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A theory is developed for the ionization of atomic particles channeled by the interplanar potential 
of a crystal. With allowance for the thermal vibrations of the nuclei, we have studied the suppres- 
sion of the probability of loss of electrons by an ion in elastic interaction with the lattice atoms 
both in channeling and in a disoriented crystal. An anomalous dependence of the ionization 
probability on the angle between the ion momentum and the axes (or planes) of the crystal is 
predicted. It is shown that, in contrast to the ionization of fast atomic particles in an amorphous 
material, in a crystal this process can occur as the result of inelastic interaction with the electron 
subsystem of the crystal. 

PACS numbers:6 1.80.Mk 

INTRODUCTION 

The establishment of the equilibrium charge of ions in a 
crystal in channeling differs substantially from that in an 
amorphous medium. This occurs for two reasons. The first is 
that in channeling there is a redistribution of the ion flux in 
impact parameter.' The second reason lies in the change of 
the very probability of loss of electrons by an ion for a given 
impact parameter as the result of the correlation of individu- 
al collisions of an ion with the atoms of the crystal (Refs. 2 
and 3)." 

In an earlier article3 Bazylev and Zhevago developed a 
theory of loss of electrons by an ion passing through a crystal 
along one of its crystallographic axes (axial channeling). In 
the framework of time-dependent perturbation theory in the 
dipole approximation, the loss probability was expressed in 
terms of the cross section for the photoelectric effect and the 
density of the flux of "photons" equivalent to a string of 
atoms of the crystal. The intensity and spectrum of the equi- 
valent photons, according to Ref. 3, depend on the distance 
between the atoms in the string, the amplitude of their longi- 
tudinal thermal vibrations, the charge of the crystal atoms, 
and the ion velocity. 

Questions which remain to be investigated are the loss 
of electrons by an ion from excited states, when the dipole 
approximation is violated, and also the influence of trans- 
verse thermal vibrations of the crystal atoms on the equiva- 
lent photon spectrum, which becomes important at suffi- 
ciently high ion velocities when the transfer of longitudinal 
momentum is small in comparison with that of the trans- 
verse momentum. In addition, no theory has been developed 
for the loss of electrons by ions in planar channeling. At the 
same time, in motion of an ion in planar channeling, impor- 
tant correlations exist not only between individual collisions 
with atoms of a single string, but also with the different 
strings of which the plane consists. 

A final unstudied question is that of the role of other 
mechanisms in the loss of electrons by ions; for example, the 
role of inelastic interaction between the electrons of the crys- 
tal and the electrons of the ion. As we shall show below, these 
mechanisms can become important in the loss of electrons by 
an ion in a crystal. 

The purpose of the present work is to construct for the 
loss of electrons by ions in channeling a theory that contains 
answers to the questions posed. A stationary formulation of 
the problem is used. 

5 1. INTERACTION OF A MULTIPLY CHARGED ION WITH A 
CRYSTAL 

Let an ion with charge eZ enter a crystal at an angle 8, 
to the crystallographic planes. Let this angle 8, be less than 
or of the order of the Lindhard critical angle 8, (see for 
example Ref. 6), so that the motion of the ion is controlled by 
the continuous potential averaged over the plane 

where V, is the potential of a crystal atom and n, is the 
density of atoms in the channeling plane considered; 
p = (x, y )  is the two-dimensional radius vector in the plane 
and k = 0, + 1, + 2... . 

The complete Hamiltonian of the ion + crystal system 
has the form 

< .  

Here 2, is the Hamiltonian of the ion entering into the crys- 
tal and consists of the Hamiltonian of the free motion of the 
ion as a whole and the Hamiltonian of them bound electrons 
of the ion; H~ is the crystal Hamiltonian; H~~ is the Hamil- 
tonian of the interaction of the ion with the crystal: 

In Eq. (1.3) we have used the following notation: R, r:, R,, 
r, "' are the radius vectors respectively of the nucleus of the 
ion, the electrons of the ion, the nuclei of the crystal atoms, 
and the electrons of a crystal atom, eZ, and eZ,  are the 
charges of the nuclei of the crystal and the ion, m is the 
number of bound electrons of the ion, and eZ = e(Z ,  - m) is 
the charge of the ion. 
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Assume that conditions exist under which the charge 
state of the ion is sufficiently well defined: 

a) The binding energy of the electrons in the ion is signi- 
ficantly greater than the energy of interaction of these elec- 
trons with the atoms of the nearest planes of the crystal 
(which is satisfied for Z '/n2) I); 

b) The ion velocity v is significantly greater than the 
velocity v, of the electron in those orbits of the ion for which 
the average distance of the electrons from the ion is greater 
than the minimum distance x,, between the ion and the 
channeling plane.'' This condition is satisfied if v>vJ/n, 
aon2/Z 2 u,  where uo and a, are the atomic units of velocity 
and length, n is the quantum number of a bound electron in 
the ion, and u is the amplitude of thermal vibrations of the 
atoms of the crystallographic plane. 

If we are interested in the process of loss by the ion of 
one of its bound electrons, then under the conditions given 
above the Hamiltonian of interaction of the ion with the 
crystal (1.3) can be represented in the form 

A { c = O c o n t + P e c ,  (1.4) 

where Ucon, is the interaction energy of the ion as a ?hole 
with the continuous potential of the crystal planes and V,, is 
the interaction energy of the considered electron of the ion 
with the nuclei and electrons of the crystal. Under the condi- 
tions of channeling and a stable charge state of the ion, the 
difference between the true Hamiltonian (1.3) and the ap- 
proximate one given by (1.4), the physical meaning of which 
is that the ion as whole feels the individual impacts with the 
nuclei and with the ions of the crystallographic plane, leads 
to a redistribution of the flux of channeled ions in the energy 
of their transverse motion. For sufficiently small crystal 
thicknesses this process can be neglected, but for greater 
thicknesses it is easily taken into account in the final results 
(see below). 

Let us find the probability of loss of an electron by a 
channeled ion. We shall consider first the condition in which 
the electronic state of the crystal does not change. As the 
zeroth approximation to the Hamiltonian (1.2) with inclu- 
sion of (1.4) we take 

A,=Bi+Ac+Ocon,. (1.5) 

Then the wave functions of the zeroth approximation are 
written in the form 

$o=exp (ik,p) cpe,(~)~cp,(r,').cp,,.cpce, (1.6) 

where pli = fikli is the two-dimensional momentum of the 
ion in the channeling plane, p,, (x) is the wave function of the 
transverse motion of the ion and satisfies the one-dimension- 
a1 Schrodinger equation with the continuous potential U,,,, : 

p, (2, ' ) is the wave function of the bound electrons of the ion, 
and p,,,,, is the wave function of the nuclei (or electrons) of 
the crystal. The zeroth approximation energy E,, is made up 
of the energy of the longitudinal motion of the ion E l l  = pl l  2/ 

2M, the energy of the transverse motion E, , the binding ener- 
gy E, of the electrons in the ion, and the phonon and electron 
energy of the crystal E, = E,, + E,, , 

Considering the second term of Eq. (1.4) as a perturba- 
tion leading to transition of one of the bound electrons of the 
ion into the continuum, we shall write the probability W of 
this process per unit path of the ion in the crystal in the form 

Here pi is the final momentum of the ion in the channeling 
plane, (p i2 /2M = E i ); p, is the momentum of the electron 
which has escaped from the ion, and E; = p5/2m; the sum- 
mation over i, , f,, andf,  denotes summation respectively 
over all initial and final states of the continuous motion of 
the channeled ion (the sum over the bound states + the 
integral over the transverse momentum in the continuum) 
and over all final states of the nuclei of the crystal; the sym- 
bol A in the argument of the Dirac S function signifies the 
difference in the energies in the initial and final states; PE: is 
the probability of populating a state with transverse energy 
E: in the channel on entry of the ion into the crystal, which 
according to the sudden perturbation theory has the form of 
an expansion of the initial plane wave in the final wave func- 
tions of the transverse motion in the planar channel of the 
crystal7,': 

We then make use of the relation 

where U, is the three-dimensional Fourier component of the 
potential of a crystal atom and 

is the structure factor of the crystallographic plane. We go 
over from the coordinate r i  of the electron executing an in- 
elastic transition to the coordinate r, reckoned from the nu- 
cleus of the ion (rs = R + r, ). In Eq. (1.9) we integrate over 
d 'pi; = M d9 dE i , where 9 is the angle between the initial 
and final momenta of the ion in the channeling plane. In the 
matrix element of the expression (1.9) with allowance for 
(1.1 1) we integrate over the ion coordinates p in the channel- 
ing plane. As a result we obtain the following expression for 
the probability (1.9): 
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In the formulation considered for this problem, the charac- 
teristic changes of the energy of the transverse motion of the 
ion and of the energy of the phonon state of the crystal A&, 
and AE, are significantly less than the change in the energy 
of an electron of the multiply charged ion A&, . Therefore the 
momentum JAk ,, I transferred to the ion in the channeling 
plane according to Eq. (1.14) will not depend either on the 
energy of the final state of the transverse motion of the ion or 
on the energy of the final state of the phonon spectrum even 
for very small scattering angles 0 of the ion in the plane. 
Consequently we can assume that the entire expression 
(1.13) for FAkll will not depend on what state the crystal has 
gone over to or on how the transverse state of the channeled 
ion changes. As a result, in view of the completeness of the 
systems of functions of the crystal and the transverse states 
of the ion, we can use the relation 

We interchange next the order of the averaging of the quanti- 
ty IFAkII I 2  over the given initial state of transverse motion of 
the ion and of the summation over all possible such initial 
states with a definite probability of population P E ~ .  After 
this procedure, using the fact that the quantity IFAkl1 l 2  is 
independent of the initial state of the transverse motion of 
the ion, it is easy to see that the expression 

is the average probability of distribution of the flux of ions in 
impact parameter in the channeling plane. As a result the 
expression (1.12) for the probability will take the form 

where the probability w(x) of loss of an electron by the ion at 
a given distance x of the ion from the channeling plane3 is 
determined by the formula 

Averaging over the initial state of the nuclei of the crystal 
actually amounts to averaging over the displacements of the 
nuclei from their equilibrium positions as a consequence of 
thermal vibrations (Ref. 4).4' Assuming that the longitudinal 
and transverse thermal vibrations are independent, calcula- 
tions too cumbersome to present here can yield, as was done 
in Ref. 10, 

( 2 4  a 4- - A n, exp [-Akl12~Z] 

where the angle brackets with the subscript xa denote aver- 
aging over the Gaussian distribution 

<D>, = (2nu2) -" j-dxaD exp ip(-xa2/2u2), 

and the function Dk is equal to 

D, = dq,U, erp [ iq, ( x- (k - +) d-2.) ] (eiqr*) i f .  

(1.20) 
In Eqs. (1.19) and (1.20) we have used the following notation: 
n, is the density of atoms in the plane, g are the various 
vectors of the reciprocal lattice in the crystallographic plane, 
and A is the area of the unit cell, which is equal to the product 
of the two translation vectors. In accordance with the result 
(1.19) the probability w(x) can be represented in the form of 
the sum of two terms (see also Ref. 3): 

w (2) = ~ , , n  (2) + ~ , n ,  (5) .  (1.21) 

Here w,,, (x) is the coherent part of the probability of elec- 
tron loss by the ion in the crystal, and is associated with the 
periodic arrangement of the atoms in the crystal plane 
[w,,,(x) arises on substitution of the second term in Eq. 
(1.19) into expression (1.18) and subsequent integration over 
the angle 8 of scattering of the ion in the channeling plane 
and over the energy of the electron lost by the ion]: 

~ e - ~ ' " X ~ q  (ha) ,  ( 1.22) 

d o ,  is the interval of solid angle in the direction of emission 
of the electron from the ion, Igk 1 is the projection of the 
momentum vector of the reciprocal lattice onto the initial 
direction of the momentum of the ion, I E ~  I is the binding 

energy of the electron in the ion, the quantity 

in Eq. (1.20) is taken at the value Iq,, I = IgJ = lA k,, 1 and at a 
wave function of the final state q$corresponding to an ener- 
gy ~f of the electron far from the ion; 
= /g, Jfk - 1): 1 ;  the summation over k signifies a sum over 

the coordinates of the two nearest planes, which form the 
planar channel, if the ion is moving between the two planes; 
if the ion crosses all the planes, the summation is carried out 
over all k = 0, f 1, and 2; in the sum over all possible 
reciprocal-lattice vectors g it is sufficient here and below to 
retain the single minimal vector g,,, , for which one has the 
inequality IgTin(fiu>, IE; 1; v( y) is the unit function of Heavi- 
side: 
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the electron in the ion ~:(g,, ,  > IE: I/h) 1, the expression for 
T,k takes the form 

is the incoherent part of the probability of electron loss by 
the ion and is associated with the thermal vibrations of the 
crystal atoms; the quantity D, is taken at a value qll equal to 

q,,= I Ak,; I = [ ( . ~ e , i h v ) 2 - t - k , , Z ~ 2 ]  ' j 2 .  (1.24) 

5 2. COHERENT IONIZATION OF AN ATOMIC PARTICLE IN A 
PLANAR CHANNEL OF A CRYSTAL 

a) Let us discuss in more detail the general expression 
for the probability of coherent ionization (1.22) of an ion in 
planar channeling. We shall investigate first the case of loss 
of an electron by an ion from an unexcited state, when the 
following inequality is satisfied ( (r,)  z n2a,/Z ): 

g ( r , > < < l ,  (r,>/lx*d/21<<1. 

Then, expanding the function exp(iq.r, ) in Eq. (1.20), substi- 
tuting the first nonvanishing term into Eq. (1.22), and inte- 
grating over the angles of emission of the electron, we obtain 

WC0h ( x )  = hv - 
8 k 

T: -5 d q l u ~  (g2+ql')  " exp[ -g,'u2/2-iq, ( x -  ( k - l l , )  d )  I .  

(2.2) 

As can be seen from Eq. (2.2), in the dipole approximation 
(2.1) the coherent probability of loss of an electron by an ion 
is expressed in terms of the cross section a, (w, ) for the pho- 
toelectric effect in the electron shells of the ion. Here the role 
of the photon frequency is played by the quantity 
w, = Ig, lu, and the role of the photon flux density jJx) at a 
given distance x of the ion from the plane is played by the 
quantity 

where g,,, is the minimum length of the reciprocal lattice 
vector whose projection on the initial direction of the ion 
momentum in the plane satisfies the inequality 
g,,, 2 I E ~  I/&. Here Eq. (2.1) can be represented in the form 
(see also Ref. 2) 

The quantity T,k depends on the amplitude u of the trans- 
verse thermal vibrations ofthe atoms in the crystal plane and 
can be represented in a rather simple form in a number of 
limiting cases. For example, if the inequality ( x - '  is the 
screening radius of the crystal atom) 

g ,n,,, > [ ( r c - t d / 2 ) / a z ,  x ] ,  g,,,i,u>l, Ix+d /2 /  <u (2.5) 

is satisfied [which is practically always the case for not too 
high ion velocities v and a sufficiently large binding energy of 

v?G 
T g k  = - ( x -  (k- 'I2)  d)' 

u 

We note here that the inequalities (2.5) are compatible with 
(2.1) only for high values of the ion charge multiplicity Z. 

For the greater part of the channeled ions, not all dis- 
tances of the ion to the plane are achieved: ( ( x  + d /2 I,,, )u). 
However, the momentum transferred to the ion in the ioni- 
zation process is large ( gu > 1) for not too high ion velocities; 
if the probability is not to be small, small impact distances of 
the ion to the plane are required. Therefore for well chan- 
neled, not too fast ions the probability of loss of an electron 
by the ion is smaller than for quasichanneled superbarrier 
ions, which all cross the crystallographic planes. The weight 
of the superbarrier states is high if the entry angle is compar- 
able with the Lindhard angle (or if the crystal thickness is 
sufficiently great so that ions from sub-barrier states go over 
to superbarrier states as the result of diffusion in their trans- 
verse energy). 

As follows from Eqs. (2.2), (2.3), and (2.6), the coherent 
part of the probability of electron loss by an ion disappears if 
the longitudinal thermal vibrations u or the transverse vibra- 
tions increase (or the momentum ql, = gm,, transferred to 
the ion increases). If the momentum transfer g,,, is not too 
great: 

which is the case for high ion velocities and sufficiently low 
binding energies of the electron in the ion, the transverse 
thermal vibrations u, and the longitudinal ones ull can be 
neglected. In this case T :  can be written in the following 
form: 

where 

~ ~ ( 3 )  = (2n) -'j V. ( [p2+z21  "1 exp ( igp)  h p  

is the two-dimensional Fourier component of the potential 
of the atom. Further, if the inequalities 

grnin< 1 x*d/2 1 /u2 and g,i,>x, (2.9) 
are satisfied, then 

Various models of the lattice atom potential can be used for 
specific calculations. In particular, a sufficiently accurate 
potential is that of Molikre, 

eZ 
V . ( r )  = oi exp ( - x i r ) ,  

r 
< 

where xi = &/a, a = 0.885Z; "', a, is the Thomas-Fermi 
radius of the atom, a, = fi2/me2, and ai = (0.1,0.55, 0.35) 
and Bi = i6.0, 1.2, 0.3) are the Molibe constants. In this 
case the quantities Ug and Vg in Eqs. (2.6), (2.8), and (2.10) 
are determined by the formulas [see the definition (1.1 l)] 
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One can also use a model similar to that of Barrett," in 
whicha, = (0.4,0.6] and@, = (2.984,0.474], or to that of 
Firsov,12 which is valid in particular even for very light crys- 
tals. 

Let us now investigate the dependence of the coherent 
part of the probability of electron loss by an ion (2.2) on the 
direction of the ion momentum in the channeling plane with 
respect to the principal crystallographic axes of which the 
plane consists. For definiteness let the nuclei in the channel- 
ing plane be at the sites of a plane rectangular lattice with 
period d. Further, let the ion momentum vector in the plane 
make not too large an anglex with the vectors which connect 
the neighboring nuclei of the crystallographic plane, and let 
the ion velocity v be such that the minimum energy of the 
equivalent photon h,"'" = 2 d v  sin x / d  significantly ex- 
ceeds the electron binding energy in the ion (&: I. If, at a 
constant angle of entry ofthe ion with respect to the channel- 
ing plane, the angle x between the direction of the momen- 
tum and the vector connecting the neighboring nuclei of one 
of the principal crystallographic axes of the lattice decreases 
( ~ g  1), the probability of electron loss by the ion begins to rise 
rapidly. For example, for a hydrogenlike ion the rate of rise 
is proportional t o x  -9'2. However, at some critical value;y,, 
of the angle, 

the ionization probability undergoes a downward jump and 
then again begins to rise to a value x = ~;:)/2, and so forth. 
The absolute value of the probability in the next nth maxi- 
mum is either almost the same as or smajler than in the pre- 
ceding maximum, in accordance with Eq. (2.2). 

We shall consider next the case of loss of an electron by 
an ion from an excited state for relatively low ion velocities 
when the inequalities 

{rz)/lx*d/2 121, gmL,,<rZ)>1, (2.13) 

are satisfied. Then the dipole approximation is inapplicable, 
and the ionization probability is no longer expressed in terms 
of the cross section for the photoelectric effect. In this case, 
since the effective values of q, in Eq. (1.20) are small in com- 
parison with g for well channeled particles, the matrix ele- 
ment in Eq. (1.20) can be taken outside the integral sign at the 
point q = g. As a result the probability of electron loss by the 
ion can be expressed in terms of the cross section for ioniza- 
tion of an ion with unit charge moving with velocity v in the 
Born approximation a' (q, 2, ),5' expressed in the variables of 
the momentum transfer q and the momentum of the electron 
emitted from the ion 2, at definite values of these parameters 
(q = g, kg = k,, 2, = (2m)li2 (jg, Ifiv - I E ,  1)'I2fi) 

The formulas (2.2) and (2.14), as must be the case, come to- 
gether in the region gr, - 1. Here if x, ( r ,  ) > 1, which is the 
case for ion velocities v>v, Z /gaon3 and corresponds in order 
of magnitude to the condition that the equivalent photon 
energy exceed substantially the electron binding energy in 
the ion, we have for the cross section ae(gr- 1, x,) - x g 8 .  
Therefore qualitatively all results of this section relating to 
the anomalous behavior of the probability as a function of 
the entry angle of the ion with respect to the principal crys- 
tallographic axes remain valid, since x, We note that 
this effect can be observed also under conditions of strong 
nondipole nature (g(rz )%I), provided that K, %g, which is 
the case for still greater ion velocities v)v,ga,n/Zx. How- 
ever, for low ion velocities, v 4 v z  ga0n/Zx, we have for the 
cross section a' (g,k) - xg , and consequently according to 
Eq. (2.14) the probability of electron loss by the ion will not 
depend on x, and therefore also not on the anglex. 

The expression (2.15) for p,k, which essentially deter- 
mines the flux density of unit-charges (which transfer to the 
ion a momentum g and to the emitted electron a momentum 
x,), a density equivalent to the crystal lattice in the plane, 
can be simplified in a number of limiting cases of small or 
large transverse vibrations of the crystal atoms and momen- 
tum transfers, as has been done above [see Eqs. (2.6)-(2.1 I)]. 
This expression can also be obtained analytically for a num- 
ber of specific models of the atom potential [see Eq. (2.1 I)]. 

Under the condition (2.5) we have 

1/% (x- (I%-'/,) d) 
~ : ( x ) = - ~ , e x ~ [ -  u 2uZ 1.  (2.16) 

If the inequalities (2.7) and (2.9) are satisfied, then 

P," (x) = lig[x- (k-'12) dl  . (2.17) 

b) We shall obtain next the expression for the probabil- 
ity of coherent ionization if the particle entry angle into the 
crystal significantly exceeds the critical angle of planar 
channeling. In this case the eigenfunctions of the transverse 
motion are essentially plane waves and according to Eqs. 
(1.10) and (1.16) p(x) is equal to l/d. To obtain a general 
expression for the probability we shall represent I ( & D , ( ~ ) )  1 [see Eq. (I.20)] in the form of a double inte- 

gral over dq, and dq; ; we shall then integrate over dx, using 
the equality 

and then the formula 

As a result we obtain from Eqs. (1.17)-(1.20i 

375 Sov. Phys. JETP 56 (2). August 1982 V. A. Bazylev and A. V. Demura 375 



where n v  = n, /d is the density of crystal atoms and g is the ditions (2.7) and (2.9) are valid; liw,,, is the threshold ioniza- 
vector of the three-dimensional reciprocal lattice. In the di- tion energy. 
pole approximation ( g(r, ) ( 1) the probability takes the The order of magnitude of the incoherent probability of 
form electron loss by the ion (3.3) can be estimated from the for- 

The result given by Eqs. (2.18) and (2.19) shows that the role 
of the equivalent photon frequency is played by the quantity 
og = Ig, I U  = 2avd -'n sin 8, where 8 is the angle at which 
the ion crosses the crystallographic planes. Therefore there 
is an anomalous behavior of the probability (2.19) as a func- 
tion of this angle 8. 

In the caseg(z, ) > 1, as was done in obtaining Eq. (2. 15), 
from Eq. (2.18), we have 

where b = min[lx f d /21, x- '1 and K is the screening pa- 
rameter of the crystal atom. From the estimate (3.5) it fol.. 
lows that the probability (3.4) is suppressed relative to the 
coherent probability at the maximum w,",";(x), which is real- 
ized when the equivalent photon energy hog is close to the 
threshold ionization energy /EL 1 [see Eq. (2.2)]. In the case 
v > Zu,, as a rule, we have liw, > I. Therefore the coherent 
probability (2.2) in this case is decreased by a factor 
(hw,/l~f in comparison with this value at the maxi- 
mium. As a result under the conditions 

( h o g / !  e r i J  )'/2>> ( ~ / h ) - ~  , vBZvO I (3.6) 
the probability of electron loss by an ion is determined by the 5 3. INCOHERENT IONIZATION OF AN ATOMIC PARTICLE IN 
incoherent (3.4). PLANAR CHANNELING 

For the part of the beam of ions scattered at a small 
a) In the preceding section we found in particular that, angle (8-0) in the channeling plane, the longitudinally 

for sufficiently high ion velocities in the crystal and at direc- transferred momentum will no longer depend on the equiva- 
tions of the ion momentum in the channeling plane far from lent photon energy. Therefore the probability of electron 
the directions of the principal axes of the crystallographic loss by an ion can be written in the form 
planes, the coherent probability of electron loss by the ion 
can be highly suppressed.  his occurs as a result of the fact dw,,, ( x )  

u2;;k1 J -3- I ,=. =2n - that too large an energy is transferred to the electron, and - u p ( d L ( x ,  a), 

there are no smaller energies in the spectrum of the coherent Othr 

perturbation by the crystal. As a result the role of incoherent o2 d 
(3.7) 

ionization becomes dominant. Let us investigate in more de- L ( X , W ) = ~ { ~ I T ~ ~ ~ ( X ) I ~ ~ ( ~ T ~ ~ ~ ( X ) ~ ~ }  v . 
h=O,1 

u-0 

tail the general expression (1.23) for high ion velocities: 

v>Zv,. (3.1) 

Under the condition (3.1) we can assume that the effective 
longitudinally transferred momentum qll will not depend on 
the electron energy (q,, = k0 ), and in addition we can utilize 
a series expansion of exp(iq-r). Further, if the effective dis- 
tances of the ion to the plane are greater than the amplitude 
of the thermal vibrations of the atoms (Ix + d /2l >u), and 
8,,4(ku)-', we can expand the probability of electron loss 
by the ion in powers of u, using the equality 

< ID,12)-I (Dk) l 2  exp ( - q l , k  

It follows from this that the ionization probability is also 
suppressed [the estimate (3.5) is valid, but b = minIv/w, 
x -  ' I]. For the part of the ion beam whose distances to the 
channeling plane are less than or of the order of the ampli- 
tude of the thermal vibrations Ix + d /21 5 u or for ions scat- 
tered at a large angle 8, the expansion (3.2) is inapplicable; 
however, for the condition (3.1) one can as before use the 
expansion of exp(iq.r, ) in series and express w,,, (x) in terms 
of the cross section for the photoelectric effect [see Eq. (3.3)]. 
The role of the equivalent-photon flux density here is played 
by the quantity 

(3.2) j (x) =2n J {( I T : ~ ~  (3) 12>bza 

As a result, after some transformations, we can obtain from 
Eq. (1.23) - 1  (T:  ,, ( x )  >oxa  1' e x ~ ( - q ~ ~ ~ ~ ~ ) ) ,  

(3.3) (3.8) 
q,,'= I &,'I 2/A2v2-t- kl lZ02.  

Here the density of the equivalent photon flux is 

d 
If the size of the electron orbit in the ion is greater than the 

"u""c I dqll { q i , 2 ~  T : ,  ( I )  1 2 +  I ;j; T\~ ( r )  1 ') , amplitude of the thermal vibrations, the probability (3.3) j ( x )  = ---- 
" A-0,s 

==(I with j(x) from (3.8) is less than the coherent probability of 
electron loss by the ion at the maximium w,",":(x) for ions 

13.4) scattered at a very small angle in the channeling plane 
where for TkI l  (x) the formulas (2.81, (2.10), and (2.11) which (8 5 IE: )/fik,, v ) ,  and of the order of wz;(x) fore the part of the 
determine T:,,(x) in terms of the atom potential for the con- beam scattered at a relatively large angle [8-(ku)-'I. 
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For relatively small ion velocities v < Zv, the coherent 
ionization (2.2) can be small already for another reason. In- 
deed, when the condition k, 2 I is satisfied for small ve- 
locities the transfer of a rather large reciprocal-lattice vector 
g can become necessary. Here according to (2.2) the prob- 
ability is small (-exp( - g2u2)) as the result of the influence 
of the thermal vibrations of the atoms. Therefore the role of 
incoherent ionization increases and can become dominant. 
We shall consider the coherent part of the probability (3.4) 
for small ion velocities in the crystal. First let 

v z ~ v ~ Z v o ,  (3.9) 

which can occur for excited states of a multiply charged ion. 
The right-hand side of the inequality (3.9) determines the 
strong non-dipole nature of the process [ g r , )  1 in Eq. 
(1.20)]. The matrix element ( p  Jlexp(ig*r)lp:) is appreciably 
different from zero (as the result of rapid oscillations of the 
integrand) only for the condition p{-e'Pr'fi, where 
p = fiq(p). These equalities can occur if the energy of the 
electron which has left the ion is significantly greater than its 
binding energy in the initial state, which is assured by the left 
part of the inequality (3.9). In addition, for the part of the 
beam scattered at a small angle (8 < I E :  I/fivk,,) in the chan- 
neling plane we can assume q( p) z q , ,  ( p)  = A&, /fiu, and take 
the matrix element in Eq. (1.20) outside the integral over 
dq, ; then, using the resonance matrix element for fiq(p) = p, 
it is possible to integrate in (1.23) over the electron momen- 
tum in the final state d 3P:. If here one has the inequality 

umvlha 1, (3.10) 

then, expanding the probability in a series in this parameter, 
it is possible to obtain the following expression for the inco- 
herent probability of electron loss by an ion in the crystal: 

where V, (x) is the two-dimensional Fourier component of 
the atom potential, for which the equations (2.11) are valid, 
and fiq = 2mv is the solution of the equation fiq(p) = p; do,, 
is the interval of effective angles of detection of the scattered 
ions in the plane, which satisfies the condition 

beeff G I E,' I lhvkl,. 

As follows from Eq. (3.1 l) ,  the ionization probability is 
small, in this case not only as the result of smallness of the 
Fourier component of the potential V, (x) at large distancesx 
from the plane, but also as the result of the influence of the 
periodic arrangement of the atoms in the channeling plane 
(see above, and also Ref. 10). The inequalities (3.9) and (3.10) 
can be satisfied simultaneously for sufficiently highly excit- 
ed states and high charge multiplicity of the ion. For the 
condition 

umu/A~  1, (3.12) 

the influence of the periodic arrangement of the atoms in the 
plane can be neglected. As a result the second term in (1.23) 
does not have to be taken into account and instead of Eq. 

(3.11) for the ionization probability one can obtain the 
expression 

(3.13) 
Equations (3.1 1) and (3.13) can be used to explain the 

results of experiments if the ion beam has a very low diver- 
gence and the angular resolution of the apparatus is suffi- 
ciently high. 

The probability of electron loss by an ion, integrated 
over all ion scattering angles in the channeling plane, can be 
obtained also by using the resonance matrix element (e'wz)lf 
for fiq = p. Here it is only necessary to assume that the longi- 
tudinally, transferred momentum is determined by elastic 
deflection of the ion in the plane (q,, = k8 ). Then the energy 
of the electron emitted from the ion is determined by the ion 
scattering angle in the plane (to each scattering angle 8 there 
corresponds an electron energy in the continuum pi  8 2/2m). 
If the distances from the ion to the crystal plane are signifi- 
cantly greater than the amplitude of the thermal vibrations 
of the atoms of the plane Ix + d /2l>u, will take the form 

For a number of models of the atom potential the inte- 
gral over the scattering angles in the plane dq can be per- 
formed analytically [see Eq. (2.1 I)]; however, regardless of 
the dependence on a specific model of the atom potential it is 
evident that for a sufficiently light crystal (xu< 1) there also 
exists an effect of suppression of the probability of electron 
loss by the ion as a consequence of the periodic arrangement 
of the atoms in the crystal plane. 

However, if (1 - e - q2u2 ) - 1, the effect of the periodic 
arrangement of the atoms in the plane can be neglected, i.e., 
it is not necessary to take into account the second term in Eq. 
(1.23), and for the probability of electron loss by the ion we 
obtain 

b) Above we have obtained and studied expressions for 
the probabilities w(x) of coherent and incoherent ionization 
of atomic particles in a crystal in planar channeling, as a 
function of the distance x of the ion to the crystallographic 
planes. The physical meaning of the quantity w(x)p(x) is that 
it describes the loss of electrons by that part of the total ion 
beam whose average density (averaged over the thickness T 
and consequently dependent on T )  at a distance from the 
center of the channel isp(x). Recognizing that there is a cor- 
respondence of the average of the quantity p(x) over the 
thickness with the angle of emission of the ions from the 
~ rys t a l ,~ '  the differential probability w(x)p(x) can be verified 
experimentally. The quantity&) depends on the divergence 
of the ion beam, the entry angle of the ions into the crystal 
with respect to the plane, and the depth of penetration of the 
ions into the crystal. For entry angles greater than the Lind- 
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hard angle 0, , at very small depths and, on the other hand, 
at very large depths we havep(x) = l/d; for a well channeled 
beam of particles with an entry angle $40, this quantity is 
greater at the center of the channel and less near the planes. 
If we analyze the charge state not of the entire ion beam but 
only of a part of it, for example, with a small angle of emis- 
sion from the crystal with respect to the plane, we can study 
also the dependence of the density of channeled ions near the 
center of the channel on the crystal thickness T. 

If the entry angle of the ion into the crystal with respect 
to the plane is significantly greater than the Lindhard angle, 
it is possible to obtain from Eq. (1.23) a simpler expression 
for the probability. For this purpose, as in the derivation of 
Eq. (2.18), we represent ID, l 2  in the form of a double integral 
over dq, dq; and integrate over dx. The dependence of the 
resulting integrand on q, and 6 will be a dependence on the 
combination qt2 = q: + k f 0 2. Therefore one integration 
can be carried out by using the transformation 
k Sdq, dB = 2aSq' dq'. As a result we obtain from Eq. (1.23) 
(n. = n,/d) 

Assume that the condition (3.1) is satisfied and let (r, ) (u; in 
this case we obtain from (3.16) a result which differs from the 
corresponding expression for an amorphous target only in 
the argument of the logarithm: 

Wth. 

However, if x-' > (r, )>u, the ionization probability 
turns out to be suppressed in comparison with (3.17) by the 
parameter u2/(r, )2: 

A similar result is obtained for (r, ) >x-',u: 

e4nvuZ 
W=8nZ,2 ,----- (v t i )  z ln ( ( X U )  - l ) .  

5 4. ROLE OF OTHER MECHANISMS IN THE LOSS OF AN 
ELECTRON BY A CHANNELED ION 

In the process of establishment of the equilibrium 
charge of atomic particles (ions) in amorphous solids, the 
probability of ionization is detrmined by interactions, with 
the nuclei and electrons of the material, in which the elec- 
tronic state of the solid is not changed. The simultaneous 
electronic excitation of the ions and the atoms of the material 
is significantly less probable than the electronic excitation of 
only the ion passing through the material. 

A different situation exists in passage of atomic parti- 
cles through crystals in the channeling regime. As was 
shown above, under certain conditions the probability of 
electron loss by an ion, as the result of an interaction of the 
ion with the crystal in which the electronic state of the crys- 

tal does not change, turns out to be rather strongly sup- 
pressed. The suppression effect is particularly important at 
high ion velocities when the coherent process of stripping of 
the ion is small as the result of the fact that the minimal 
energy of the photon which is equivalent to the crystal lattice 
is significantly greater than the binding energy of the elec- 
tron in the ion, and the incoherent process is small as a result 
of the fact that the deviations from periodicity are small and 
for not too large momentum transfers the ion losing the elec- 
tron does not feel these deviations. As the result the loss of 
electrons by an ion in channeling has important contribu- 
tions from other mechanisms of electron loss by ions. 

Electron loss by ions as the result of inelastic interaction with 
the electron subsystem of the crystal 

The formalism developed in 5 1 permits one actually to 
follow by simple manipulations the derivation of the general 
expression for the probability. 

Since the electronic excitation of a crystal atom is pro- 
pagated over the crystal significantly more slowly than the 
ion is moving, the process of electron loss by the ion is inco- 
herent over the periodic distribution of the electron density 
in the crystal. As a result one can obtain the following 
expression for the probability of electron loss by an ion per 
unit pathlength in the crystal in planar channeling as a result 
of inelastic interaction of the electron of the ion with the 
electrons of the crystal: 

where AE, is the change in energy of the electron of the ion; 
R,, is the diagonal matrix element between the initial wave 
functions of the electrons of the crystal atom; the sum overs 
stands for the sum over the electrons of the crystal atom. 

Assume that condition (3.1) is satisfied. Also let the 
average radius of the electron orbit in the ion (r, ) be signifi- 
cantly less than the Thomas-Fermi radius of the crystal atom 
a,, , where most of the electrons are concentrated. This con- 
dition is satisfied for ions with sufficiently high charge multi- 
plicity Z (and for ground states) and for relatively light crys- 
tals Z ,  < 30. We shall also assume that the distance of the 
ions to the plane averaged over the thickness (x + d /2) of the 
crystal is greater than a,, . Then in Eqs. (4.1) and (4.2) we can 
make the following substitutions: 

We shall calculate the integral over dq, in (4.3) by means of a 
contour C which encloses the branch point in the upper half- 
plane7': 
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The result can already by integrated over the scattering an- 
gle of the ion in the channeling plane and for the probability 
of electron loss by the ion we obtain 

u t h r  

(4.4) 
Here K,(z) is the Macdonald function. 

This result shows, on the one hand, that all electrons of 
the crystal atom can be considered as free, since in the pro- 
cess of inelastic interaction a sufficiently large momentum is 
transferred to them, and on the other hand, that their action 
on the electron of the ion is equivalent to a flux of photons 
whose spectrum and intensity depend on the distance of the 
ion to the maximum of the electron density of the crystal. 

However, if the radius of the electron orbit in the ion is 
significantly greater than the Thomas-Fermi radius of the 
crystal atom, which is the case for heavy crystals and for 
excited states of a multiply charged ion, one can make the 
substitution exp(iqr",-1 + iqr',, and take the matrix ele- 
ment (eiqr3w outside the integral over dq, . Then it is possible 
to integrate the square of this matrix element over d 3p,, US- 

ing the fact that it is nonzero only for the condition p = fiq, 
and then integrate over dq, and dB as was done in derivation 
of Eq. (4.4). As a result we obtain for the desired probability 
w(x )  the expression 

Here ( d  ) is the mean square of the dipole moment of the 
crystal atom. 

If the angle 8 of entry of the ion into the crystal with 
respect to the plane is significantly greater than the Lind- 
hard angle 8,, then from Eqs. (4. I), (4.2), proceeding as in 
the derivation of Eqs. (3.16)-(3.18), for the case (r,  ) (a,, we 
will have for the probability 

However, if ( r ,  )>a,, , then 

This result coincides with the result for the total probability 
of inealstic excitation of the target atoms by an electron in 
the Born approximation. See for example Ref. 13, formula 

(148.26) [formula (145.26) in the 1963 Russian edition, and 
formula (120.22) in the 1959 edition of the Sykes-Bell trans- 
lation]. Indeed, if (r,  )>a,, , the electron of the ion can be 
considered free in an inelastic interaction with a crystal 
atom, and for the condition 8>8, the distribution in impact 
parameters can be considered uniform, from which Eq. (4.7) 
immediately follows. 

"These correlations affect not only the ionization of the passing particles, 
but also other inelastic processes occurring with these particles such as 
brem~strahlung.~.' 

*'For deeper orbits, i.e., for strongly bound states of the multiply charged 
ion, the condition v > u, may turn out to be unnecessary, since charge 
exchange is suppressed as a result of the impossibility of intersection of 
the orbits of electrons with nearby binding energies, and ionization is 
suppressed for the reasons discussed below. 

3'In planar channeling of positively charged ions the coordinatex is conve- 
niently measured from the center of the interplanar distance. 

4'In the case in which the combined potential of the nuclei of the lattice 
acts as a perturbation, averaging over the thermal vibrations was carried 
out also ion Refs. 3 and 9. 

 o or a hydrogenlike ion a' (q,2) can be expressed in terms of elementary 
functions (see for example Ref. 13). 

6'Ions channeled near the center of the channel are emitted from the crys- 
tal directly along the direction of a beam entering the crystal parallel to 
the planes; the further from the center of the distance between planes, the 
greater is the emission angle with respect to the plane. 

 or x d /2 < 0 the contour Cis  closed into the lower half-plane. 
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