningless to speak of transitions to a free state, since it 
is absolutely unstable. In addition, owing to the absence of a 
barrier, the probability of fluctuation of a polarization with a 
level A becomes large as A-+0, in contrast the probability of 
self-trapping on account of strain phonons, which remains 
exponentially small also at A = 0. 

2. QUALITATIVE APPROACH AND PRINCIPAL RESULTS 

The Hamiltonian of an exciton interacting with the 
phonon field is of the form 

where r is the exciton coordinate, m is its translation mass 
(we disregard the internal degrees of freedom of the exciton, 
see the Introduction), a+ and a are the creation and annihila- 
tion operators of a phonon with wave vector q, oq is the 
phonon frequency, and Vq is the matrix element for the exci- 
ton-phonon interaction and takes for strain phonons the 
form 

Following Ref. 6, we have introduced the Franck-Condon 
energy E,, . For optical deformation phonons we have2' 

where y is a dimensionless coupling constant and w,  is the 
frequency of the phonons, which we assume to have no dis- 
persion. 
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FIG. 2. Typical diagram corresponding to the absorption of n = 4 phon- 
ons. The solid and dashed lines show the exciton and phonon Green's 
functions, respectively. 

The light-absorption coefficient is proportional to the 
imaginary part of the exact Green's function of the exciton2: 

Since we are interested only in the exponential dependence, 
we do not write out the proportionality coefficient. 

When perturbation theory is applicable, we can carry 
out, in analogy with Ref. 2, a diagram analysis of expression 
(5). Consider the diagram shown in Fig. 2 and containing 
n = A /hO phonon lines. Assuming that all the phonon mo- 
menta and that the exciton momenta in the intermediate 
state are of the same scale q, we see that the order of magni- 
tude of the diagram does not change when the sequence of 
phonon absorption is changed, so that the contribution of all 
these diagrams is proportional to the number n! of permuta- 
tion of the phonon lines (see Ref. 2). Counting the number of 
vertices and free exciton Green's functions and expanding 
the factorial in accord with Stirling's law, we obtain 

where N = [exp(&,/T) - I]-' is the phonon occupation 
number. In the derivation of (7) we took into account that 

where u is the volume of the unit cell. Ofcourse, perturbation 
theory remains valid only if w,(1. Otherwise the diagrams 
with more than n phonon lines make a comparable contribu- 
tion to Ka . The scale of the momentum q in (7) and (8) should 
be determined from the condition that Ka be a maximum. It 
is easily seen that w, reaches a maximum at q- (mA )'I2/fi. 
Therefore 

4 B fto 
K.lllaexp{-Gln ( s ( ~ ) ' ' 2 ) }  7 

where EB = fi2/2v2I3m is the width of the exciton band and 
B is a number of the order of unity and takes into account the 
difference between the permuted diagrams. The condition 
for the applicability of the continual approximation can be 
written in the form A ( E , .  The condition for the applicabi- 
lity of perturbation theory is a large argument of the loga- 
rithm in (8). 

At low temperature (T<&,) the main factor under the 

logarithm sign is N - ' and expression (8) can be rewritten in 
the form ( I ) ,  where 

We see that according to (10) we have a=: 1, and the correc- 
tion should have, besides the temperature dependence, also a 
weak (logarithmic) dependence on A. 

As T - 4  the absorption described by Eqs. (1) and (10) 
vanishes. However, as already noted in the Introduction, at 
sufficiently low temperature self-trapping becomes more 
probable. The absorption coefficient in this region is propor- 
tional to the probability of the tunnel self-trapping: 

Here f ( x )  is a certain universal dimensionless function with 
the following asymptotics, which are calculated in Sec. 3: 

f (S) ".so+ ~~=x-S,x% (xK I ) , 
f (s) =13.3x1" (xBI). 

Here So, 72, and S, are positive constants. At A = 0 Eq. (1 1) 
should coincide with the free-exciton self-trapping probabil- 
ity calculated in Ref. 6, where it is estimated that So < 73. 
Equation (1 1) is valid when the argument of the exponential 
is large. It follows from (9) that A (1 in the case of strong or 
intermediate coupling, and this condition is satisfied. 

Comparing (1 1) with (1) we obtain a self-trapping tem- 
perature 

such that Eq. (11) is valid at T <  T*, and Eq. (1) at 
T * < T <  &,. We note also that expression (1 1) was obtained 
in the strong-coupling approximation EFc jb EB (see Ref. 6) .  
On the whole, self-trapping states exist only at E,, > Emin 
-EB (see Ref. 4),3' and when this condition is violated there 
is no self-trapping region (T * = 0). 

To determine the absorption coefficient in the high- 
temperature region we use the optimal-fluctuation m e t h ~ d . ~  
We assume that a thermal fluctuation was produced in the 
crystal, with a characterstic sublattice displacement u and 
with a spatial dimension a. The energy consumed in its pro- 
duction is then 

where d is the lattice constant. On the other hand, for an 
excitonic level with energy - A to be present in the fluctu- 
ation well the following conditions must be satisfied: 

From this we get the minimum allowable deformation ener- 
gy 

A3 4 2 ~ $ ~ l h  
min 

E d , {  -limo------ - --. 
(ma). ( ~Aoo ) EIC 

The absorption coefficient is proportional to the probability 
of the onset of a fluctuation with a minimum energy 
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FIG. 3. Regions of realization of different limiting regime on the TA 
plane. OF-optimal classical fluctuation, PT-perturbation theory, ST-self- 
trapping; I-T = /Z - ' fw, ( fwdA ) ' I 2 ,  2-T= T *  = /Z 2A /S,. 

The numerical coefficient in the argument of the exponential 
is obtained in Sec. 3. 

The condition for the applicability of (13) is that the 
fluctuation be static over times on the order of the free path 
time of an exciton having an energy A for scattering by opti- 
cal strain phonons. This time is easy to calculate by using the 
Hamiltonian (2): 

T.-E: AITE~~A'" .  (14) 

The condition that the fluctuation be static is of the form 

It is easy to verify that the condition (15) coincides with w, 
) 1, i.e., perturbation theory and the optimal-fluctuation 
method are alternate methods that complement each other. 

Figure 3 shows, in the TA plane, the regions of realiza- 
tion of the various limiting cases considered in this paper. 
Expressions (8), (1 I), and (13) cover practically the entire 
temperature region and the deficit region h o ( A  ( E B .  

3. RIGOROUS APPROACH. CLASSICAL SOLUTIONS 

In Ref. 2 were derived, for the case of polarization opti- 
cal phonons, self-consistent-field equations that make it pos- 
sible to obtain the imaginary part of the Green's function at 
A > h , .  To this end we excluded from the functional integral 
the phonon fields, and a saddle point lying in the imaginary 
time domain was obtained from the exciton fields. The Euler 
equations that determine the classical saddle-point solution 
are in fact the self-consistent-field equations. 

We can obtain in perfect analogy equations for phonons 
of any other kind. The general equation is of the form (we put 
fi = 1 in this section): 

K , a e s p  { - A . t - S ( z ) ) ,  (16) 

S ( T )  = 5 (It 5 d3r 
I V $ ( r ,  t )  l 2  

2 ?72 

Here D is the phonon D-function continued into the imagi- 
nary time domain at finite temperature. The wave function Ijl 
is assumed normalized to unity and should be obtained from 
the condition that the action be an extremum. The time 7- is 
determined from the condition 

d S ( r ) / d ~ = - A .  (20) 

For the case of optical strain phonons, the integral (1 8) can 
be easily calculated: 

U ( r ,  t )  ={NeWo"'+ ( N f l )  e - w ~ ' L 1 ) v E , c o o 6 ( r ) .  (21) 

Making the change of variables 

r - +  ( N f l )  uEFcoomr, $+ ( ( N f l )  vEFccoom)-'$, 

and introducing the symbol P = fiwo/T, we obtain 

+e1t1-t2") d3r I $  ( r ,  t , )  $ ( r ,  1,)  1'. (23) 

The corresponding nonlinear Schrodinger equation is of the 
form 

T 

v(r,  t )  =- J d t f  (e-lt-"l+elt-t"-') I$  ( r ,  t ' )  1 2 .  (25) 
0 

The wave functions and the energy have the obvious symme- 
try property: 

Differentiating (23) directly and taking into account the con- 
dition SS/S$ = 0, we obtain 

dS ( 7 )  l d ~ = E ,  (0) =E, ( a ) .  (26) 

It is easy to prove for S the virial theorem (see Ref. 6), which 
leads to the relation 

z 

S ( r )  =- 5 E,  ( t )  dl .  (27) 
0 

Relations (26) and (27) will play an important role in the 
analysis that follows. 

Unfortunately, the ability to investigate Eqs. (23)-(25) 
analytically is quite limited. Nonetheless, supported by ana- 
lytic results, we can discern the qualitative features of the 
solutions. We therefore present first three asymptotically 
correct solutions, which we use next to construct a practical- 
ly complete picture of the behavior of S (7). 

1) At T( 1 we may assume that 
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FIG. 4. Approximate plots of S(T) at different temperatures: a-8 = f2wd 
-1, b-P=Po-l, C-PI < B <  80, d-P< 81. 

Actually, the characteristic time in which the potential ener- 
gy (25) changes is t- 1, it is clear therefore that at r(1 the 
time dependence does not come into play. The substitutions 

yield then 

To find the constant A we have used the results of the nu- 
merical calculations of Zakharov, Sobolev, and Synakh.Io 
Equation (29) describes the initial sections of the curves in 
Figs. 4a-4d. 

2) It is easy to verify that at T = P the condition (28) is 
satisfied exactly (for arbitrary P ). Indeed, substituting @(r, 
r )=$(r) and T = p in (25) we obtain 

V (r, t )  ==-2 ( l -e-R)  (r) = V (r) , 

which confirms the assumption made. Next, in analogy with 
(29), we obtain 

3) At T - P, 1 we can neglect the first term of (25). 
Then, making the substitution 

t,-+~-t,, r-ter-pr, $+e-' ('-n)$, 

we obtain 

X e-''-'' dt,  dt,  d"rl$ (r, t , )  $ (r, t 2 )  I?, f S (32) 

where T* - 1 is determined from the condition E,(T*) = 0. 
The existence of a finite T* is confirmed by the following 
considerations. It can be seen from (32) that V(r, 
t ) = e - 'V(r). Since the potential V(r) is short-range, the level 
will inevitably be pushed out at a certain t = r*. Equation 
(3 1) describes the tails of the S(T) curves in Figs. 4a-4d as 
r-+ o~ . Unfortunately, it is impossible to obtain a simple ana- 
lytic estimate for the universal constant B. 

We proceed now to a qualitative investigation of Eqs. 
(23)-(25). We being with the case T = 0 ( P  = 03). An analy- 
sis of the next higher corrections in T( 1 to the solution (29) 
shows that theabsolute value of the potential V (t ), and hence 
of the energy E,(t ), decreases somewhat near the ends of the 
interval (0, r) (Fig. 5a). At a certain T = T; - 1 the energy 
vanishes at the end points of the interval (Fig. 5b). The poten- 
tial remains constant in this case. The level pushed out be- 
cause of the short-range character of the potential. We note 
that in the case of polarization phonons we had a Coulomb 
potential and the level was not pushed out.* It  is clear from 
dimensionality considerations that the relation Va2- 1 
holds for the characteristic value of the potential V and for 
its radius a. It  is known, however, that the level is pushed out 
at the same relation, and this is therefore possible already at 
T- 1, when the parameters of the potential change by an 
amount equal to their own value in the (0, r )  interval. Ac- 
cording to (20) and (26) the solution with E,(O) = dS/dr = 0 
corresponds to A = 0, i.e., describes tunnel self-trapping of a 

r - t *  Z ff t- t u 7 * 1 !  

FIG. 5. Evolution of the E ( t  ) dependence with increasing r. The abscissas 
and ordinates are the times in the (0, r) interval and the energy, respective- 
ly. The solid and dashed lines are plots of lE ( t  ) I  and ( V ( t  )(, respectively. 
Figures a-g, arranged in increasing order of r, pertain to the casefl, 1: 
a-741, b-r = T~,'  - 1, C-r> r,,', d-r = rO1' = B  - C(C- I), e-7," < r <  P, 
f-T> fl, g-r - f l>l .  Figures 5h and 5i pertain to the caseB<l: h -p ir (1 ,  
i-T> 1 .  
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free exciton (a transition between the free and self-trapping 
vacuum). We shall therefore call this an instanton solution, 
in analogy with the known field-theory problems. 

We consider now the behavior of S (T) near T = T: . The 
potential V(0, r) is a smooth function of the parameter r. 
However, as is well known (see, e.g., Ref. 1 l), if a level van- 
ishes at A < 0 in a potential V (A, r) that depends smoothly on 
the parameter A, then E (A )-A as A+ + 0. Consequently 
d S / d ~ - (  - T: - T ) ~  and 

Substituting (29) and (33) in (22), (20), and (16) we arrive at 
Eq. (1 1) for the absorption coefficient as T 4 .  We note that 
further increase of T(T > d )  is meaningless, since E,(t )=O 
outside an interval of length T: (Fig. 5c). 

The described classical solution corresponds to transi- 
tions from the vicinity of the free vacuum to the self-trapping 
one. At T = 0 this solution is unique, for only a transition 
into a self-trapping state can proceed without an energy in- 
flux from the outside. At a finite temperature there appear 
two other solutions corresponding to transition into a free 
and a saddle vacuum. The latter, however, does not satisfy 
the saddle-point condition (incorrect sign ofd 'S /d?) and, at 
least in this problem, has no physical meaning. 

Let the temperature be low but finite ( p) 1). In the al- 
ready described solution S,, this leads only to corrections 
small in the parameter exp( - fl ). At a certain finitep, how- 
ever, the solution (30) becomes meaningful. Obviously, at 
8) 1 it describes a transition into a saddle vacuum. Indeed, 
the solution (30) corresponds to A = - E, (Fig. 1). In this 
case the exciton lands immediately in a fluctuation that cor- 
responds to a stationary saddle state, so that the solution (30) 
is found to be stationary. 

An analysis of the corrections in T - P( 1 to the solu- 
tion (30) shows that at T <B the absolute values of the poten- 
tial and of the energy decrease near the ends of the interval 
(0, T) (Fig. 5e), and at T = ril = P - c (wherec- 1) the energy 
becomes equal to zero, and a second instanton solution is 
obtained, corresponding to the transition from the free to the 
saddle vacuum (Fig. 5d). It is seen from Fig. 4a that the de- 
scribed solution S,, has an incorrect convexity and does not 
correspond to a saddle point in Im G, although formally it is 
a stationary point of the action; we shall therefore not de- 
scribe its properties in greater detail. 

In the region of large T there exists a third solution S,,, 
that describes a transition to a free vacuum (Fig. 5g). It is this 
solution which should contain the perturbation-theory re- 
sult (8). Unfortunately, it is impossible to investigate fully 
the picture of the vanishing of the solution S,, and the onset 
of S,,,. This phenomenon apparently takes place at 
0 < T - - 1, and the action S should undergo in this case a 
jump (Fig. 4a). There exists possibly a small interval where 
the solutions S,, and S,,, coexist. We note incidentally that 
the transition region T - p- 1 is of no practical importance. 
Indeed, when A decreases along the S,,, curve (Fig. 4a) the 
quantity ldS / d ~ (  -A increases. However, as shown in Sec. 2, 
when A increases the solution change S,,,-S, takes place 
(Fig. 3). At low temperature( P> 1) this change corresponds 

to a small A, i.e., to a large T -P,  so that only the region 
T - p>1 is of practical interest in the solution S,,,. In this 
region, however, S,,, is described by the asymptotic solution 
(3 1). Substituting (3 1) in (22), (20), and (16) we obtain ultima- 
tely expression (8) for K 9'. 

Thus, the behavior of the solutions S,, S,, , and S,,, at 
low temperature can be regarded as determined. How do 
these solutions evolve when the temperature is raised? 

At a certain p = Po - 1 the solutions S, and S,, should 
merge (Fig. 4b). At the point fl =Po the two instanton solu- 
tions coincide (7: = T:), and with further decrease of fl 
( P < Po) they vanish completely, and the region of the solu- 
tions S, begins to absorb the region S,, (Fig. 4c). Similar 
merging and absorption takes place for solutions S,,, and 
S,, . Finally, at a certainp = P,  < Po the solution S,, vanish- 
es completely, while the solutions S, and S,,, are preserved 
also at p( 1 (Fig. 4d). 

The exact results I), 2), and 3) are valid at any tempera- 
ture. At fl& 1, however, the solution (30) belongs already to 
class S, and not to S,, as at 8) 1 (Fig. 4d). The evolution of 
the solution (29) with increasing T also differs from the case 
P> 1. Indeed, at P < T< 1 the absolute value of the energy 
increases towards the end points of the interval (0, T) (Fig. 
5h), leading at T = T, - 1 to a direct transition from S, to S,,, 
(Fig. 5i). The use of the asymptotic expression (29) at ~ ( 1  
and pg 1 leads to the result (13) of the optimal-fluctuation 
method, and the use of (3 1) at 7% 1 leads to the perturbation- 
theory result (8). 

It should be noted that in contrast of the low-tempera- 
ture case, at high temperature there is only one classical so- 
lution. The reason is that at %.tie, the coherence of the state 
is violated (i.e., the absorption process terminates) before the 
system manages to find itself in any one of the stationary 
states shown in Fig. 1, so that one cannot say which of 
them is the final state of the absorption process. The prob- 
ability of the onset of a classical fluctuation with any exciton 
level turns out to be quite high, and the lifetime of the exciton 
at this level small enough, so that it is precisely such an opti- 
mal fluctuation which determines the absorption process, 
and the exciton state in it is the final state. 

4. POSSIBLE TWO-PARTICLE EFFECTS 

If the electron and hole are not too strongly attracted, 
so that the electron binding energy R <A, an important role 
is assumed by the internal degrees of freedom of the exciton. 
The wave function $depends in this case already not on one 
but on two coordinates, re of the electron and and r, of the 
hole. The electron-hole interaction that leads to exciton for- 
mation should be included explicitly in the Hamiltonian (see 
Refs. 2 and 12). Besides the effective self-action of the elec- 
tron and of the hole, described by expressions of the type , 
(18), where V ;  should be replaced by VZ,, and V;,, respec- 
tively, there appears also their effective interaction, which is 
proportional to the product V,, V,, . In contrast to the case of 
polarization phonons, where the sign of the interaction con- 
stant is determined entirely by the sign of the particle charge, 
V,, and V,, can have arbitrary signs, that the effective inter- 
action can correspond to repulsion (if V,, V,, < 0) as well as 
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attraction (if V,, V,, > 0). When the direct exciton interac- 
tion turns out to be stronger than the effective interaction via 
the phonons, we return to the case considered above in de- 
tail, when the exciton can be regarded as a single structure- 
less particle. In the opposite case, however, the sign of the 
effective interaction is extremely important. 

In the case of effective attraction, the electron and hole 
are located in the same jointly dug well and are close to each 
other. The situation should then be qualitatively different 
from that of an exciton. 

In the case of effective repulsion, the electron and hole 
can no longer be in one well: what is a well for the hole is a 
potential hump for the electron, and vice versa. For polariza- 
tion phonons this effect led to overscreening of the Coulomb 
attraction, as a result of which the electron and hole became 
separated by a large distance limited only by the decrease of 
the overlap integral."12 Strain phonons, however, lead to a 
different situation. The effective electron-hole interaction 
due to exchange of optical strain phonons is short-range and 
while dominant at short distances, at large distances the is 
always predominant. At a reasonable value of the Coulomb 
attraction the particles therefore cannot move too far apart 
and the distance between the wells will be comparable with 
their width. At V,, V,, < 0, however, the absorption coeffi- 
cient KO should be considerably smaller than at V,, Vq,, > 0, 
owing to the smallness of the overlap integral for an electron 
and hole trapped in different wells. 

5. CONCLUSION 

In conclusion, we wish to emphasize once more that the 
described mechanism explains well the Urbach rule (1) and 
that at low temperature regardless of the value of A ,  the 
absorption ceases to depend on T. This fact could not be 
explained completely in the case of polarization phonons. 
Indeed, although at strong coupling there existed in that 
case a region of deficits A where the absorption remained 
finite at T = 0, the temperature dependence began to mani- 

fest itselfin that region at a very high temperature, where the 
frequency dependence no longer correspond to the Urbach 
rule.' In the model described here, the temperature depen- 
dence manifests itself first already at the low temperature 
T *(12), and the Urbach rule holds immediately at T > T *, 
while deviations from this rule can occur only at very high 
temperature. 

The author is deeply grateful to A. G. Aronov, S. V. 
Iordanskii, and E. I. Rashba for numerous helpful discus- 
sions. 

"Generally speaking, there exists also a third, saddle state, but it is absolu- 
tely unstable, and while corresponding classical solutions do occur, it 
will be shown in Sec. 3 that they have no physical meaning. 

"It should be noted that long-wave optical strain phonons interact with 
electrons only in the case of a degenerate band, but here we consider a 
simple band. Therefore the interaction (5) is model-based. One can hope, 
however, that it reflects correctly the main feature of the real situation. 

"Near E = E,,,,, there is also a region where self-trapping state exists, but 
is metastable. 
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