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A theory is developed for the optical properties of the blue phases of cholesteric liquid crystals, 
with account taken of the symmetry restrictions on their experimentally determined structures. 
The diffraction features of the optics of blue phases (possible reflections and their polarization 
properties) are found for all the admissible structures, and their optical properties are analytically 
described within the framework of the dynamic theory. The experimental data are analyzed. The 
limitations on the blue phase and on the details of these structures, which follow from the experi- 
mental data, are indicated. The importance of optical and particularly polarization measure- 
ments for the unambiguous determination of the blue-phase structures are noted, as are the 
possibilities of using the effects of multiple scattering to extract quantitatively more exact struc- 
tural information. 

PACS numbers: 61.30.Eb, 78.20.Dj 

Historically, the blue phase of cholesterics was the first 
of the liquid-crystal phases observed by the very discoverer 
of liquid crystal, Reinitzer.' Although almost a century has 
elapsed already, the blue phase remains an intriguing object 
of research, since the nature of this surprisingly complex and 
delicately organized liquid-crystal state is still unclear. 
However, the substantial progress reached in the experimen- 
tal and theoretical investigations of the blue phase during the 
last several years (see the  review^'.^) gives grounds for as- 
suming that the presently evolving notions concerning the 
blue phase are in accord with its nature, and the solution of 
the blue-phase problem is expected in the nearest future. 
This solution, however, calls for research in accordance with 
a program that has already been formulated, and the result 
of this research will be the choice from among the quite nu- 
merous models proposed so far for the blue It  
must be noted here that although the main hope is placed 
here on optical research methods, the theory of the optical 
properties of the blue phase is still in the initial stage of its 
development. 

In this article we develop for the optics of the blue phase 
a systematic description that connects the features of its op- 
tical properties with its structure. The starting points are 
reliably established experimental facts, namely the optical 
scattering and the presence of selective scattering and gyro- 
tropy of the blue phase. The symmetry limitations on the 
structural characteristics of the blue phase, which are intro- 
duced in accordance with the foregoing properties, while 
allowing us to exclude from consideration a large number of 
structures, still do not permit an unequivocal choice from 
among the remaining possibilities. For this choice, as shown 
below, it is necessary to compare the observed characteris- 
tics (frequencies and frequency intervals of the selective scat- 
tering, as well as its polarization characteristics) with the 
corresponding quantities obtained theoretically for each of 
the possible type of blue-phase structure. The results of this 
paper make just such a comparison possible. In particular, 
they establish the symmetry restrictions on the dielectric 
tensor E(r) of the blue phase and the connection between 

these restrictions and the characteristics of the selective scat- 
tering. Particular emphasis is placed on the exceeding im- 
portance of polarization measurements for a complete deter- 
mination of the blue-phase structure. 

OBSERVABLE PROPERTIES AND MODELS OF THE BLUE 
PHASE 

The blue phase is observed for certain cholesterics in a 
narrow temperature interval, on the order of fractions of a 
degree or one degree, between the isotropic liquid and the 
usual cholesteric phase. Investigations by various physical 
methods show that the blue phase is in a thermodynamically 
stable state. Moreover, in this narrow temperature interval 
one can observe in different compounds not one but several 
(up to three) modifications of the blue phase. The transitions 
between these phases, as well as the transition between the 
blue and the cholesteric phases, are of first order, as is evi- 
denced by the possibility of supercooling these phases. A 
possible exception may sometimes be the transition from an 
anisotropic liquid to the blue phase. 

Without dwelling in detail on the description of all the 
investigated properties of the blue phase (see Ref. I), we con- 
fine ourselves hereafter to consideration of only its unusual 
optical properties. 1) The blue phase scatters visible light 
selectively, so that this phase has therefore a bluish color, 
which accounts for its name. In contrast to cholesterics, 
where only the first order of the selective scattering is strong, 
several reflections of comparable strength are observed. 
Only light of definite circular polarization, the same as in the 
cholesteric, undergoes selective backward reflection. 2) The 
blue phase exhibits strong optical gyrotropy, and the rota- 
tion of the plane of polarization reverses sign at the frequen- 
cy of the selective reflection. 3) There is no birefringence, i.e., 
the blue phase is optically isotropic. 

On the basis of the optical isotropy, Saupe has proposed 
as long ago as in 1969 that a cubic lattice of point defects is 
produced in the blue phase in the field of the director (i.e., a 
three dimensional lattice of points with indeterminate direc- 

322 Sov. Phys. JETP 56 (2), August 1982 0038-5646/82/080322-09$04.00 @ 1983 American Institute of Physics 322 



tion of the d i r e~ to r ) .~  Also proposed was a conical-helix 
model, with the director inclined 54.74" to the optical axis,' 
which ensures optical isotropy of the structure. ~razovskg 
and Dmitriev, on the basis of the Landau theory of phase 
transitions, predicted a hexagonal structure of the field of 
the order parameter in the blue In recent optical 
measurements of various selective-scattering reflections, a 
cubic symmetry with primitive or body-centered unit cell 
was ascribed to the structure of the blue 

Developing further the approach of Ref. 7, Hornreich 
and Strikman also arrived, within the framework of the Lan- 
dau theory, at the conclusion that the blue phase has cubic 
~ ~ m m e t r y . ~ . ' ~  A cubic lattice of linear disclinations in the 
director field was proposed for the blue phase within the 
framework of a continual analysis with allowance for the 
customarily omitted surface terms of the free energy. 

It can be seen thus that quite a number of structures that 
agree with the known experimental facts, or at least with the 
principal ones, have been proposed for the blue phase. For an 
unambiguous description of the structure (more accurately, 
structures of the blue phases) it is therefore necessary to ana- 
lyze and indicate the factors on the basis of which, using the 
already available experimental material, it is possible to give 
preference to one of the considered possibilities. If, however, 
it is impossible to arrive at an unambiguous conclusion on 
the basis of the available data, it is desirable to point out 
measurements capable of eliminating the remaining ambigu- 
ity. In the sections that follow we propose a method for real- 
izing this program on the basis of optical measurements. 

DIELECTRIC TENSOR OF THE BLUE PHASE 

To describe the optical properties of the blue phase it is 
necessary to solve Maxwell's equations, which reduce to the 
following equation for the electric-field vector E(r,t ) 

(r) d Z ~ / a t Z = - c 2  rot rot E, (1) 

where E(r) is the dielectric tensor. 
Since the entire optical information on the blue phase is 

contained in the dielectric tensor &(r), the question of de- 
scribing its optical properties or of extracting information 
concerning this constant from optical data involves in final 
analysis an explicit expression for &(r). Since the structure of 
the blue phase, and by the same token also the tensor &(r), has 
not yet been established, we shall not make any concrete 
assumptions concerning the form of P(r), but consider the 
restrictions imposed on the dielectric tensor by the estab- 
lished experimental facts. This is done most conveniently by 
representing 2(r) as a Fourier series 

; (r) = 'v &eirr,  
/I 

where T is the reciprocal-lattice vector of the blue phase. 
Using now the known optical properties, we can impose 

certain restrictions on the coefficients of the Fourier expan- 
sion (2). 1) The presence of selective scattering (with several 
reflections) indicates that the expansion (2), unlike for a cho- 
lesteric, has more than three nonzero terms. We recall that in 
a cholesteric 2, # 0 only at T = 0 and T = + 4r /p ,  wherep is 
the pitch of the cholesteric helix. The selective-scattering 

polarization properties known for the investigated reflec- 
tions impose definite restrictions on the form of the corre- 
sponding tensor Fourier coefficients &,. They will be ana- 
lyzed later. 2) The presence of optical activity and the 
reversal of its sign at the selective-scattering frequency give 
ground for assuming that the optical activity of the blue 
phase, just as that of chole~terics,'~ is due to its structural 
properties. Therefore, at least in first-order approximations, 
we can disregard in 2 the molecular gyrotropy proper. 3) The 
absence of birefringence means that the zeroth harmonic 2, 
is proportional to the unit tensor. 

In accordance with the discussion above and with the 
experimental results, we shall assume that the blue phase has 
a cubic structure and that its tensor &(r) is given by 

Ê (r) =^Eo+-~a(x, y, Z) , (3) 

where 2, is the average dielectric constant and ~ ; ( x , y , z )  is the 
three-dimensionally periodic part of the tensor &(r). We shall 
disregard the possible periodic variation of the crystal den- 
sity, the absorption of light, and the natural gyrotropy (since 
these effects are small), and assume therefore that the tensor 
C"(r) has a zero trace, is real, and is symmetrical. In crystal 
optics a crystal is usually regarded as homogeneous, since 
the wavelength of the light is much larger than the crystal- 
lattice period. In this case an important role is played only by 
the homogeneous part of the dielectric tensor 2,, whose sym- 
metry is well known from optics and is determined by the 
point group of the crystal. 

In the case of cubic structures, to which we confine our- 
selves hereafter, 2,, which coincides with the zeroth harmon- 
ic in (2), is proportional in accordance with the assumption 
made to the unit tensor. The axes x, y, and z in (3) will be 
assumed parallel to the faces of the cubic unit cell, and the 
origin will be chosen to lie on the threefold axis. For more 
details on the choice of the coordinate frame in cubic lattices 
see Refs. 15 and 16. We note that the tensor Za(r) plays in this 
case also the role of the order ~a rame te r .~  In the blue phase, 
the lattice period is comparable with the wavelength of the 
light, and we must take into account the inhomogeneous 
part of P(r) ,  whose local symmetry need not necessarily be 
cubic, is different at different points of the unit cell, and is 
restricted by the space group of the crystal. We shall use 
these symmetry restrictions below to establish the most gen- 
eral form of Ea(r) allowed by the concrete cubic space groups 
that can be used to describe the structure of the blue phase. 
In view of the chirality of the blue phase, the analysis is 
restricted to space groups in which there is no inversion cen- 
ter (i.e., to enantiomorphic groups). 

It is clear that the tensor Ca(r) must remain unchanged 
under all symmetry transformations g (rotations and (or) 
translations) that enter in the space group @ of the crystal 
(reflections are excluded, since the crystal consists of chiral 
molecules). In the case of a symmetry transformation g, the 
arbitrary tensor 2(r) is transformed into a tensor 2,(r) in 
accordance with the rule ,. A 

a,=Rgcc (r') R,-', (4)  
A A 

where r' = Rg(r-ag),ag is the translation vector, and R, is 
the rotation matrix that enters in the transformation g (the 
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matrices R, for cubic space groups are given in Ref. 17). The 
invariance of Ea(r) under the transformations g ~ @  denotes 
that the following relations should hold for b"(r) 

>(r) =figEa(rr) (5) 

The most general form of the tensor Ea(r) that might satisfy 
the relation (5) can be directly obtained with the aid of the 
following averaging of the arbitrary tensor a ( r )  over the 
group @ (Refs. 18 and 19): 

where &,(r) is given by relation (4), N is the number of ele- 
ments in the group @, and the tensor a(r)  is assumed to be 
symmetrical. Obviously, the performance of any operation 
g, E@ on the tensor Ea(r) in the form (6) leads only to a permu- 
tation of the terms in the sum in the right-hand side of (5) and 
does not change this sum. Consequently, the tensor Fa(r) ob- 
tained from (6) is invariant to any transformation that enters 
in the space group of the crystal. It is more convenient to 
regard the tensor &(r) from the outset as periodic in all the 
variables, and then we need retain in the sum (6) only thoseg 
which either do not contaio translations (point symmetry 
operations) or contain translations smaller than the lattice 
period. The number of these operations is finite and the aver- 
aging over them is easy. 

It  is easily seen that for cubic structures the presence of 
a three-fold axis aligned with a body diagonal of the cube 
greatly restricts the form of ea(r). Let 

where f (x,y,z) and p(x,y,z) are arbitrary periodic functions. 
Then, as can be easily seen from (5) and (6), the presence of a 
threefold axis makes it possible to obtain all the remaining 
components of the tensor ba(r) by cyclic permutation of the 
coordinates x,y,z in f and p, i.e., the tensor ba(r) in cubic 
crystals is defined by at most two arbitrary periodic func- 
tions and takes the form 

i 
f(x,y,z) v(x7 y,z) rp(z,x,y) 

Y, 2) = cpb, Y, z) f (Y, z, x) cp(y, z, x) 
cp(z,x,y) rp(y,z,x) f(z,x,y) 

The condition that the tensor Fa(r) have a zero trace imposes 
on the function f (r) one more restriction f (x,y,z) 
+ f ( y,z,x) + f (z,x,y) = 0. The presence of other symmetry 

elements (two-fold or four-fold axes, screw axes) leads to ad- 
ditional restrictions on the functions f (r) and &), but to no 
relations whatever between these functions. In particular, 
for the simplest cubic group T l-P 23 the presence of the 2 
axis leads, as can be easily seen from (5) and (6), to the follow- 
ing restrictions on the functions f (x,y,z) and p(x,y,z): 

No other restrictions follow from symmetry considerations. 
In addition, in body-centered groups we have 

and in face-centered groups 

=rp (x, y+'/2, z f 1 / 2 )  =.cp (x, y, z) 

If we impose on F(r) restrictions that do not follow from 
rigorous symmetry considerations then, of course, addi- 
tional constraints and restrictions on the functions f and e, 
can arise. Thus, if it is assumed that E(r) is uniaxial at each 
point of the unit cell, then f and q, turn out to be connected by 
the relation 

We note that on a three-fold axis the tensor Fa(r) is al- 
ways uniaxial and takes the form 

(9) 

while the tensor axis is directed along a three-fold axis. 
It is interesting to note that from (7) and from the cited 

restrictions on f and p it follows for T I  that Ea(O,O,O) 
= Ea(1/2,1/2,1/2) = 0, i.e., the crystal is locally isotropic at 

the points 0,0,0 and 1/2,1/2,1/2, so that the order parameter 
is likewise zero (we shall arbitrarily call such points defects, 
since the orientation of the principal axes of 2 is not defined 
in them). A local vanishing of the order parameter must take 
placein thecubicgroups T ',T',T~,O ' ,0  2 ,0  3,0 4,05, which 
contain from two to 16 points with symmetry 23 or 432 in 
each cell, and for which E is locally isotropic and the order 
parametervanishes. Forthegroups T4,T 5,0 6,0  ',0 theunit 
cell does not have points at which Ea(r) must unconditionally 
be locally isotropic, and therefore the order parameter does 
not vanish locally in the general case. 

FOURIER COMPONENTS OF THE TENSOR 2 

The Fourier components F, of the tensor Fa(r) are de- 
fined by the expression 

in which the integration is over the volume Vof the unit cell. 
Knowing the most general form of Ea(r), which was deter- 
mined in the preceding section, we easily determine the most 
general form of 2, for the considered space groups (see Table 
I). In the table, R,,I i ,  and C, are arbitrary real, imaginary, 
and complex numbers which are different for different 2,. 
When calculating the Fourier components, the origin was 

324 Sov. Phys. JETP 56 ( Z ) ,  August 1982 Belyakov etal. 324 



Table I. Reflections in cubic groups and restrictions on the components of C. 

Reflection indices I 1 EL, I E& I f, I EL 1 5. 

h=2n+l 
hOO { h=2n 

h=2n+l 
hM) { h=2n 
hhh 
hkl 

h=4n=kl 
h=4n+2 
h=4n 
h=2n+l 

hhO { h=2n 

hhh { h=4nf 1 
h=4n+2 
h=4n 

hkl 

hOO 
hhO 
hhh 
h k l  

h=2n+l 
h* { h=2n 
hhO 
hkO 

hkl 

hOO 

hhO 

hhh 

hkl 

Notes. R, I, and C denote real, imaginary, andcomplexquantities, respectively; the letter c marks 
chiral reflexes, while asterisks mark reflections made allowed by the local anisotropy of C. The 
condition for the existence of reflections for body-centered lattices ( T "T5,T5,0X) is 
h + k + 1 = 2n, and for face-centered lattices ( T2,0 3,0 4, identical parity of h ,  k, and I. 

chosen in standard fashion. It follows from Table I that the 
vanishing of the Fourier components (the extinction of the 
reflections) in the presence of local anisotropy of 2 can be due 
only to the centering of the lattices. It must be noted that an 
analysis of the symmetry properties of ba(r) in the blue phase 
was carried out also in Ref. 20, but our table contains more 
information than the tables in Ref. 20. First, our table, in 
contrast to Ref. 20, gives all the 2, in one and the same coor- 
dinate frame connected with the crystallographic axes; sec- 
ond, it contains the relative phase shifts of the various Four- 
ier components, which are important for the determination 
of the structure of the blue phase and which can in principle 
be measured in experiment. Knowledge of the Fourier com- 

ponents of 2 yields, as will be shown below, all the character- 
istic optical properties of the blue phase. 

FUNDAMENTAL EQUATIONS 

The formulated restrictions on 2 makes possible sub- 
stantial progress in the general description of the optical pro- 
perties of the blue phase. Indeed, by solving Maxwell's equa- 
tions (2) in the two-wave approximation" of the dynamic 
theory of diffractionI4 and representing the electric field of 
the light wave of frequency w jn the form 

E (r, t )  = (E,,e'k~'+E,e'k~r) eiwt , 

we obtain for the amplitudes E, and E, the system bf equa- 
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tions 

(l-koZ/~') EO+E~E</E~=O, E ~ ^ E - ~ / E ~ +  (l-kt2/?) Ei=0 

where x2 = &@'/c2. 
(11) 

The absence of birefringence in the blue phase leads to 
simpler polarization properties of the solutions of the system 
(1 1) compared with the corresponding relations for choles- 
terics.14 Namely, in the blue phase the intrinsic polarizations 
are always separated and the system of four equations for the 
vector amplitudes Eo and E, breaks up into two unconnected 
systems of two equations each for the wave amplitudes with 
intrinsic polarizations: 

(l-ko2/x2) Eoo+FJl0=0, FJToo+ ( l -k ,2 /~2)  Ein=O, (12) 

where F, = (n~2,n~)/&o,u is here and elsewhere the polar- 
ization index, and the intrinsic polarizations n: and nf, of the 
waves Eo and El are determined by E,, i.e., only by scattering 
through the Bragg angle, and are given by the solution of the 
following eigenvalue equations (see Ref. 21, Russ. p. 583): 

where ep and e: are the polarization unit vectors for the di- 
rections 0 and 1, i.e., unit vectors perpendicular to k,, and k,, 
respectively, and the 2, are defined in accordance with (10) 
and are listed in Table I. 

The presence in the expansion (2) of G(r) of nonzero 
Fourier components 2, at T #O, just as in a cholesteric, leads 
to diffraction or selective scattering of light, which in- 
fluences decisively the optical properties of the blue phase. 

It is important that in contrast to a cholesteric, in which 
the eigenpolarizations of the waves (propagating at an angle 
to the cholesteric axis) vary within the limits of the region of 
selective reflection, in the blue phase the eigenpolarizations 
remain unchanged, with high accuracy, within the limits of 
the region of selective reflection. The description of diffrac- 
tion of light in the blue phase is therefore analogous to the 
case of x-ray scattering in crystals, except that the vectors no 
and n1 of the eigenpolarizations in the blue phase correspond 
in the general case to elliptic polarization, i.e., they need not 
coincide with the linear a and a polarizations in the scatter- 
ing plane and in a plane perpendicular to it, respectively. 

BOUNDARY-VALUE PROBLEM 

Using the noted analogy between the optics of the blue 
phase and x-ray diffraction (see Refs. 21-23), we present di- 
rectly the end results for the optical characteristics of a 
plane-parallel layer of the blue phase in the case when a mon- 
ochromatic plane wave is incident on it (see Fig. 1). For the 
Bragg geometry (see Fig. la), the reflection coefficient R and 
the transmission caefficient Tof arbitrarily polarized light is 
given for the reflection T by the expressions 

R(P, e) ='I, ( I -P)  (Ra+R,.) +P( ] e*n,OIZR,+]e'n,ro 12Ro-), 

(14) 
R,=sinL ( x A L )  [ 1 b 1 A,?+sin2 (x6,L)I -', T=l-R (P, e) , 

FIG. 1. Diffraction scattering in the blue phase: a) Bragg geometry, b) 
Laue geometry. 

where 

A,=[a2+ ( b l l  b 1 ) (F,F,')I '", &=Ad2 cos Q (kos), 
cos Q (k,s) 

b =  a =  z ( r + 2 x )  
cos k1s ' 2x2 ' 

e and Pare respectively the vector and the degree of polariza- 
tion of the incident beam, s is the inward normal to the sur- 
face of the sample. For a fixed incidence angle, the parameter 
a is given by 

a=4(a-wB) sin 8/a, w ~ = T c ( ~  sin 87;) -I, (15) 

where 20 is the scattering angle and 1~/2 - B is the angle 
between k, and T; for a fixed frequency we have 

a=2 (8-OB) sin 20B, sin 8B=t/2x. (16) 

The polarization vectors e, and e, of the reflected transmit- 
ted light beams are determined, in the case of a completely 
polarized incident beam ( P = 1) by the equations 

eq= [n, cos a,+n2 sin a,etBq] einv, (17) 

where n, and n, are the eigenpolarizations defined by Eq. 
(13). For the reflected ( q = r) and transmitted ( q = t ) beams 
we have 

2ig+g-EZe sin (xdL) - i  

g + e i x A L -  E-e-ixAL - I a=? 

where 4 * define the ratio of the amplitudes E y/E in the 
corresponding solutions of the system (12) and are equal to 

r ] , ,  are equal to the phases of the first multipliers in (1 8), and 
E ;,, are the projections of the field of the incident wave (on 
the sample surface) on the eigenpolarizations. In the case of 
an unpolarized incident beam ( P = 0) the expressions for the 
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polarization characteristics of the reflected and transmitted sinZ(xA,L) 
R, = light take the form 7 vr = [ 11: k--k+ 

and the polarization vector of the reflected beam coincides 
with n:, if R, > R, and with n;, if R,. >R,. The transmit- 
ted beam, however, contains an additional polarization, i.e., 
n: at R, <R, and n> at R, <R,. Using Eqs. (14)-(21) we 
can easily find the polarization density matrix, i.e., all the 
polarization characteristics of the reflected (pr)  and trans- 
mitted ( p') beams for a partially polarized incident beam: 

ppr (e) Re+pT (l-P) R 
p'(P' e)= PR.+ ( I - P )  R I 

Ppt (e )  Te+pt (I-P) T 
P' (P, e) = 

PTe+ ( I - P )  T 

wherep(e),p,R, ,R, T, , and Tare the polarization density ma- 
trices and the reflection and transmission coefficients in the 
case of polarized and unpolarized incident beams, and are 
determined by relations (14)-(21) with P = 1 and P = 0. 

It must be noted that the expressions given here were 
obtained neglecting the reflection of the beam from the die- 
lectric boundaries, i.e., assuming equality of the average die- 
lectric constant of the blue phase to that of the bordering 
medium. When the average dielectric properties of the blue 
phase and of the external medium differ noticeably, the re- 
flection from the dielectric boundaries can exert a noticeable 
influence on the considered properties. It  is necessary then to 
use the known  method^'^,'^ to take into account the dielec- 
tric boundaries. In our problem this raises no fundamental 
difficulty. 

Equation (1 8) determines also a traditionally measured 
quantity, namely the rotation of the plane of polarization of 
linearly polarized incident light in the sample. From this 
equation, in the case of circular eigenpolarizations nu, we 
obtain the following expression for the rotation angle p of 
the polarization plane of light passing through a layer of the 
blue phase: 

E+-t-  
- arg [ - 

The optical properties of a planar blue-phase layer, for a 
Laue geometry (Fig. lb), are also described by equations 
(14)-(23), provided the quantities R , , a d , ~  employed are 
given by the relations 

g - e ' " S ~ L  
- - - 

E+e-ixAL ( tg  a e i o )  
= [ E - - E +  

E + E -  sin ( d L )  
( tg a e i 6 )  ' = [ 

E--E+ 
2iei""t+E- sin (dl) 

rl'= arq[\ 
E - - E +  -1 .=, . 

(24) 

THICK AND THIN SAMPLES 

The equations of the preceding section, which are valid 
for an arbitrary thickness L of a blue-phase layer, take a 
simpler form for small (Lxl F, 14 1) and large (LxI F, 1 tP 1) 
sample thicknesses. 

For thick layers, just as in a cholesteric, total reflection 
of the light with one of the eigenpolarizations n: takes place 
in a certain range of frequencies (or angles). The polarization 
of the reflected light coincides in this case with the corre- 
sponding polarization ni. Inside this region there exists in 
the general case an interval of total reflection of light of any 
polarization (see Fig. 2). The total-reflection interval 
( A d o )  and the selective reflection interval (Aw/w)" coin- 
cide with the smaller and larger of the quantities, IF, 1,) F, \ ,  
respectively, and their midpoint coincides with w,. 

For unpolarized incident light, the polarization charac- 
teristics of the reflected light, averaged over the frequency 
(or the angle) within the region of the selective reflection, 
correspond to a partially polarized beam with a degree of 
polarization 

P'=[ [ Fa[-IFa,I I/[IFoI+IFa*II (25) 

and with a polarization vector nf that describes the polariza- 
tion-selective reflection of the light. 

For thin layers, the equations of the preceding section 
go over into the customarily analyzed'.2 simpler expressions 
of the kinematic theory of scattering. We then obtain for the 
diffraction reflection coefficient 

A 

R ( e ,  e') - 1 e'*eze 1 ' ,  (26) 

FIG. 2. Qualitative form of the frequency (angular) dependence of the 
reflection coefficient of unpolarized light for samples with various thick- 
nesses: 1) thick, 2) thin, 3) intermediate. 
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where e and e' are the polarization vectors for the incident 
and reflected beams. The maximum and minimum reflection 
is obtained, just as in the dynamic analysis, for light with 
eigenpolarizations n: defined in (13). The polarization of the 
reflected light, just as above, is then described by the vectors 
n:. Thus, the polarization characteristics of the scattering 
turn out to be independent of the sample thickness for light 
with eigenpolarization nz. For arbitrary polarization of the 
incident light, however, the characteristics become depen- 
dent on the thickness. In particular, for unpolarized incident 
light we obtain now for the degree of polarization of the 
reflected light, in place of (25), 

On the other hand, the polarization represented in the re- 
flected light is described as before by the vector n; (we as- 
sume for the sake of argument that the first term in the nu- 
merator of (27) is larger than the second). 

CONCLUSIONS AND COMPARISON WITH EXPERIMENT 

Let us examine the specific optical properties of the blue 
phase that follow from the restrictions obtained above on the 
forms of za(r) and 2,. We note first that almost all the reflec- 
tions are chiral. A reflection is defined here as chiral if it has 
different diffraction reflection coefficients for right- and left- 
hand circular polarizations [the eigenpolarizations (see (13)) 
are elliptic for chiral reflections and linear for nonchiral 
ones]. This is not surprising since we have confined ourselves 
to left-right asymmetric (enantiomorphic space groups). 

Reflections are nonchiral if the reciprocal-lattice vector 
is parallel to three-fold and four-fold axes (i.e., the reflec- 
tions (hhh ] for all groups and the reflections ( h  00 J for the 
groups 0 ',0 3,05), as well as the reflections ( h  001 at 
h = 2n + 1 for the group T4, at h = 2n for the group 0 2, at 
h = 4n + 1 for the groups 0 ' and 0 6, and at h = 4n for the 
groups 0 4,0 6,0  ',O 7. 

Let us discuss briefly on the basis of the foregoing analy- 
sis the experimental data on the optical properties of the blue 
phase and those restrictions, which follow from the known 
results, on its structural properties. We must first note once 
more that the restrictions imposed here on the possible 
structures, which reduces to considering only cubic blue 
phases, is connected with the experimental data, but it still 
leaves a wide scope for an unambiguous choice (there exist 
thirteen noncentrosymmetric cubic space groups16). The re- 
sults of recent i n ~ e s t i ~ a t i o n s , ~ ~ . ' ~  which have revealed in 
particular the chirality of the reflections observable in the 
blue phase, make it possible to decrease substantially the 
number of possible structures and to discard the primitive 
and phase-centered cubic lattices. The only remaining possi- 
ble space groups ofthe blue phase are T 3,T ',O ', inasmuch as 
for the remaining groups (see Table I), there must be non- 
chiral ones among,the first four reflections. It  must be em- 
phasized here that the fact that only one of the investigated 
circular-polarization reflections is selectively backward26 
imposes on 2, restrictions that do not follow from pure sym- 
metry considerations for any of the considered groups (see 
Table I), and can be used to decrease the number of the pa- 

rameters of the theory that describes phase transitions into 
the blue phase. For example, for T corresponding to the h 00 
reflections, this restriction takes the form of the relation 

in which either sign of 2i&GZ is admissible. 
The relations presented above, particularly Table I, 

show that the structures T 3  and T5 can be experimentally 
distinguished from 0 ' in the polarization properties of the 
reflections, without resorting to phase relations between the 
2,. Indeed, it follows from Table I, e.g., that reflections 200 
in the groups T and T 5  correspond to nonzero E:, compon- 
ents, which are indeed those which distinguish the polariza- 
tion properties of these reflections for T and T ' from those 
for 0 '. Thus, the intensity of the diffraction of n--polarized 
light into n--polarized in the kinematic approximation for T 
and T 5  is given by the expression 

Zxn - (E:,)' - 2 ~ 2  (E:, cos2 cp  + E& cos 2 9 )  sin2 e 
+ [(e& cos2 cp  + E&, cos 2 ~ ) ~  + (e;J2 sin2 2cpJ sin4 8, (28) 

and for 0 ' by the expression 

I,, - [(";J2 cos2 2q $ ( ~ 2 ~ ) ~  sin2 2cp] sin4 0, 

where g, is the azimuthal angle of the scattering plane mea- 
sured relative to the x axis (from they axis). From (28) and 
(29) it follows that when the Bragg angle 8 is decreased the 
intensity I,, tends to zero for 0 but remains finite for T 3  
and T5. Another possibility of distinguishing between these 
groups is that the reflection 400 is chiral in the groups T and 
T 5  and nonchiral in 0 '. This reflection has not yet been ob- 
served, and in connection with the foregoing its observation 
and investigation of its polarization properties might be de- 
cisive for an unambiguous determination of the structure of 
the blue phase. As for the space groups T and T ', an experi- 
mental determination of the intensities and polarization pro- 
perties of the scattering for the observed reflection still does 
not permit a choice between them, and for an unambiguous 
determination of the space group it is necessary to establish 
experimentally the phase relations between the 2,, or else to 
invoke independent premises or data. Thus, it is useful to 
bear in mind that out of the three groups discussed, only one, 
T ', is bound to correspond to the space group of the defects, 
i.e., to a lattice of points at which the dielectric anisotropy 
and the order parameter vanish. This circumstance can be 
used to distinguish between the groups T 3  and T5, e.g., with 
the aid of the NMR spectra which depend on the order pa- 
rameter. 

It is of interest also to cast light on the degree to which 
the admissibility of local biaxiality of cholesterics and of the 
blue phase, which is discussed in the l i terat~re,~ '  can mani- 
fest itself in optical measurements. As seen from Table I, the 
presence of local anisotropy in the dielectric characteristics 
of the blue phase leads to consequence that manifest them- 
selves clearly, namely the lifting of the extinction for a num- 
ber of reflections that are forbidden in the absence of aniso- 
tropy. One might assume that confinement to only uniaxial 
local anisotropy of E(r) could lead to elimination of certain 
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extinctions, while biaxial anisotropy of k(r) lifts additional 
extinction of the reflections. This is not the case, however, in 
cubic groups, and the aggregate of the allowed reflections 
turns out to be the same for both uniaxial and biaxial aniso- 
tropy of 2(r). The presence of local biaxiality of k(r) does not 
require satisfaction of the relation (8) between the functions f 
and rp, and leads for the Fourier harmonics 2, only to an 
elimination, connected with (8), of the integral relation 
between the 2,, which imposes at any rate weak restrictions 
on the intensities and phases of the existing reflections. On 
the whole, it must be stated that the prospects of determining 
the structure of the blue phase are more favorable compared 
with diffraction x-ray and neutron determinations of the 
structures of ordinary crystals. This pertains primarily to 
the determination of the phase shifts of the structure ampli- 
tudes, i.e., 2,. It is known that for an unambiguous determin- 
ation of the structure it is necessary to know, besides the 
modulus of the structure amplitude, also the phase. The 
phase of 2,, and by the same token uniquely also the struc- 
ture of the blue phase, can be determined with the aid of 
polarization measurements, which have been quite well de- 
veloped for optics. It is important here that the polarization 
vector of the form (17) must be determined in experiment 
completely, i.e., without neglecting the phase factors eiq. To 
determine eiq in turn, it is necessary, e.g., to produce interfer- 
ence between a beam reflected from the blue phase and a 
beam having known phase and amplitude characteristics. 

In optics, especially when laser sources are used, this 
interference can be realized by various methods. In particu- 
lar, it takes place between the diffraction reflection in the 
blue phase, as considered here, and the "dielectric" reflec- 
tion of light from its boundary, the latter reflection having 
well known polarization, phase, and amplitude properties. 
Without going into details of the corresponding methods of 
experimentally determining the phase shift from observa- 
tions of the influence of interference of the intensity and po- 
larization properties of the reflections, we emphasize that 
the use of these interference relations is a practically fully 
realizable method of measuring not only the modulus but 
also the phase of &, . 

MULTIPLE SCATTERING EFFECTS 

We have so far invoked, as usual, simplified kinematic 
formulas that follow from relations (14)-(24) in the limit of 
small sample thickness, to interpret the experimental results 
of the investigation of the structure of the blue phase. In this 
approach, the Fourier harmonics 2, are determined from the 
intensities of the reflections, and in view of the known diffi- 
culties of absolute measurements of the intensity, their accu- 
racy is limited by the relatively low accuracies of absolute 
intensity measurements. The latter in turn can raise difficul- 
ties in the experimental determination of the blue-phase 
structure, and in particular in the choice of a concrete model 
from among the number of competing possibilities. 

It should be noted that in principle 2, can be determined 
with much higher accuracy if dynamic effects are used rath- 
er than measurements of the reflection intensities. As fol- 
lows from (14)-(24), the reflection and transmission coeffi- 

cients, as well as the polarization characteristics, are subject 
at a fixed sample thickness to beats with changing frequency 
of the light (of the angle of deviation from the Bragg condi- 
tion), or when the thickness is changed with the remaining 
parameters fixed. The period of these dynamic beats and, in 
particular, the size of the region of selective~eflection, are 
directly connected with the scattering tensor F, i.e., with k,, 
and it is this which makes it possible to determine these 
quantities without measuring the absolute intensities. The 
situation here is perfectly analogous to the realized precision 
method of determining the structural amplitudes from Pen- 
dellosung (dynamic) beats in the diffraction of x rays29 and 
 neutron^.^ The difference is that the corresponding measure- 
ments in the optical band are much simpler to perform and 
have already been performed, e.g., for chole~terics.~' To be 
sure, it must be kept in mind that to observe dynamic effects 
the blue-phase samples must be perfect, and the feasibility of 
obtaining sufficiently perfect samples has not yet been inves- 
tigated. Another conclusion of the performed dynamic anal- 
ysis is the possible appearance in the blue phase of linear 
birefringence, the existence of which is connected with mul- 
tiple-scattering effects and does not contradict the cubic 
space group structure of this phase. We have in mind here 
the diffraction birefringence, which turns out to be cir~ular 
only for particular directions of light propagation in the blue 
phase, just as for light propagation along the cholesteric axis 
(see (23)), but leads in the general case to the appearance of 
linear birefringence. A characteristic feature of this birefrin- 
gence is its strong frequency (angular) dependence and the 
reversal of the sign in the selective-reflection region. 

The formulated statement follows from an analysis 
based on the formulas obtained. Thus, near an individual 
nonchiral reflection, but outside the selective-reflection re- 
gion, we find from (1 7) and (23) that the birefringence An is 
given by 

a b  'la b  I/* 
A ~ = - [ ( u ~ + - I F ~ I ~ )  la1 Ibl - ( ~ ' + - I F ~ I ~ )  Ibl ] , 

where F, and F2 are the amplitudes of the Bragg-angle scat- 
tering of the natural waves (see (12)). For chiral reflections, at 
intrinsic polarizations that differ considerably from circu- 
lar, the order of magnitude of the linear birefringence is also 
determined by (30). In the general case, the diffraction bire- 
fringence receives contributions not from one but from 
many reflections, and a special analysis is needed in this case 
(this problem was solved for x rays in Ref. 32). It can thus be 
concluded that the experimentally observed small linear bi- 
r e f r ingen~e~~  can be of diffraction origin, and it cannot be 
unconditionally regarded as an argument against the as- 
sumption that the blue phase is cubic. One more qualitative 
conclusion, connected with allowance for multiple scatter- 
ing, is the depolarization of the light beam, which follows 
from (14)-(24), even in perfect blue-phase samples, if the 
beams have a finite angular (or frequency) width. As a result, 
in a perfect sample even for fully polarized incident beam, in 
view of its inevitable frequency and angular divergences, the 
diffracted beams are only partially polarized and are charac- 
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terized by polarization density matrices averaged over the 
frequency o and over the divergence angle 0: 

(3 1) 
and by a non-unity degree of polarization 

P= r ( F , , - P ~ ? ) ~ + ~  I pf2 I 2~ 2. 

The quantities contained in (3 1) are defined in (22). The crite- 
rion for the need to take into account the discussed depolar- 
ization source is the degree of perfection of the sample, since 
in imperfect crystals the depolarization appears even for an 
ideally collimated monochromatic beam and can be substan- 
tially larger than the value given by (3 1) (Ref. 34). 

CONCLUSION 

In conclusion, it must be emphasized that the treatment 
of the blue-phase optics in the present paper is based on pure 
symmetry considerations and does not depend in any way on 
various details of the concrete models of the phase transi- 
tions into the blue It is therefore subject to less 
restrictions than the aforementioned theories, and the re- 
strictions revealed by a comparison with experiment can be 
used to construct various concrete models of the phase tran- 
sitions; this, in particular, was noted above in connection 
with the observed selectivity of the diffractive backward re- 
flection with respect to the circular polarizations. The ex- 
perimental observation of only four nonequivalent reflec- 
tions in the blue phase gives grounds for retaining only four 
nonequivalent vectors T in the Fourier expansion of the free 
energy lo in terms of the order parameter. At any rate, one 
can definitely regard the discarded terms as small. 

We note in this connection that the results of the sym- 
metry analysis presented here for the possible space groups 
of the blue phase agree with the results of Hornreich and 
Strikman, who used in their analysis a concrete model of the 
transition and, in particular, who connected the dimensions 
of the unit blue-phase cell at the transition point with the 
pitch of the helix in the cholesteric phase. 

As for the correspondence, proposed in Ref. 10, of the 
modifications of the blue phases to the following space 
groups: 

T5-BPI, Ob-BPIIa, T3-BPIIb, 

where the notation of Ref. 26 is used for the plasmas, it 
would be useful here, in order to establish reliable unambi- 
guity, to verify in experiment whether the corresponding 
phases have optical-property singularities that follow from 
the analysis carried out here for the concrete groups. It 
would also be useful, for the identification of the blue-phase 
structures, to measure the circular dichroism on the lines of 
the dichroic dye introduced into the liquid crystal. This per- 
tains primarily to the least investigated phase BP I11 (in the 

notation of Ref. 27), which precedes directly the isotropic 
liquid. 
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