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A derivation is given of the transport equation for the electron-phonon interaction in a quasi-one- 
dimensional compound Hg, , AsF,. It  is shown that this gives rise to different temperature 
dependences of the electrical conductivity [Eqs. (39) and (57)] in two adjoining temperature ranges 
below the Debye value. At the lowest temperatures the scattering by thermal phonons near 
singular parts of the Fermi surface is important. At higher temperatures, in the case of a suffi- 
ciently large curvature of the planes forming the Fermi surface, the scattering of electrons by 
short-wavelength phonons predominates. The existence of two mutually perpendicular pairs of 
Fermi planes in Hg, - , AsF, determines the characteristics of the relaxation of quasimomentum 
in this system. The theory is in qualitative agreement with experiment. 

PACS numbers: 72.10.Di, 72.20.Dp, 72.80.J~ 

In a crystal of Hg, - , AsF, a tetragonal bcc lattice com- 
posed of AsF; anion complexes is interpenetrated by two 
families of parallel chains of the mercury atoms.'.2 These 
chains are oriented along two mutually perpendicular direc- 
tions parallel to the sides of the base of a unit cell of the main 
tetragonal lattice (Fig. 1). 

The conduction process in this system is strongly aniso- 
tropic: all - 102a, above 4" K (Ref. 3), where all is the electri- 
cal conductivity in the planes of the chains and a, is the 
conductivity along a perpendicular direction in which there 
are no chains. According to Ref. 4, we have all (T) a T - 3  in 
the range 1 "K < T <  30 OK; and a,, ( T )  cr T -312 at T >  30 OK. 
The residual resistance has not been observed right down to 
T = 1.4 O K  (Ref. 3). 

It is shown below that the observed all ( T )  dependence is 
due to the electron-phonon interaction in the system of 
chains. " 

According to Ref. 4, the anomalously low residual re- 

tron spectrum form a definite hierarchy. There are "main" 
faces and energy gaps of the order of the overlap energy inte- 
gral (J) of states at neighboring mutually perpendicular 
chains (according to Ref. 4, IJ I - 500 OK). In addition to 
them there is a "ripple" of faces and corresponding energy 
gaps resulting from the lattice incommensurability men- 
tioned above.' The nature of their appearance allows us to 
assume6 that these gaps have a much smaller energy scale 
( 5; 1 OK). Therefore, we shall consider a simplified (commen- 
surable) model of two families of chains (Fig. 2), which nev- 
ertheless retains the essential features of the real structure of 
Hg3 - 6 AsF6. 

According to Refs. 8 and 9, the one-electron Hamilton- 
ian H,  of the conduction electrons in such a model system is 

Ho= { e ,  (k) c i : k ~ ~ ~ k + ~ ~  (k) d k ~ . ~ k + l  oos (k ,c /2 )  
k,= 

+ + 
( ~ t a k ~ z a k + ~ 2 a k ~ $ a k ) ) ,  ( I )  

sistance can be explained as follows. The main defects in the where ci;k is the operator describing creation of an electron 
investigated samples are anion vacancies (AsF; ) present in in an i-th (i = 1, 2) family of chains and this electron has a 
an amount of 6% and distributed in the space between the spin state a or and a quasimomentum k. 
mercury atom chains. On the other hand, the P function of a Chains of the family are parallel to the axis whereas 
conduction electron is localized in the vicinity of each chain chains of the family are parallel to they axis (Fig. 2). More- 
and, therefore, an electron interacts only with a gently slop- 
ing tail of the vacancy field. In a one-dimensional conductor 
there can exist forward and backward scattering; only the 
latter determines the conductivity. In view of the smooth 
variation of the potential, this scattering should be anoma- 
lously weak, and will not be considered. 

1. MODEL 

The real structure of Hg, - ,AsF6 is fairly complex. Be- 
low the structural transition temperature T, = 120 K a 

+ 

long-range order is established in the conducting system of 
chains. The mercury atoms of each family form their own 
monoclinic bcc sublattices which are incommensurable with 
the main lattice.' We can show6 that in this system the faces FIG. 1. Positions of chains of the Hg atomsin Hg, ,AsF, in a unit cell of 
of the Brillouin zone and the corresponding gaps in the elec- the tetragonal lattice of AsF,. 
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FIG. 2. Model system of chains retaining the essential features of the 
Hg, -,AsF, structure. 

over, ~ , ( k )  can be written in the form 

et  (k) - Y = v ~ (  I k,( -kn) +a (k,, k=) ; 

E ~ ( ~ ) - - c L = v F (  IkyI -ko)+a(k,, k,), 

where p is the chemical potential of the electrons; a(k,,, k,) 
and a(k,, k,) correspond to the tunneling of an electron 
between chains belonging to the same family. The terms 
uF(l k, I - ko) and vF(l k, 1 - k,) correspond to one-dimen- 
sional motion along the chain. Finally, the term with J de- 
scribes the tunneling between the nearest mutually perpen- 
dicular chains separated from one another by a distance c/2 
along the z axis (Fig. 2). 

This approximation is justified by two circumstances. 
Firstly, wehave 1J I - 1 0 - 2 ~ F g ~ F (  = 4 eV) (Ref. 4),  where^, 
is the Fermi energy. Secondly, measurements of the de 
Haas-van Alphen effect in Hg, - , AsF, (Ref. 7) have shown 
that the Fermi surface does indeed consist of cylinders of 
different cross sections elongated along the z axis (which is 
normal to the plane of the chains). It  is natural to diagonalize 
Ho of Eq. (1) by adopting new operators c: , c, and c$ , cII  
using the formulas 

The unitary matrix ,$' diagonalizes the matrix H0 of the Ha- 
miltonian (1): 

where 3 = J cos(k,c/2). This matrix is easily found from the 
eigenvectors of the linear transformation of &: 

where 

3 z : '12 J 
c =  1- d=- - 

IJI ( z Z + J )  'I' 1.71 + ( , ~ + J 2 , * ~ ~  1)" 
and z = ( E ,  - ~ ? ) / 2 .  In all the functions E ~ ,  Z, and 2 we are 
assuming a dependence on k; for the sake of simplicity, the 
quantity J is assumed to be real. 

Now, from Eqs. (1)-(5) we find H,, expressed in terms of 

FIG. 3. Section of the Fermi surface of the model system of chains by a 
plane parallel to the chains. Here, I and I1 are the two zones. 

c,  and c,, : 

where 

The functions E, (k), and EII (k) describe an electron spec- 
trum in two zones: I and 11. They originate from ~ , ( k )  and 
~ ~ ( k )  because of the "mixing" of states of mutually perpendi- 
cular chains, represented by the term with J i n  Eq. (1). There- 
fore, c, and c,, are electron annihilation operators for the 
zones I and 11. Figure 3 shows sections of the Fermi surface 
[deduced from Eqs. (7) and (8)] by a plane normal to thez axis 
in the momentum space. The electron-filled states are shown 
shaded. In the zone I they fill a cylinder with a square base. 
In the zone I1 such a cylinder (with a base of twice the side, if 
we bear in mind the real occupation numbers of Hg, -, AsF, 
given in Ref. 7) is occupied by "holes" .2' 

We shall write down the Hamiltonian of the interaction 
of the chain electrons with three-dimensional phonons of the 
main lattice as  follow^'^ 

where a,+ and a, are the phonon operators; u is the velocity 
of sound;p, is the equilibrium density of the lattice; Vis the 
volume of a sample; f i  is the Planck constant (we shall hence- 
forth assume that fi = 1); y is the interaction constant. The 
overlap of the !P functions along mutually perpendicular 
chains is small. Therefore, Eq. (9) does not contain terms of 
the C , ; ~ C ~ , ,  _ ,a,, type corresponding to electron transitions 
from the chain family 1 to the family 2 under the influence of 
phonons. 
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Our aim is now to express H,,, in terms of the operators 
c, and c,, and thus find the matrix elements of the electron- 
phonon interaction for intraband and interband transitions. 
We shall do this by going over in Eq. (9) from c,, , and c,,, -, 
to c, and c,, taken from Eq. (2). We then obtain 

The coefficients A (k, k - q) and B (k, k - q) are given by 

B2(k, P )  -1-A' (k, P )  ; ~ k =  (el (k) - ~ ~ ( k ) ) / 2 .  (12) 

2. TRANSPORT EQUATION 

From Eqs. ( 10)-(12) we can obtain in the usual manner' ' 
the transport equation for the nonequilibrium correction 
- cp(p)an(p)/d&(p) to the electron distribution function n ,  . 

We shall give separately the equations for the zones I and 11: - 1 - v1 (k) eE cos (n1kx) = 

all' (k - P )  

all' (k - P )  

where 

vi(k)=l LJEi(k)/lJkI~,,k,=8,, 

is the modulus of the vector of the velocity on the Fermi 
surface in the i-th zone (i = I, 11); n ,  is the external normal 
to the Fermi surface at the point k in the i-th zone; e < 0 is the 
electron charge. The index i of dSip means that integration is 
carried out over the Fermi surface in the i-th zone. Finally, 

is the equilibrium distribution function of ~honons .~ '  

The coefficients A '(k, p) and B ,(k, p)  in Eqs. (13) and 
(14) have a simple physical consequence. An electron cannot 
"jump" from one planar part of the Fermi surface to a per- 
pendicular planar part bypassing a "corner" even if a 
phonon with the necessary quasimomentum and energy is 
available for this purpose. This anisotropy of the electron- 
phonon interaction is related directly to the weak overlap of 
the ly functions localized at different chain families5 (see § 1). 

The electrical conductivity is proportional to the time 
in which an electron makes a round trip on the Fermi sur- 
face.I3 We shall consider the range of low temperatures such 
that TgO, (0, = 70 K is the Debye temperature of the 
AsF; latticeI4). Therefore, a,, includes contributions of two 
processes: the diffusion of the planar parts of the Fermi sur- 
face between the corners (Fig. 3) and the process of overcom- 
ing the corners. The former process takes the time 

~ t r - a i i  (polqT) 2"T-5, 

where T,,  - I  - T3/OD2 is the frequency of the electron- 
phonon collisions (Ref. 13); q, - T/u is the thermal momen- 
tum of a phonon; p, is the characteristic size of the large 
parts of the Fermi surface. 

The second process is characterized by the time T,, 

which depends in different ways on the temperature Tin two 
limiting cases ofq,(Ap and q,>Ap, where Ap is the charac- 
teristic size of the corner region in the momentum space. We 
shall estimate it by selecting k in a planar part of the Fermi 
surface (Fig. 3). Then, in Eq. (1 1) we have z, > IJ I and 

As long as the point p is still in the same planar region, we 
have z, > (J I > 0 and A 2(k, p)  1. At the corner the quantity 
z, changes its sign. Therefore, on a plane perpendicular to 
the original one we have z, < 0 and Jz ,  I > 1 J 1 .  We thus find 
that 

AZ (k, p )  - (J,Zlzp2) < 1.  

However, in the corner region we have Iz,l 5 lJI and 
A 2(k, p ) z + .  This is a condition that determines the charac- 
teristic size of a corner region where an electron can still 
jump from a plane (where it can pseudointeract with a 
phonon): 

Ap- ( 1 J 1 / E ~ ) P O - ~ ~ - ~ P O .  
Consequently, if q,(Ap, i.e., if T 4  1 K, an electron 

overcomes a corner by diffusion so that ~ , , a  T-5  and 
a,, ( T )  a T - 5 .  

We shall now assume that q,>Ap (a 1 OK). Then, 

1 A p 1  TZ(Ap) - - - - -  
ai2 q~ a,, upo2 

in a q, corner region and we have l / ~ ~ ,  a exp( - y/q,) for 
electrons jumping from a distance ysq,  (in the momentum 
space). In this case we simply have an exponentially small 
number of phonons with the quasimomenta in the range 
Y < ~ T .  

A corner is a strip of the Fermi surface of width 
-Apgq,. Therefore, not every phonon can facilitate the 
transfer of an electron to a corner from a region q, in its 
vicinity. The factor Ap/q, in front of 1/r,, represents the 
proportion of those thermal phonons which are capable of 
colliding with an electron per unit time and have a suitable 
projection of the quasimomentum along the direction to- 
ward the corner. 

It follows that the frequency of jumps from a plane to a 
corner averaged over the intial distance from the corner is 
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It follows that 

qi - ~ l r + ~ 1 2 - 1 -  ( ~ O / y T ) ~ ~ l l f  ( q r ~ l l / i \ p )  (polqr),  

and hence it is clear that ifpo/Ap)(po/q,)', i.e., if 

T > u p 0 (  111 I&,)"-IOK, 

the conductivity obeys ail ( T )  a T -3 in accordance with the 
experimental results reported in Ref. 4. Therefore, the T - 3  

dependence is not due to the diffusion over the quasiplanar 
parts of the Fermi surface (see Ref. 5), but due to nondiffu- 
sion process of overcoming the corners. 

We can determine how the anisotropy of the electron- 
phonon interaction affects the electron distribution function 
and then present the above qualitative conclusions in terms 
of p(p), by considering Eqs. (13) and (14). 

3. INVESTIGATION OF THE TRANSPORT EQUATION 

We shall consider low temperatures when Ap(q,(p,, 
i.e., 

( I Jl /ep) @ D e T g O D .  

We shall postulate that k lies on a planar part of the Fermi 
surface far from corners. Then, integration with respect to p 
in Eqs. (13) and (14) is limited to the same planar region 
because p = k - q and 191 5; q T q o ,  where q is the phonon 
quasimomentum. However, for such pairs of values of k and 
p the relevant factors are A '(k, p), 1 and B '(k, p) z 0  [see 
Eqs. (1 1) and (12)l. Therefore, we can use the diffusion ap- 
proximation'3 to solve Eqs. (13) and (14) in this range of 
values of k. 

We shall allow for the fact that p(k) =p(k,) or 
(k) = p (k,) for the regions parallel to the k, or k, axis (see 

Fig. 3).4' Considering Eqs. (13) and (14) and expanding the 
difference p(k) - p(p) in the integrand with respect to q,/po, 
we obtain 

where 

[ ( (5) = 1.0371, i = 1,II; a = x or y, depending on the orien- 
tation of a planar region.5' 

For example, if the point k lies in the zone I in a region 
normal to E (Fig. 3), Eq. (15) gives 

eE 
cp (k,)  =- - k ,  ( h - , + - 2 ~ 0 )  +Cry 

rr D 

where C, is a constant defined below. This form satisfies the 
self-evident requirement that the solution be symmetric 
about a line parallel to E and dividing the square in Fig. 3 
into two halves (this is the symmetry axis of the square). 

If the point k lies in the zone I in a region parallel to E, 
then (if we ignore quantities of the order of -u,(lJ I/&,.) 
compared with v,.) we find from Eq. (15) that 

(p ( k,) =GI (h- ,+po) .  (18) 

Here, GI is another constant also defined below. 
The function p(k, ) in Eq. (18) is odd in k, + p,. This 

property is a consequence of two factors. First, we have 
p( - k) = - p(k), if the origin of the coordinate system lies 
at the center of inversion of the square. This is associated 
with the odd (with respect to k ) nature of the left-hand side of 
Eq. (1 5), where n, is an external normal to the Fermi surface. 
Second, p ( - k,) = p (k,) because of the symmetry of the 
Fermi surface relative to the axis of the square parallel to E. 
Consequently, 

Since we have selected the origin of the coordinate system 
outside the center of the square in Fig. 3, we obtain Eq. (18). 

The linearity of Eq. (18) in k, is a simple consequence of 
the conservation of the electron flux ( - - V p )  in the coarse 
of diffusion over the planar parts of the Fermi surface paral- 
lel to E. 

A calculation which allows for the zone I1 contributes 
nothing basically new to the relaxation mechanism6' or to 
the nature of the dependence of ull on T. Therefore, we shall 
ignore the presence of the second zone and assume that there 
is only zone I. Naturally, all that we have said about A '(k, p) 
still applies. Then, the whole electron flux from a planar part 
of the Fermi surface normal to E is directed through the 
corners to regions parallel to E in the same zone. The con- 
stant GI is found from the condition of conservation of this 
flux. The constant C, is also found from the same condition, 
but applied together with the definition of the behavior of 
p(k) in the vicinity of the corners due to the "transmission" 
of the latter. 

We shall begin by finding GI. We shall cut a cylindrical 
surface into two halves by a plane parallel toz (this is the axis 
normal to the plane in Fig. 3) and parallel to the field E. We 
shall denote the right-hand half by S + and the left-hand one 
by S -.\Obviously, S = S +US - represents the whole of the 
Fermi surface. We shall rewrite Eq. (13) in the equivalent 
form dropping the term with $dSII, in accordance with the 
adopted simplification: 

Integrating both sides of Eq. (19) over the surface S ', we 
obtain 

A 1 - eE cos (nrx) dSk  = y2po 1 d S t  5 d S p  
(2n) s+ s 

A2 ( k 7  P) [(F. (k) - (f (P)I (k *)2 (k - P) . (20) 
u (k) V(P)  am 

We can easily see that the integrand on the right is antisym- 
metric under the transposition k t t p  (this is a common prop- 
erty and it is not due to the fact that we have ignored the zone 
I1 Ref. 13). Therefore, if the contribution to the left-hand 
side of Eq. (20) made by regions parallel to E is negligible, we 
find from Eq. (20) that 
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where I ,  = 2 r / c  is the length of the Brillouin zone along the 
z axis in the quasimomentum space. Since the line separating 
S + fromS - lies far from the corners ( po>qT), we can substi- 
tute on the right-hand side of Eq. (21) the function q ( k )  from 
Eq. (18). We then obtain 

eEpol,=I,nDGI, (22) 

where we have ignored the corrugations of the surface along 
z.  Hence, we find that 

GI=eEpolnD, (23) 

where D is defined by Eq. (16). 
In the vicinity of a corner we have 

AP-PO ( 1 IEp)  

where p ( k )  varies rapidly (this is demonstrated below), but 
we have Ap<qT and the diffusion approximation can no 
longer be used. However, the same circumstance (Ap(qT)  
allows us to find q ( k )  in a region within a distance of Ap from 
a corner and this can be done using directly the integral 
equation (19) with the results subject to an error Ap/qT( 1. 

It  is therefore convenient to use the fact that q ( k )  de- 
pends in reality only on the distance from a corner. There- 
fore, we shall introduce a coordinate y on the Fermi surface: 
the absolute value of this coordinate is equal to the distance 
from a comer [here, k ,  ( y), k ,  ( y), and k,( y )  are the compon- 
ents of the radius vector k of a point located at a distance lyI 
from a corner]. The right-hand vertical part of the Fermi 
surface corresponds toy < 0 ,  the right-hand one to the hori- 
zontal region y > 0 ,  and in the vicinity of a corner we have 
- pc < y <pc (Fig. 4). We shall now ignore the nonlinearity 
of the mapping which transfers a small (compared with po) 
region of size Ap to a segment [ - p,, p, 1. We can now re- 
write Eq. (19) in the form 

- eE cos (n,x) 

FIG. 4. Behavior of qb) in the vicinity of a corner of the Fermi surface. 
The k faces in Fig. 3 correspond toy < - p,, and the p faces toy  > p , ,  
whereas the corner occurs at - p, < y < p , .  

where 

andp, = 21 J I/u,. We shall now explain the meaning of Eqs. 
(24)-(27). Equation (24) is obtained from Eq. (19) by going 
over from dS, to dp,dp, and dp,dp, on the relevant parts of 
the Fermi surface, subject to the notation change 

dp,+dyr (y'<O) ; dp.+dyl (yl>O) 

in accordance with Fig. 4. This procedure gives also Eq. (26) 
instead of Eq. ( 1  1 )  if we note that 

~ k =  ( E I  ( k )  - ~ z  ( k )  ) 12 

and z, in Eq. ( 1  1 )  changes to - vFy/2 and - v,y1/2 in the 
vicinity of a corner ( y = 0)  if ly 1 , ly' 1 (p,. Finally, using 
p, = 2IJ I/uF instead of the exact expression 

p, (k,) =2 1 J cos ( k z c / 2 )  1 lv,, 

we ignore the unimportant corrugation of the Fermi surface 
along thez axis, since the corrugation period is -po>q, and 
we have Ik, - p ,  I 5; q,. The expression (27) for u( y )  is ob- 
tained from the definition 

v ( k ) = l a E ( k ) / a k (  

by the same method. 
We shall rewrite Eq. (24) in the form 

A2 ( y ,  y') F ( y ,  y') 

dy' A y g ,  y') cp (y') F ( y ,  y l ) -  e~ cos (G. 
-0 0 (v) u (Y') 

(28) 
We are interested in the behavior of p( y )  in the vicinity of a 
corner, i.e., when lyJ S p , .  It  follows from Eq. (25) that the 
characteristic scale of a change in F ( y,  y ')  along y and y' is of 
the order of q,,p,. Completing the integration with respect 
toy' on the left-hand side of Eq. (28), we obtain (lyl<qT) 

where 

and cos 9, = cos (m. In view of the presence of the factor 
F ( y, y') ,  the integration with respect toy' in Eq. (29) is over a 
region ly'l- q,. For such values ofy' we find that A 2( y, y')  of 
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Eq. (26), regarded as a function of y, changes greatly in an 
interval -p, (9,. The same property is exhibited by vk) of 
Eq. (27). However, it follows then from Eq. (29) that the scale 
of change of p( y) is also -p,. Therefore, substituting in Eq. 
(29) the function p( y') in the form 

where p- and p,, have to be found and the inequality 
(y'( S q,, is obeyed, we readily obtain from Eq. (29) 

q ( y )  =2z1,v  ( y )  eE  cos 0, + Y 
2 

The roughness of the "unrenormalized" function (3 1) in 
the region lyl Sp ,  does not affect the result (32) because the 
integration in Eq. (29) is over a large part of the region 
(y'(-q,. The error introduced in Eq. (32) by the replace- 
ment of p( y') with constants in an interval ly'l 5 q,, is also 
small in terms of the parameter p,/q,, as shown below. 

Matchingp (k,) to p( y) from Eq. (18) in the range y>p,, 
we obtain [using Eq. (23)] 

cpo=G~po--eEp,2/nD. (33) 

We shall find p- integrating both sides of Eq. (19) over 
the surface S ,  of the right-hand planar part of the Fermi 
surface all the way to the corners. We then obtain, by ana- 
logy with Eqs. (20) and (21), 

where S - S,  is the whole Fermi surface with the exception 
ofS,. In view of the presence of the factor dN (k - p)/dw, the 
integration on the right-hand side of Eq. (34) is carried out in 
the vicinity of the lines on the Fermi surface separating S ,  
from the corners. In view of the symmetry of the Fermi sur- 
face half the flux - 2eEp,lz passes through each of the two 
lines. Therefore, we shall consider only the upper right-hand 
corner in Fig. 3. As in the case of going over from (19) to (24), 
we shall represent Eq. (34) in the equivalent form for the 
selected corner: 

vo - dy' 
- - r~~ , , l .=1 .  - 

- m YO 

where yo( < 0) is the coordinate of the line representing the 
boundary (in the right-hand upper part) of the surface S,; the 
limits + w in the integral (35) are inserted for convenience 
because q,(,,. Selecting p, Q,( (9, and substituting p( y )  
from Eq. (32) and p( y), and also taking A '( Y ,  y') from Eq. 
(26), we obtain from Eq. (35) 

rp--(P d y  - dy' 
- 2 e ~ p . = - ( + ) J -  J-, P C Z  

U ( Y )  V ( Y ' )  [ ( Y ' ) ~ + P , ~ I  
- F ( Y ,  Y ' ) .  

-m U. 

(36) 
The factorpc2/ [p, + ( Y ' ) ~  ] in the integral (36) justifies the 
use of Eq. (32) as p( y'). After integration in Eq. (36), we 
obtain 

cp- = 
~ ~ E P O Z I I V F  2eEpozi ivF eEpoa 

- + c p o =  +- 
~ P C  ~ P C  nD ' (37) 

where 

and l / r ,  , is defined in Eq. (30). The matching of p( y) = p- 
fo ryS  - qT with Eq. (17) gives p- =: C,. 

Knowing now p(k ) for all parts of the Fermi surface and 
using the expression for the current density l 3  

we find the conductivity 

where SF is the Fermi surface and f (3) = 1.202. It follows 
from Eq. (39) that u,, m T -3 at temperatures 

~ ( I l l ) ' h  up. T >  - - %5--1°K. 
Y1O P ~ V P  30 

Allowance for both zones adds factors of the order of unity 
to the terms in Eq. (39) and SF then denotes the total Fermi 
surface area in the two zones. 

Finally, we note that, in accordance with Eq. (17), the 
increment Ap in an interval -9, is 

The change in the function p( y) in the interval (y( <p, ob- 
tained from Eq. (32) is 

Acp ( p c )  - r p - - - e E p o z l l v ~ ~ p c  
if p... )p0. Therefore, the relative error in the determination 
of p( y) from Eq. (32) introduced by the replacement of p( y)  
with p - is of the order of 

ArpIAq (PC) -pJqT<I. 

The same error results from the replacement of pk) with p, 
in the case when q,>y)p,, and this justifies the above sim- 
plifications. 

4. INFLUENCE OF SHORT-WAVELENGTH PHONONS 

As temperature increases, the backscattering of elec- 
trons by short-wavelength phonons with q = 2po increases in 
frequency. Since in the case of Hg, -,AsF, we have 
p,,z0.3g, where g is the reciprocal vector of the AsF; lat- 
tice,' it follows that such phonons have energies 
0 - 0, z 70 K (Ref. 5). 
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If T<O,, we obtain the following estimates of the inte- 
grals of the phonon-phonon collisions Ipp involving phon- 
ons with a momentum 2p, (Ref. 1 1 ) :  

for the decay of a phonon with a momentum 2po into two 
short-wavelength phonons and 

in the case of the scattering by a thermal phonon q- T / u ;  
here, ,y is defined as 

representing a nonequilibrium correction to the equilibrium 
phonon distribution function N,,. Naturally, in Eqs. (40) and 
(41) the symbol x simply represents the order of the corre- 
sponding quantity. 

In the case of the integral of the phonon-electron colli- 
sions I,, (2p,) associated with electron transitions between 
the opposite vertical "planes" of the Fermi surface (Fig. 3),  
we obtain the estimate 

where the argument of the S function is obtained allowing for 

E ( P )  - - P = V F (  l P = I  -PO) + a ( p n  PA 
describing the electron energy near the Fermi surface; 
J'-la] represents the curvature of the Fermi surface 
"planes"; the unimportant dependence of a and p, is 
dropped from Eq. (42) .  Finally, p(p)  - p t  on the right Fermi 
surface plane and p ( p l ) - p -  -- - p +  on the left plane. 

The occurrence of two horizontal Fermi surface 
"planes" (Fig. 3) has the effect that in addition to Ip,(2p,) of 
Eq. (42) there is also IPef(2p,) with electron transitions along 
the horizontal planes of the Fermi surface: 

where in writing down the argument of the delta function we 
have used the equality 

E ( p )  - p = v a (  I PV ! - - P O )  +a(pX, PI) 

for the electron energy near the horizontal Fermi surface 
"planes." The prime of xip,, denotes the important circum- 
stance that only the phonons with the projection 

k , - Q ~ p , / ~ ~ - p ~ ~ ~ ~ ~ s ,  @ D ~ ] ' ,  1 kY 1 G J ' / V ~ - ~ ~ J ' / E ~ ,  0 D K J '  
(44) 

may be absorbed by electrons on the horizontal Fermi sur- 
face "planes" [in the case of other phonons the argument of 
the S function in Eq. (43) cannot vanish]. The scatter of the 
permissible values of k, is governed by the curvature J ' and 
is equal to7 

B k , -  ( I ' / E F )  PO.  (45) 

In the case of these phonons the steady-state condition for 
the distribution function 

I;;' +I;:' +Ip,+Ip:=O (46) 

gives [when Eqs. (42) and (43)  are used and J1>O,] 

( - 2 ( p ' + x L O )  eDz/lrrv- ( @ D 2 / ~ ' ) ~ : p o 9  (47) 

i.e., 

x z l p o - c p f ,  - -2q++~&~--q+. (48) 

It should be noted that in obtaining the estimate (47) 
from Eq. (46) we have dropped the terms I jfd and IF;. The 
point is this: a comparison of Eq. (43)  with Eqs. (40)  and (41) 
shows that the phonon-phonon collisions with participation 
of a "resonance" phonon [Eqs. (44)  and (45)]  cannot convert 
it into a "nonresonance" phonon in the time between the 
emission of such a phonon in a system of vertical "planes" 
and its absorption in a system of horizontal "planes" of the 
Fermi surface. It follows that the phonon-phonon collisions 
represent only a small perturbation. 

In the case of short-wavelength phonons that to not sa- 
tisfy the conditions (44) and (45) we have I p , ' r O ,  and only 
the first three terms remain in Eq. (46),  so that we can no 
longer ignore the integrals Ipp and I $  as in the estimates 
given by Eqs. (47) and (48).  We now find from Eqs. (46)  and 
(40)-(42) 

i.e.," 

- 2 q + + ~ ~ ~ ~ < < ~ ~ ~ . ~ ~ r p + .  (50)  

The relationship (48) has an important physical conse- 

356 Sov. Phys. JETP 56 (2), August 1982 S.  I .  Mukhin 356 



quence. Approximately half the short-wavelength phonons 
emitted in electron transitions between the vertical Fermi 
surface "planes" and satisfying the conditions (44) and (45) 
are absorbed in the horizontal "planes" of the Fermi surface, 
giving rise to electron transitions along the open directions, 
including those accomplished by umklapp processes. There- 
fore, the quasimomentum acquired from the field by elec- 
trons on the vertical "planes" of the Fermi surface is trans- 
:'erred by these phonons to the zone with the horizontal 
"planes" and is lost in electron-phonon processes accompa- 
nied by umklapp transitions [the field-induced electron 
transitions on the "horizontal" planes can be ignored com- 
pletely because of the smallness of J ' / E ,  ( 1, and this has 
been done in obtaining the estimate represented by Eq. (43), 
where the terms with p(p) and p(p') are omitted and only the 
term with x,, is retained].9 

An estimate of the integral of the electron-phonon 
collisions for electrons on vertical "planes" gives' ' 

We shall now write down the transport equation for 
electrons: 

Iep=eEv8n0/ae, e<O, (52) 

and integrate both its sides with respect to d 'p, for example, 
in the vicinity of the right vertical "plane" of the Fermi sur- 
face, which gives [subject to Eq. (51)] 

and hence it follows from Eq. (48) that 

q + - e E v p ~ + - ,  (54) 

where 

On the other hand, the mechanism of relaxation via the 
corners gives, in accordance with Eq. (37) 

where 

1 TJ -- I l l  
7 1 1  V' PC - - g. 

EF 

Since, subject to the condition 

or in the equivalent form (it is assumed that J '  5 JJ I )  
X"Z exp ( - E X )  w I, (56) 

where 

x = @ D / T ,  ~=S-K?zp,/8D<f. 

the mechanism of relaxation accompanied by backscattering 
predominates over the corner mechanism and this results in 
a change from the dependence all -' a T 3  [Eq. (39)] to the 
dependence [see (5 5)] : 

a,,-'-I/%+--2'-'" exp (-QzpJT) (57) 

subject to the condition 

8 D 2 e / 7 < T K 8 D  (58) 

[the condition (58) is obtained from the inequality (56)l. 
In comparing the all ( T )  given by Eqs. (39) and (57) with 

the experimental results, we find that-according to Refs. 3 
and &the all - '(T) can be approximated by a T n  law with 
the exponent n found by plotting (ull - ') as a function of 1nT. 
Such a procedure shows that in the range TZ 30 "K there is a 
change from n = 3 to n = 3/2. We can easily see that in our 
case the change from Eq. (39) to Eq. (57) corresponds to a 
change in n from n = 3 to 

n=-'/2+S22p JT<3 

when 

T>2Qzp J7- 10 O K .  

We can thus see that n also decreases. To determine whether 
(57) agrees with the experimental results in the interval de- 
fined by Eq. (58), we have to plot along the abscissa not InT 
but T. 

5. CONCLUSION 

We shall conclude be noting that the scattering by 
short-wavelength phonons [Eq. (50)] not satisfying Eqs. (44) 
and (45) may give rise to a finite resistance only if we allow 
for the phonon-phonon collisions (including those of the 
umklapp type). Estimates using Eqs. (40) and (50) show that 
this mechanism may give rise to a value of p+ of the same 
order as that given by Eq. (54). A more accurate estimate 
requires the knowledge of the function R (k) corresponding 
to k-2p,, which then makes it possible to integrate correct- 
ly in the presence of the S function: 

6 [Q(kt) +Q(kz ) -Q(k)  ld3ki7 
contained in I:; 2' described by Eqs. (40) and (41). 

A structural transition takes place at T >  T, = 120 Kin 
Hg, _ , AsF,. (Ref. 1): the correlation between the positions 
of the mercury atoms in various chains disappears. There- 
fore, at temperatures T >  T, our model with a three-dimen- 
sional lattice of the mercury atoms is no longer suitable and 
we have to solve the problem of conduction of a quasi-one- 
dimensional Fermi liquid. 

The author is grateful to A. A. Abrikosov for the formu- 
lation of the problem and valuable discussions, and to I. B. 
Levinson for helpful advice. 
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"This idea was put forward in Ref. 5, where the authors began from an 
intuitive concept of "one-dimensional" diffusion of electrons over the 
planar parts of the Fermi surface in toward the boundaries of these parts. 
The estimate o l T l n - ' I T I  a T 3  was obtained in Ref. 5 bv makine. the ,~ , , , - 
transition Jdqxdqydq,+Jdq, in the phonon momentum integral, but this 
is not well justified. Here, and in 2, we shall show that it is precisely the 
nondiffuse-motion of electrons inthe region of contact between planar 
parts of the Fermi surface which gives rise to the dependencep(T) a T3. 
'' We note in passim that measurements of the residual resistance of 
Hg, _ ,AsF6 indicate4 that the localization length of an electron state in a 
chain is A > lop4 cm. Therefore, the backscattering frequency is 
l / r ,  -E,/A~, - 1 OK( 1/r- IJ I -500K, where 1/r is the frequency of 
electron transitions from chain to chain. Therefore, a system of chains is 
quasi-one-dimensional only in the case of a small curvature of the parts of 
the Fermi surface (jJ (/cF - lo-'); see Fig. 3. Therefore, we shall ignore 
the localization of the electron states. 
':In Eqs. (13) and (14) it is assumed that phonons are in equilibrium. How- 
ever, it is well known that their drag in quasi-one-dimensional conductors 
should be allowed for. '' There is no contradiction here. The situation is 
due to the special nature of the Fermi surface of Hg, _ ,AsF6 due to the 
presence of two families of mutually perpendicular chains. We shall re- 
turn to this question in § 4. 
4' We are ignoring here the unimportant corrugations of the Fermi surface 
of amplitude -po(l J I/&,) and with a characteristic scale of variation -po. 
5'Equation~ (15) and (16) are identical with the results of Ref. 13 in the 
absence of phonon drag. 
6'This is not true in the case of the phonon drag (see § 4). 
"We shall consider only the case J ' s@,  . If Jt<@,, then the "unrenor- 
malized" vertex of the electron-phonon interaction cannot be used in the 
case of phonons with quasimomenta satisfying the conditions (44) and (45) 
and the situation requires a separate study (see Ref. 15). Otherwise, it 
would have followed from Eq. (43) that 1/r,,, -@,'/J'>@,, which 
makes it meaning less to consider such excitations. The author is grateful 

"The author is grateful to E. N. Dolgov for acquainting him with an 
analogous situation at high temperatures (DO,) .  
91The author is grateful to R. N. Gurzhi for explaining the essence of the 
relaxation mechanism which then applies. 
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