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The causes of the discrepancy between J. Waugh's mean Hamiltonian theory based on the Mag- 
nus expansion, in the one hand, and the averaging method, on the other, are considered. It is 
shown that the contributions to the line width from the main line and from the satellite are not 
separated; in a number of cases this is the cause of the discrepancy between the Waugh theory and 
the experimental data. The general results are illustrated for the case of a two-level system located 
in a linearly polarized alternating field (the Bloch-Siegert shift). 

PACS numbers:76.20. + q 

In connection with the development of multipulse 
methods of narrowing NMR lines in solids, much interest is 
attached in recent years to problems in which the Hamilton- 
ian of the spin system is a rapidly oscillating function of time. 
This situation is generally typical of magnetic resonance. 
The time dependence of the Hamiltonian is usually eliminat- 
ed by transforming to a rotating coordinate system. In this 
system, to a certain approximation, the behavior of the spin 
system is described by a time-independent effective Hamil- 
tonian. The situation in multipulse experiments is more 
complicated. It is therefore meaningful to pose the general 
mathematical problem of the behavior of a spin system acted 
upon by rapidly oscillating external actions. Problems of this 
kind arise not only in magnetic resonance, but also in other 
branches of physics such as in optics. 

There are at present three different theoretical ap- 
proaches to the study of such problems: Waugh's mean-Ha- 
miltonian theory,'V2 based on the Magnus e~pans ion ,~  the 
canonical-transformation method developed in the papers of 
Provotorov and ~o -worke r s ,~ ,~  and our approach6 based on 
the Krylov-Bogolyubov-Mitropol'skii averaging method7 
and on the canonical variant of this m e t h ~ d . ~  

The starting point in all three approaches is the Liou- 
ville equation for the statistical operator 

t, (lH (1 <I,  where ((H (1 is the "magnitude" of the Hamilton- 
ian in frequency units). 

The results obtained by Provotorov et a1.4.5 and in the 
canonical variant of the averaging method8 are in the main in 
agreement. At the same time the mean Hamiltonians calcu- 
lated by Waugh's method and by the averaging method dif- 
fer already in second order,6 and in a number of cases this 
difference leads to fundamentally different physical results. 
The purpose of the present paper is to find the causes of this 
discrepancy and to investigate to greater detail its conse- 
quences. 

The gist of the approach proposed by Waugh is the fol- 
lowing: if we introduce an evolution operator defined by 

p ( t )  =U( t )  ~(0) U-'( t )  , (4) 
dU/dt=-ifl ( t )  U ( t ) ,  ( 5 )  

the solution of Eq. (9, using the Magnus e~pans ion ,~  can be 
written in the form 

U ( t )  =exp (Fi ( t )  +FZ ( t )  f . . .) , (6)  

where 

- 
0 0 

where V(t )is the Hamiltonian ofthe rapidly oscillatingexter- 
rial action (in particular, the Hamiltonian of a multipulse since& (t )is a periodic function oftime, it can be expanded in 
sequence), and Hi s  the Hamiltonian of the spin-spin interac- a Fourier series 

tions. With the aid of the unitary transformation L9 

B{t) = H,,e"nt, o,,=2nn/tc, 
P ( t )  = L ( t )  p( t )  L - ' ( t ) ,  

,,--OD 

( 9 )  
where 

idLldt=-L ( t )  V ( t )  , 

Eq. ( I )  is transformed into 

idpldt = [ R  ( t )  , p] , 

Substituting (9) in (7) and (8) and integrating, we obtain the 

(3)  
following representations for F, and F,: 

where& (t )is a periodic function of the time with period t ,  . A F ,  ( t )  =-itHo- Hm, 
ccndition usually satisfied in multipulse experiments is n+O 
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In the corresponding order, Eq. (17) takes the form +itz L e i w n t  

20, [Hn, Hol 
n f o  

where 

E ( t )  =exp (-iE't) % (0) exp (iRft) , (21) 

while f (0) takes according to (20) the form 

For instants of time that are multiples of t, we can rep- 
resent U (t ) in the form 

We have thus for p(t ) 

It is seen therefore thatp(t ) takes the form of the solution of 
the Liouville equation (3) with a time-independent Hamil- 
tonian 

p ( t )  =exp (-ipt) p (0) exp (iRt), (13) 

Expression (22), unlike (13), is valid for arbitrary in- 
stants of time. If we put here t = Nt,, and use a power expan- 
sion of (1 3) 

where 

(it can be seen from ( 14)-( 16) and ( 19) that 

The Hamiltonian (14) is usually called the mean Hamilton- 
ian. 

We note now that if (11) were to contain only terms 
linear in t and oscillating terms, we could expand (6) in the 
case of long times in powers of the oscillating terms. Since, 
however, (1 1) contains terms of the type t exp(iw, t ), no such 
expansion is possible. 

Terms of this type are well known in nonlinear mechan- 
ics (they are called secular terms). Their appearance is evi- 
dence that ordinary perturbation theory in inapplicable. One 
of the convenient methods that makes it possible to get rid of 
terms of this type is the Krylov-Bogolyubov-Mitropol'skii 
averaging method. As applied to mangetic-resonance prob- 
lems, this method was developed in our earlier papers.69s In 
this approach the solution of Eq. (3) is sought in the form 

then (22) and (1 3) coincide. When calculating the mean val- 
ues of the observable quantities in (17) and accordingly in 
(22), however, it is necessary to discard the rapidly oscillat- 
ing terms. Indeed, in multipulse NMR experiments, as well 
as in certain other NMR procedures, one measures the 
damping with time of the transverse magnetization, fol- 
lowed by taking the Fourier transform of this signal. In the 
language of Fourier transforms, the slowly varying part f (t ) 
in the expansion (17) for p(t ) corresponds to the main line, 
and the rapidly oscillating terms correspond to the satellites. 
Thus, in the averaging method we should use in the calcula- 
tion of the mean values the formula 

P(t) =E (t) +p"' (t, t) + P ' ~ '  (t, E) + . . . , (17) 

where 6 (t ) is a slowly varying part of the density matrix, and 
p"',p'2', etc. contain the rapid oscillations. The equation for 
f is closed (i.e., it does not contain the time explicitly), and in 
second order it can be represented in the form6 

(23) 
where a ' is given by (19), and 2 (t ) = L (t )AL - '(t ). 

At the same time, Waugh's theory yields 

( A  (t) >=Sp { A ~ - ~ ' ~ ( o )  e'"') (24) 
idEldt = [H', $1 , (18) 

(we have used here the fact that L (Nt , )  = 1 is cyclic). 
The time dependence in (23) and (24) is determined by where 
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the different mean Hamiltonians. It is easily seen that they 
are connected by a unitary transformation. Indeed, we stipu- 
late that 

U R f U - ' = R  

with appropriate accuracy in terms of the small parameter 
t ,  IIH 11. This condition is satisfied by U in the form 

With the aid of this unitary operator it is easy to find the 
connection between the mean values (23) and (24). Indeed, 

- - 

-= S p  (UAU-'e-'H'p ( 0 )  e iHt]  =<X ( t )  > 

The presence of the last term in (26), as follows from the 
foregoing reasoning, is due to the fact that in Waugh's mean- 
Hamiltonian theory there is no separation of the contribu- 
tions made to the width by the main line and by the satellites. 
The term 

in the averaging method causes the presence of satellites, 
whereas in Waugh's theory it is included in the mean Hamil- 
tonian. This is indeed the reason why Waugh's theory leads 
in a number of cases to incorrect physical results. 

By way of example illustrating the general results 
above, we consider the calculation of the so-called Bloch- 
Siegert shift.9 It is known that when a two-level system is in a 
resonant linearly polarized field, its frequency is shifted. The 
Hamiltonian of such a system is of the form 

where wo is the eigenfrequency and w ,  the amplitude of the 
alternating field in frequency units. If we change to a rotat- 
ing coordinate frame, the Hamiltonian (27) takes the form 

Since w,,)w, ,  this problem can be analyzed on the basis of 
the mean-Hamiltonian theory. As shown in Ref. 6, if we use 
the Waugh mean Hamiltonian (14), we obtain an incorrect 
sign of the.Bloch-Siegert shift, whereas the averaging meth- 
od yields the correct result. 

We examine now this question in greater detail. We 
shall assume that at the initial instant of time a preparatory 
pulse directed the magnetization along the x axis, i.e., the 
density matrix is of the form 

(This choice of initial conditions makes it easy to determine 
the magnitude and the sign of the frequency shift.) We calcu- 
late with the aid of Waugh's method and with the aid of our 
method the time dependence of the mean squared value of 
the z component of the magnetization (it will be seen from 
the final results that its behavior leads readily to conclusions 
concerning the magnitude and sign of the frequency shift). 
Using (13), (15), and (16) we can easily see that the Waugh 
theory yields 

a1 
<I,( t )  >= - (I,(O) > (cos m e t - l ) ,  me= mi2 + - 

4wo r (::o)2~112. 

Obviously, (I,(t)) GO. This means that the frequency 
shift equals 0 ,~ /4m,  and is negative, whereas it is well 
known9 that it is positive. 

We now calculate (Iz(t )) by the averaging method. Us- 
ing (19) and (23) we obtain 

0 1 <1,(t))=-(Z.(0)) (cos o e t + 1 ) .  
4 %  (31) 

In this case (Iz(t )) 20, and the Bloch-Siegert shift is of the 
correct sign. 
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