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In an isotropic semiconductor with negative differential resistance, the walls of the produced 
strong- and weak-field domains are inclined at an oblique angle to the current direction (and not at 
a right angle as in the isotropic case). The theory of such oblique field domains, with the Sasaki 
effect in a two-valley semiconductor as the example, is developed for samples with limited trans- 
verse dimensions. The distinguishing feature of this example is that the negative resistance and 
the anisotropy itself are induced by heating of the carriers in the longitudinal and transverse fields 
and are interrelated. The inclination angles of the oblique domain walls depend on tbe flowing 
current and in one of the limiting cases they can be almost parallel to the current direction. A 
correct value of a strong-field domain velocity can be obtained only if the inclination is taken into 
account. 

PACS numbers:75.60.Ch 

1. In heating electric fields, the electric conductivity of 
semiconductors with cubic symmetry is no longer isotropic 
(the Sasaki effect). When current is made to flow through 
such a semiconductor with limited transverse dimensions, a 
transverse electric field is produced in it. If the semiconduc- 
tor is characterized by a negative differential conductivity of 
N-type (N-NDC) and a homogeneous field distribution in it 
is unstable, strong- and weak-field domains are produced, in 
which not only the longitudinal but also the transverse elec- 
tric fields are different. The existence of unequal transverse 
electric fields makes the standard homogeneous theory of 
domain production,'** in which the transverse field is com- 
pletely disregarded, unsuitable for this case. 

We consider here field domains, using as the example 
the N-NDC produced in the Sasaki effect in a multivalley 
semiconductor. We choose for simplicity a two-valley model 
(Fig. 1); the axes of the large masses of the valleys (ellipsoids 
of revolution) are oriented at right angles to one another and 
lie in the xy plane, with the x axis directed along the current 
density far from the domain walls and the sample limited in 
they direction (plate of thickness 2d ). The valley symmetry 
axis makes an angle $ with the x axis. 

The Sasaki effect is accompanied (and is governed to a 
considerable degree) by resettlement of electrons from one 
valley to another (the valleys are equivalent under equilibri- 
um conditions). The difference between the heating of the 
electrons in the domains and their resettlement lead to the 
appearance of an off-diagonal conductivity component 
ox, = oyx, which increases abruptly with increasing electric 

J-lzzc FIG. 1 .  Two-valley model. 

field Ex if the latter is weak enough. The N-NDC considered 
here is due precisely to this rapid growth of oxy, since the 
total conductivity of the sample 

o=o=- I ow I"om (1) 

decreases rapidly in this case,and this rapid decrease of a(Ex) 
can cause a decrease of the current density i = uEx . This N- 
NDC mechanism was apparently first considered in Ref. 3, 
with the multiply valued Sasaki effect (MSE) as the example. 
I t  takes place at $ = 0, and also in a certain range of < $, 
near this current direction. In the MSE, the state with equi- 
librium populations of valleys 1 and 2 unstable at $ = 0, and 
the other two states with unequal valley populations and 
with nonzero transverse field Ey (6 = EJEX #O) are stable. 
The state 9 = 0 is not realized in a certain range of fields 
(Ex I, starting with the value E, (Fig. 2); in this case the corre- 
sponding branch 3 of the current-voltage characteristic 
(CVC) of Fig. 2 is not realized, but the degenerate branch 2, 

FIG. 2. Current-voltage characteristics. a) Variants of CVC at $ = 0. b) 
Angular dependences: I. $ = 0, 11. 0 < $ < rlo, 111. $> &. 
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corresponding to anisotropic states with 9. = 9. "'(Ex), is re- a b 
alized. Depending on the parameters of the electrons in the 
valleys, three variants of branch 2 are possible, shown by I 
curves a, 6 ,  and c in Fig. 2a. It appears that for the MSE the 
usual branch is a with the N-NDC section. Branch 6,  which f f J  * 
is realized in the case of very large resettlement of the elec- 
trons among the valleys, contains in the field section (E, ,Ec) 
two values of the current and corresponds not to two but to 
four anisotropic states at a given field E,, namely 9 I and FIG. 3. Domain walls. a) Homogeneous strong-field domain ($ < 0). b) 

Stratification in a strong-field domain. 
9- k* '. The resultant multiply valued character of the CVC is 
more complicated than the usual N-NDC, but from the point 
of view of the domain solutions investigated below the 
branches a and b are equivalent, so that no distinction is 
made between these variants of the behavior. The branch c 
without an N-NDC section occurs at low anisotropy of the 
electrons in the valleys (much lower than, for example, in 
germanium and in silicon), and is of no further interest to us. 

When the direction of the current in the sample deviates 
from $ = 0, the CVC undergo the changes illustrated in Fig. 
2b; they are described in detail in Ref. 4. In the angle range 
)$I  <$, where the MSE is preserved, the degeneracy of 
branches of Fig. 2a is lifted at $#O. Besides the CVC branch 
corresponding to the "correct" sign of the Sasaki field Ey 
and containing an N-NDC, there appears a CVC loop with 
"incorrect" sign of Ey . In many cases the contributions of 
the states corresponding to the loop does not appear, and its 
existence can be neglected. At > $o the CVC loop vanish- 
es, but the N-NDC section is as a rule preserved. As shown 
by Mitin and the author (see Ref. 4), if the MSE and the 
associated N-NDC take place at $ = 0 (Fig. 2a), and if the N- 
NDC mechanism due to the transfer of the electrons into the 
"heavy" valley is reali~ed,~ then N-NDC due to a combina- 
tion of all these mechanisms appears in the entire range of 
angles $, and it is only in the direction $ = 7r/4 and its equiv- 
alents that no transverse fields Ey are produced. We note 
also that the N-NDC due to the rapid growth of the off- 
diagonal conductivity uXy takes place at $#0 also when 
there is no MSE at all, but a situation close to MSE obtains, 
i.e., the time of intervalley scattering decreases rapidly as the 
electron gas is heated, and the resettlement of the electrons 
in the valleys increases rapidly. 

In the foregoing cases (except for the $ = r /4  direction 
and its equivalents) it is necessary to treat correctly, when 
constructing a domain theory, both the longitudinal and 
transverse electric field. It is shown below that this can be 
done in "oblique"-with domain walls that are not perpen- 
dicular to the current direction, but are at oblique angles. 
The latter are determined by the continuity conditions of the 
current and of the electrostatic potential. In particular, for 
the inclination angle y of a wall (Fig. 3a) between extended 
domains with different values of the longitudinal [ E  yl(i) and 
E fl(i) ] and transverse (E :'(i) and E rl(i)) fields we have 

tan 'f ( i )  =-[E,"' ( i )  -E,"' ( i )  ]/[EY(" ( i )  -EY (i) 1, (2) 

with the current density i uniform in the entire sample except 
in the domain wall and in surface layers with thickness on 
the order of that of the domain wall. At + = 0 and in the 
presence of the MSE, stratification of the strong-field do- 

main is into layers with different transverse field 
directions a'+' and a'-' = - 9.'+ '. Since this is not a rough 
state, the interlayer wall parallel to the plate surface (Fig. 3b) 
should in practice always shift toward one of the sample 
surfaces and produce a surface wall having a complicated 
structure. Measurements of the anomalous Hall effect7 by 
Asche et aL8s9 show that although the anomalous effect due 
to the shift of the interlayer wall in a magnetic field does exist 
and is large, it is nonetheless noticeably weaker than the 
theoretically predicted one, apparently because of the "slow- 
ing down" of the interlayer wall by small inhomogeneities. 
From this point of view, the situation in Fig. 3b is of interest; 
since the fields E: are equal in the layers 2'-' and 2'+' (as are 
also the current densities in them), this situation reduces in 
practice to the case of a homogeneous strong-field domain 
(Fig. 3a). 

2. We now find the quasistationary and quasineutral 
distributions of the electron densities n , ,  in the valleys 
(these densities determine in turn the distributions of the 
fields E x ,  and currents i,,) in an oblique domain wall (Fig. 
3). It follows from the quasineutrality conditions that 

ni,2=no (lTf), (3) 
where no is the equilibrium density of the electrons in one 
valley. For the uniform distributions that are realized far 
from the domain walls, f is obtained from the condition n,/ 
r1 = n2/r2 for the balance of the intervalley transitions, in 
the form 

f=- ( z t - z , )  1 ( z ,+z , ) ,  (4) 

where is the time of departure of the electrons from val- 
leys 1 and 2 (into valleys 2 and 1, respectively). 

We use the phenomenological effective-field m e t h ~ d , ~ . ~  
according to which it is assumed that tke tensors PI,, of the 
electron mobilities in the valleys and D l ,  of the diffusion 
coefficients are written in the form 

C ~ , ~ = & , Z P  (E1,2), Di,2=6i,zD (Ei,2) 9 ( 5 )  

where 2, ,, are dimensionless tensors with components 
~ , , ~ ~ , = l f  as, a ,,,,, =lFas ,  

( 5 ' )  

Here and elsewhere s=sin2$ and crcos2$; the effective 
fields are given by 

E:,=E&,,~E. (6) 

From (3), (4), (7, and the condition iy = 0 that there be no. 
transverse current, a condition satisfied in semi-infinite do- 
mains far from the walls, we have 
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FIG. 4. Dependences of the parameter Fon the longitudinal electric field 
(a) and on the current density (b): I, 11, and 111 are the same as in Fig. 2. 

The quantity Fcharacterizes the resettlement in the val- 
leys. Equation (7) with allowance for (6) defines the F(E,) 
dependence. These dependences for $ = 0 and for two values 
of $ > 0 (one of which is $ < $o and the other $ > q0) are 
shown in Fig. 4a. Using these F(E,) dependences and the 
CVC i(E,) of Fig. 2b (for identical values of $) we easily 
obtain the functions F(i); they are plotted in Fig. 4b (and, as 
can be easily verified, are qualitatively equivalent for the 
CVC variants a and b of Fig. 2a). For each value of the angle 
1C, there exists a range of currents from i,($) to i,($), in 
which one value of i corresponds to three positive values 

Pi (i) <Fo (i) <F2 ( i )  . 
At $ = 0 the value of i, coincides with i,, and F,(i) = 0 for 
all i. The CVC shown in Fig. 2 follow from the formula 

i=2eExno 
@ (E , )  +@ (E, )  1-a2Fz 
T (E , )  +z (E2)  ' I f  aFs ' (8) 

The functions f = f (i) have qualitatively the same form 
as F(i), i.e., they are triple-valued in the current interval 
(i,($),iM($)) (if only f>O is taken into account), since the 
rapid growth of the transverse field Ey in real crystals is 
connected precisely with the abrupt r(E) dependence that 
obtains in low-temperature intervalley scattering (with emis- 
sion of intervalley phonons). Neglecting everywhere below 
the slow and therefore qualitatively insignificant p(E)  and 
D (E ) dependences (and assuming both these quantities to be 
constant), we have F =f, 

O=-fuc/ ( l+- fas) ,  (7') 

where A =  i/2en,+. 
3. We now proceed directly to the problem of the do- 

main wall. The latter is assumed planar, sb that all the quan- 
tities depend only on the single coordinate 

u=x+Ay.  (9) 

The current-continuity equation is 

whence 
j,+Aj,=j=i/e. (10) 

The analogous connection between the components Ex and 
E,,, obtained from the condition that the electric vector has 
no curl 

d - (E,-AE,) =O, 
du 

is of the form 
( 1 )  ( 1 )  E,-AE,=E, -AE, = - A X ,  (11) 

x=[f iac+A ( l + f , a s )  ] / ( I - a 2 f 1 2 ) ,  (11') 

We consider two limiting situations: 1) a single domain 
wall separating two infinite domains along thex axis (Fig. 3); 
2) a thin strong-field domain ("hot" domain) or weak-field 
("cold") domain against a background homogeneous along 
the x axis. The latter case means that the domain is thin 
compared with the sample thickness 2d. Since we are consid- 
ering only thick samples, much thicker than the domain 
walls, the thin hot or cold domains can also be substantially 
thicker than their own walls (and in this sense the domains 
need not be thin). 

In the case of a single wall (Fig. 3) we have 

E,") -AE,")=E,,(') - A E ~ )  , 
whence 

A=-pcl(a+ps)  =A,,  

where A, = cot y(i) [cf. (2)], and 

x = x - = - ~ / ( a + p s ) .  (11") 

Here a = a( f, +f2), P = 1 + a% f2;f l.2 are the 
values of f in the domains. At $ = 0  we have 
A, = - l/af2,x, = - l/af2. 

In the case of a thin domain between two semi-infinite 
ones in which i,, = 0, we must impose the condition 

which determines A (and the angle of inclination of the entire 
thin domain). Since the fields E t' and El'' in semi-infinite 
domains surrounding the thin domain were obtained from 
the condition iy = 0, only the thin domain itself and its walls 
contribute to the integrand of (13). 

When (1 1) is taken into account we get from (10) 
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To obtain f (u) we must write down and solve the contin- 
uity equation for the difference between the electron fluxes 
in the valleys, j' = j l  - j, (j,,, are the electron fluxes in the 
valleys); this equation takes the form 

Substituting in (15) the values of j ; ,  and nlz obtained by 
using (1 1) and (14), and assuming that the needed solution of 
(1 5) takes the form of a stationary wave 

f = f  (u-vt)  =f  (x+Ay-vt ) ,  (16) 

where v is the wave velocity along the x axis, we transform 
(15) into 

where 

The singular points ( 17) lie on thep = 0 axis, and at f 20 
their number in the current interval of interest to us is always 
three: f l<  fo< f2. The outer points are saddles and the cen- 
tral one can be a node or a focus. 

4. In the case of a single static (v = 0) domain wall, Eqs. 
(1 1) and (12) are valid. Assume that in the entire current 
interval (i, ($),iM($)) they are large enough to satisfy the con- 
dition 

A2~'VZ (fa) (DR' ( f a )  1, (21) 

where R '( f )  = dR /df. The point f, is then a node, and the 
saddles f, and f, do not have the common separatrix needed 
for the existence of the sought single domain wall. The situa- 
tion arising is well known in domain theory1 and can be 
clearly tracked at $ = ~ / 4 ,  when Eq. (20') holds for V (  f ). 
The necessary trajectories are obtained only in two limiting 
cases: at i = i, ($), when fo = f,, and i = iM($), when f, = f,. 
The merging points f, and f2 or f, and f l  form a complicated 
singular point of the saddle-node type. At any $, two satura- 
tion currents are possible on the static CVC of a long (1B2d ) 
sample: i, ($) or i,($) (Fig. 5). The choice of one of these two 
CVC variants is determined by the boundary conditions on 
the current contacts. These conditions themselves, as well as 
the distributions of the concentrations and of the fields at the 
contacts, are not considered here in view of the difficulty of 
the ensuing problem. 

It follows from the foregoing that in the static case the 
problem with the oblique wall ($#n-/4) differs from that of 

FIG. 5. CVC of sample with domain wall or with domain 

the right-angle wall ($ = ~ / 4 )  only in the very fact that the 
wall is slanted. When condition (21) is satisifed, we can deter- 
mine f (u) by using the approximate drift dependence 

5. Corresponding to a narrow hot or cold domain is the 
separatrix loop of the saddle fl  or of the saddle f,. If (21) is 
satisfied such a loop, which is a limit cycle, is possible under 
the conditions of a stationary wave with velocity close to 

v=-hpV ( f a ) .  (22) 

[By itself, rigorous satisfaction of condition (22) does not 
coincide with the rigorous criterion for the existence of the 
separatrix loop, since the point fo becomes not a center but 
only a focus of unity multiplicity." In the case of a noticeable 
deviation from (22), however, fo becomes a node; the separa- 
trix loop exists therefore at a velocity v close to (2).] 

The maximum value f = fM in a hot domain is obtained 
from the condition 

f M  

J d f [ v ( f )  -v(fo) I=O, 
f l 

(23) 

which yields 

from the condition fM < f, we obtain a constraint on the 
currents at which a hot domain exists: 

(I'z-afiI'i) (I'z-af21'l) < (I'2-aforl)2.  (25) 

Reversal of the inequality (25) means a transition to cold 
domains in a hot medium with f = f2. There exists a current 
i = i,, determined by equality of the left and right-hand 
sides of (25) and dividing the current interval (i, ,iM) into two. 
The CVC of a long sample with a moving domain should 
contain a saturation section at the current i = ik (Fig. 5). 

To determine all the details of the CVC we must know 
the parameter A obtained from the condition (13), which ac- 
quires after the calculation i,, the form 

the integral in (26) is calculated along the separatrix loop. 
As f, approaches f, in the hot domain (in this case the 

current i decreases to the value i,), the main contribution to 
the integral of (26) is made by the region with almost con- 
stant fz f,, so that (26) reduces to the condition 

404 Sov. Phys. JETP 56 (2). August 1982 Z. S. Gribnikov 404 



from which, taking (11') into account we have 
A  = A , ,  x = X ,  . We note that the fields E!.''(i) and 
E Yr2'(i) are different at i = i,, i,, i,, so that the values of 
A ,  and hence of the inclination angle y are also different on 
all the three saturation sections shown in Fig. 5. 

In narrow hot domains f, is much smaller than f2, so 
that the parameter A  (i) should differ noticeably from A ,  (i). 
We consider the onset of a hot domain when the condition 

( f J d - f 1 )  , ( f O P f l )  <f2- f ,  (28) 

is satisfied. In this case f, z2fO - f,, and the condition (26) 
reduces to 

U T d f [ a ~  (f+h) + ( c + ~ r )  ( i+a2f f , )  ]=0, (29) 
f c 

whence 
A=-c[s+a(f,+f,) (I+azflf,) -11 - I .  (30) 

The value of A  given by (30) differs substantially from 
A, . As the current decreases from i, to i, , noticeable rota- 
tion of the hot domain takes place. The rotation effect is 
particularly clear at II, = 0, when f, = 0 and A  = - l/afo, 
i.e., tany(i) = af,. At i = i, we have fo = 0, i.e., the hot do- 
main tends to be created along the current direction (to the 
extent allowed by the sample length), and only with decreas- 
ing current does it rotate towards the position given by Eq. 
(2). 

A nascent cold domain ( f2 - f,,f, - fo< f2 - f,) can 
also be considered similarly and is also noticeably inclined 
relative to a wide domain (although this difference is not as 
large as in the case of a narrow hot domain at II, = 0). We 
then obtain 

A=-c[s+2af2/(i+ a2fZ2)] - I .  

In the literally considered situation with an N-NDC 
stemming from the Sasaki effect it is difficult to observe the 
domain rotation with changing current, since the rotation 
situation corresponds to those sections of the CVC on Fig. 5 
which are for the most part not realized in a static experi- 
ment. (In Fig. 1 the domain rotation should be observed on 
the sections marked with the number I.) To increase the 
length of the observed sections the field section of the N- 
NDC must be wider than predicted and observed in germa- 
nium and silicon. This situation is realized, for example, in 
the case of the Gunn effect in gallium arsenide. Although the 
nature of the N-NDC is there quite different, in a strong-field 

domain a considerable fraction of the electrons stays in the L 
valleys, and when the direction of the current in a sample 
with limited transverse dimensions deviates from the sym- 
metry axes, there should be realized there the Sasaki effect 
with transverse fields, oblique domains, and their rotation 
when the width of the domain and the maximum current in it 
change. 

We have dealt above only with the anisotropy induced 
by carrier heating when current flows through the sample. It  
is possible to consider similarly the case with an initially 
anisotropic material, as well as with an isotropic material in 
a magnetic field. In the latter case the transverse field is the 
Hall-effect field, which is different in the hot and cold do- 
mains because the kinetic parameters are different there. 

The author thanks 0.  arb< for a discussion. 

"We recall'0 that a small change in the parameters [e.g., a change of v 
relative to the value (22)] transforms a focus of multiplicity 1 into a rough 
focus, and a limit cycle that contains this focus is produced in one of the 
directions of the variation. With increasing deviation of v in this direc- 
tion from the value (22), the cycle broadens and at a certain value u' 
occupies the position of a separatrix loop. When (21) is satisfied the value 
of u' differs insignificantly from the value of (22), and this is why this 
equation can be used. 
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