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The mechanisms of self-action of intense sound in viscous homogeneous liquids are described and 
estimated theoretically. It is shown that dissipative mechanisms are predominant for a broad class 
of liquids. These mechanisms involve viscous heating and the excitation of "acoustic streaming," 
whose velocity clearly renormalizes the effective temperature. A number is introduced that dis- 
tinguishes this class (the thermal analog of the acoustic Mach number). The threshold energy 
values and the spatial scales of the thermal self-focusing of the sound pulses are calculated. The 
conditions are found under which the self-action process is more rapid than shock wave forma- 
tion. 

PACS numbers: 43.25.Nm, 62.60. + v 

1. INTRODUCTION 

1. Nonlinear acoustics is a thoroughly studied division 
of the mechanics of continuous media and important results 
have been obtained by its methods. 'J These have consider- 
ably deepened our understanding of the structure and pro- 
perties of condensed matter. At the present time, the pheno- 
menology of the interaction and self-action of sound waves 
through the elastic mechanism of nonlinearity (the interac- 
tion of "sound with sound") has been developed in detail in 
the researches of Khokhlov and co-workers (see Ref. 2). 
Nonlinear mechanisms of a nonacoustic nature (see, for ex- 
ample, Refs. 3-7) have been studied with considerably less 
detail. 

The chief obstacle to the generation and transformation 
of narrow-band acoustic signals (similar to what prevails in 
nonlinear optics) is the weak dispersion, which does not 
hinder the rapid enrichment of the spectrum of an intense 
sound with harmonics. One of the solutions here is the appli- 
cation of methods which introduce artificial sound-velocity 
dispersion; in liquids, mode dispersion of acoustic wave- 
g u i d e ~ , ~  dispersion of boundary  impedance^,^ and impurity 
resonances, are possible (see, for example, Ref. 10 for gas 
bubbles in a solution). The application of such methods is 
based on the fact that nonlinear wave effects are made up of 
nonlinear distortions that build up with the distance tra- 
versed by the wave packet in the medium, and the quantita- 
tive measure of them is the spatial scale L over which the 
distortions reach a definite level. For the process of the mul- 
tiple generation of harmonics, this is the formation discon- 
tinuity length L ,,, , which is inversely proportional to the 
amplitude of the sound and to the coefficient of elastic non- 
linearity E. The dispersion that is introduced destroys the 
phase agreement of the harmonics, extending the scale for all 
the frequencies except for a limited set singled out by the 
dispersion curve. ' 

Along with this, there is another logically admissible 
possibility that consists of assigning to the system a scale L, 
less than L ,,, , that is independent of the elastic nonlinearity. 
It is clear that such a scale can be realized only by including 

excitations of another physical nature in the interaction with 
the sound. 

2. The mechanisms of such excitations are classified 
into parametric (motion of the fluid, brought about by adia- 
batic external action) and nonlinear thermohydrodynamic 
mechanisms. The number of thermodynamic mechanisms 
for nonlinear sound effects is exactly equal to the number of 
pairs of conjugate coordinates and forces that describe the 
system under consideration. This is first of all the universal 
thermal (entropy) mechanism, which, together with the elas- 
tic mechanism comprises the entire set for classical liquids 
far from phase transitions. In solutions, a concentration 
mechanism is added to it-a redistribution of the density of 
the components, brought about by pressure gradients, and 
also sound-induced chemical transformations. In conduct- 
ing liquids, interaction of the sound waves should take place 
via excitation of magnetohydrodynamic vibrations, and in 
polarized liquids via low-frequency electrical excitations (in 
this connection, the anisotropic liquid-crystal mixtures and 
ferroelectric properties are especially interesting"). 

The diversity of these effects is sharply narrowed near 
phase transitions. The anomalous increase in the fluctu- 
ations of the order parameter singles out in the pretransition 
regions only one mechanism that is connected precisely with 
the excitation of oscillations of the order parameter. Near 
the stratification point of solutions, for example, the concen- 
tration mechanism should predominate, while around the 
boiling point, the elastic mechanism, and so on. It  is essential 
that in these regions, the discussed effects should not only be 
emphasized but should also be most informative. The local- 
ity, the adjustable duration, and the intensity of the action of 
the sound open up here possibilities of, say, programmed 
"motion" over a specified trajectory in the space of the criti- 
cal variables and, as a consequence, of a detailed measure- 
ment of the pretransition values of the parameters over a 
wide range. A promising development of the idea of Ref. 12, 
is the realization of a program of acousto-thermodynamic 
investigations. This program should first include an analysis 
of the kinetics of phase transitions13 under the action of in- 
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tense sound. Its second part, pertaining to methods of prob- 
ing phase tansitions, can be established by the study of non- 
linear acoustical transformations. The employment of 
practically all of the phenomenology of nonlinear optics is 
useful here.14 Among the investigated effects we should in- 
clude scattering by excitations of this or that nature-spon- 
taneous and stimulated, including those of acoustical spec- 
t ros~opy. '~  A number of theoretical and experimental 
results have already been obtained along these lines; for ex- 
ample, the possibility has been shown of the reversal of the 
wave front of acoustic beams.16-j9 Studies of the self-action 
of sound beams have a special value. One aspect here is the 
establishment of maximum possible transfer of sound energy 
to a thick layer of liquid, in particular for the purpose of 
acoustic probing. Another aspect is connected with the ki- 
netics of the destruction of matter; here, as in the similar 
optical case, new physical effects can appear in principle. 

3. It  is premature at the present time to analyze in detail 
the applications of nonlinear thermohydrodynamic phe- 
nomena. The analysis of the concentration, magnetohydro- 
dynamic, and other mechanisms is the subject of separate 
studies. Here we shall investigate a new class of nonlinear 
acoustic effects connected with the thermal mechanism. It is 
an important problem by virtue of its universality-sound in 
principle should increase the temperature of any liquid (a 
probable exception are mixtures in which endothermic reac- 
tions are excited), although, of course, they differ in their 
susceptibility to sonic heating. The establishment of an ex- 
plicit quantitative description of the susceptibility is one of 
the results of our work. 

The main content of this paper is a detailed analysis of 
the conditions of observation of thermal self-focusing of 
sound (TSFS) in a viscous liquid. This effect was suggested 
by Askar'yan3 and is based on the monotonic decrease of 
sound velocity with temperature usually observed in liquids 
(exceptions are water at T<74 "C and a number of liquid 
metals-bismuth, antimony, tellurium). The continuous re- 
gime of TSFS has been investigated theoretically by Zabo- 
lotskaya and K h o k h l o ~ . ~  A system of truncated equations 
that completely describe TSFS in both the continuous and 
the pulsed regimes is described in Sec. 2. The time of estab- 
lishment of the continuous regime amounts to several min- 
utes and convective mixing over the entire volume of the 
liquid can smooth out the effect; it is therefore necessary to 
resort to a nonstationary regime. 

The role of another universal mechanism of self-focus- 
ing is also made clear and estimated in Secs. 2 and 3-hydro- 
dynamic flow ("acoustic streaming"), a self-action that takes 
place through excitation by sound that is absorbed by the 
medium and is diffracted. The flow always attempts to res- 
tore the level of the sound intensity; therefore, it defocusses a 
beam with limited cross ~ e c t i o n . ~  In our analysis, this is 
clearly expressed by the introduction-for the continuous 
regime-of an effective temperature, which is less than the 
real by an amount that is proportional to the flow velocity. In 
the nonstationary regime the flow, it turns out, limits the 
length of the pulse that can be focused thanks to the thermal 
nonlinearity. 

In addition, our analysis predicts a new effect of stimu- 
lated scattering of sound by a temperature wave (it was first 
considered in more limited form in Ref. 20), and also its 
analog-scattering from a sound-induced low-frequency hy- 
drodynamic wave. 

2. DERIVATION OF THE TRUNCATED EQUATIONS OF SELF- 
ACTION OF QUASIMONOCHROMATIC SOUND 

1. The description of the nonlinear acoustical effects in 
a homogeneous absorbing liquid is contained in a set of ther- 
modynamical equations, including: 

the equation of continuity 

the balance-of-forces equation 

and the equation of entropy production 
pT(dt+vbdb) S-xdb2T 

=c (abvb) 'f 'T@.,vb [da~b+ab~o-Z/38a(ld&] . (3) 

Herep,p, Tand s are the mass density of the liquid, the 
pressure, the temperature, and the entropy density, respec- 
tively; v,,, are the Cartesian components of the velocity; 7, c, 
and x are the coefficients of shear viscosity, bulk viscosity 
and thermal conductivity. Later on by these same letters ( p, 
p, T, s) we shall denote the departures from the equilibrium 
values labeled by the subscript zero. The equation of state 
completes the set (1)-(3), i.e., the functions p(p ,  T )  and 
s(p,T); at small departures from equilibrium, it suffices to 
know the first few thermodynamic derivatives ofp and s with 
respect top  and T: (dp/dp), = pp , (d2p/dT '), = pTT, etc. 

2. In correspondence with what was said in subsection 1 
of Sec. 1, we require that the observation distance L (i.e., all 
the spatial scales of accumulation of the described effects; in 
our problem, this is primarily Lf-the focal distance of the 
nonlinear thermal lens) be shorter than the distance L ,,, over 
which the discontinuity is formed: 

L<L,=(poco5) "Y(21) "me. (4) 

Here o is the frequency, I the sound-wave intensity input, 

is the coefficient of elastic nonlinearity, a is the coefficient of 
volume thermal expansion, c, is the equilibrium sound ve- 
locity, c, is the isobaric specific heat. 

Violation of the inequality (4) does not of course prevent 
the effect of TSFS; however, the picture becomes so compli- 
cated in this case (in particular, the discontinuity in this case 
should form more rapidly on points of the axis than on the 
periphery, if self-focusing takes place) that it does not lend 
itself as yet to an analytic description. The quantitative treat- 
ment of the experiment is also made more difficult under 
these conditions, although determination of the paraxial dis- 
continuity can provide a qualitative indication of the TSFS. 

Assuming condition (4) to be satisfied, we can solve the 
problem in the quasimonochromatic approximation- as 
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the unexcited solution we employ the solution, linearized 
about the equilibrium point, in conjunction with the linear 
equation of state: 

The dispersion equation has two solutions: w = 0 and 
o = cok (the wave vector k is directed along the x axis for 
definiteness), and the high-frequency complex amplitudes 
are connected by the relations 

aTo T"=-  1 pw; v="=- 
pot, poco PW. 

In correspondence with this, we must seek a solution of the 
nonlinear problem in the form 

p=p"+ (pa/2) exp [io (t-dco) ] +c.c. (7) 

(and similarly for the variables T and u, ), assuming that 
p" and so forth are slowly varying functions of t, x ,  and 
r, = (O,y,z). 8, -d, -p, VI = (O,dy ,a,) -p 1'2p is a symbol- 
ic smallness parameter. This is the well-known geometrical 
approximation of diffraction theory.21 

The correctness of such a quasimonochromatic descrip- 
tion in our problem is determined by a whole series of param- 
eters. We first require the satisfaction of the inequality L / 
L ,, < 1; further, changes in the input amplitude of the sound 
should be slow (in wave scales): the beam width a > 2vc,Jo, 
the pulse duration T > o.- ' In order to establish all the other 
limitations, we carry out the natural normalization of the 
thermodynamic variables to their equilibrium values, and 
the coordinates to the wave scales; the entropy density is 
normalized to c, , the velocity to c,. In the new variables (we 
use for them the same notation as before) the set (1)-(3) has 
the form 

B;p+ao [ ( 1 s ~ )  vb] '0, (1') 
(~+P.P) (at+pVvbab) v.+a.p=p,, [qabe~,+ &+<is) a,abv,l, 

- (2') 

(l+y,p) (l+p,T) (at+p,vbab)s=pxxab2T+p.2prlpTTi 

x [f(abvb) 2 + ~ a , ~ b ( a . ~ , + a b ~ . - 2 i , s , b a c ~ , )  I (3') 

with the symbolic parameters p, , p,, p, , p, and the real 
parameters 

c02 - , )  . 8- X; ; M,-'=- 
( t , f l ) = - 7 - 7  

poco poco CP Tocp 

These terms in (1')-(3') which are marked by the symbols p 
should be smaller than the terms pertaining to the linear, 
nondissipative system. This requires first the smallness of 
the departures from equilibrium which is expressed by the 
conditionsp, ( 1 (it is really governed by the inequality v(cO) 
and pT (1 i.e., the inequality T /To(l). The smallness of 
terms withp, andp, is expressed by the inequalities (c,i)( 1 
(the sound absorption coefficient per wavelength is smaller 
than unity) and & < 1 (the time of diffusion spreading of the 
temperature excitation in a region with dimensions of the 
order of a wavelength is much longer than the period of the 
sound oscillations). The last two inequalities are satisfied in 
the ultrasonic range by a wide margin: at To = 20 "C and at a 

frequency w/2r = 1 MHz, 11 = 2.4X in benzene, and 
i = 2.0 x lop3; in very viscous glycerine; the corresponding 
values of & are" 3.5 X lo-' and 1.6X lo-'. 

The parameter M , 2, as follows from (3), characterizes 
the susceptibility of the liquid to viscous heating by the 
sound. It  is equal to the ratio of the square of the velocity of 
sound to the velocity of thermal motion (the thermal analog 
of the reciprocal of the Mach number) and determines in 
principle the intensity of the thermohydrodynamic effects in 
some liquid. Formally, those terms of (3') which correspond 
to viscous heating do not vanish in a consistent analysis of 
the orders of smallness only if M ;  2-p-1) 1. In viscous 
liquids, this is actually the case: under normal conditions, 
M , (benzene) = 3.5, M , (glycerin) = 5.3. For compari- 
son, M , (water) = 1.7; for an ideal monatomic gas, M , 
= 0.4. 

3. The quadratic term in the expansion ofp andp in the 
equation of state does not make a contribution to the self- 
action (it does not have in its spectrum a component with 
frequency a ) ,  once (4) is assumed; therefore, we carry out the 
expansion up to cubic terms. The missing connection 
between the amplitude of the transverse velocity v, = (0, 
vy ,v,) and the amplitude of the pressure is obtained-in the 
first nonvanishing order-from (2): 

Now substituting (7) with the constraints (6) and (8) in 
(1)-(3), eliminating terms with the frequencies o = 0 and 
w = cok, we obtain a system of truncated equations that de- 
scribe the self-action of the sound. The equation for the 
changes in amplitude of the sound pressure has the form 

( c ~ ~ , S ~ , + ~ C ~ ~ V ~ ~ / ~ ~ + C ~ S )  pw=iopa[vrO/co+ (I-al) 

x / p" 1 2/8 ( ~ ~ ~ 0 2 )  z-a2po/pO~02-aST0/TO]. (9) 

The absorption coefficient (with account of only the viscos- 
ity mechanism) is 

s= (r;+4q/3) w2/2(poco3). 

The remaining coefficients are expressed in terms of the 
thermodynamic derivatives of the density and the entropy: 

The constant q is small in all liquids ( 5 lo-' deg-s2-cm-g- I); 
therefore the coefficients ai are determined with high accu- 
racy by only the quantity E and by the derivative of the sound 
velocity with respect to T: a ,  Z(E - 1)2/2, a, = E - 1, 
a, =: - Toyp /2, where y, = (dln cO2/dT), . 

The terms on the right hand side of (9) correspond to 
four mechanisms of self-action of the sound: a) excitation of 
longitudinal flow ("acoustic streaming"), b) noninertial 
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change of state, c) generation of pressure video pulses 
("acoustic detection"), d) heating of the liquid by intense 
sound. 

4. The total changes in the sound intensity-both dissi- 
pative and diffractive attenuation-bring about the develop- 
ment of streaming. 

Y = q/po is the kinematic viscosity. 
Two mechanisms-viscous and adiabatic-also lead to 

heating: 

Here x = x(pocp ) - I  is the coefficient of thermal diffusivity, 

Finally, acoustic detection is described by the equations 

The driving terms on the right side of (12) correspond respec- 
tively to the combined dissipative and adiabatic (through the 
nonlinearity of the equation of state) mechanisms. 

3. ANALYSIS OF THE CONDITIONS FOR OBSERVATION OF 
TSFS 

1. In order to establish the possibility for observation of 
thermal self-focusing, we investigate the system (9)-(13), us- 
ing the results of calculations of its optical analog in the 
aberration-free app r~x ima t ion .~ ' .~~  

For the inertia-free mechanism (b), the formula 

L,= ( ~ 1 2 )  ( co /J  Acl ) Ih ,  (14) 

determines the focusing length. Here A C Z E ~ I ( ~ ~ ~ C ~ ? ) - '  is 
the nonlinear change in the sound velocity. Comparing (4) 
and (14), we obtain the result that the ratio 

L f / L p 4 n a / A >  I 
(A = 2rc0/w is the wavelength), i.e., this mechanism cannot 
produce self-focusing. The reason is quite understandable: 
both processes-the formation of a discontinuity and the 
narrowing of the beam-are governed here by the same non- 
linearity, but the first of them is a plane-wave mechanism, 
i.e., more rapid, while the second is diffraction origin. 

Mechanisms (a), (c), and (d) are generally nonstationary. 
It is easy to estimate their establishment times from (10)- 
(12), by eliminating v, with the help of (13). We get, corre- 
spondingly, 

e ( v )  =aZ/v, e ( p )  =alto, e ( T )  =a2/x. (15) 

The numerical values of these times form a completely deter- 
mined sequence (we made estimates for benzene and glycerin 
at a = 0.5 cm): 

The fastest mechanism (c) of acoustic detection, as is seen 
from this estimate, is always stationary if we do not enter 
into the range of frequencies above 10-100 MHz. In the 
steady-state region, it follows from (12) t h a t p O ~ ~ I / c o ,  and 
the estimate according to (14) again gives Lf/Ld,, -a/A. 

Thus, over the entire real range of T, the contribution to 
the self-action of the beam, observed against the background 
of the developing shock wave, can be made only by the me- 
chanisms (a) and (d)--excitation of streaming and heating. 

2. We now compare the intensity of the viscous (T, ) and 
adiabatic (T,) heating. At TBT(T) we have Ta z O  (this is 
simply a uniform change of beam temperature). For a non- 
stationary regime, their estimate from (1 1) is 

whence T,/T,)l, i.e., only the contribution of viscous 
heating is achieved in practice if we consider media with 
S 2 10-2-10-3 cm- ' in the case of pulse lengths greater than 
(1-10) m - I .  

There are two reasons for the excitation of streaming. 
Its maxivelocity, which is due to sound attenuation in the 
stationary, T > T(u), and in the nonstationary regimes, is esti- 
mated from (10) and (9): 

The diffraction attenuation alone generates streaming up to 
the velocity u, , the maximum value of which is determined 
by the dependence I ( x ) z I  (0)[1 + (X/L,)~]-', where L, is 
the diffraction scale of beam spreading and, is equal, in the 
absence of self-action, to - wa2/co. It follows from (10) that 

for T > T(U) and T < ~ ( v ) ,  respectively. The ratio of v, to v, in 
this and the other case is equal to 26Ld and in principle can 
take on values of the order of 1-10, i.e., the contributions of 
the dissipative and diffractive sources of streaming can be 
comparable. Here, however, we encounter the following fine 
point: in seeking the threshold of self-focusing, we should 
assume L,-+W, since at the threshold (by definition) the 
diffractive spreading is compensated by the nonlinear self- 
compression. Thus, in theestimate of the possibilities of self- 
focusing, we need to take into account only the. viscous 
source of the flow; the exact picture of its development in the 
self-focusing is complicated and deserves a special analysis. 

3. The estimates given in subsections 1 and 2 allow us to 
simplify the complete system (9)-(13) considerably. In the 
continuous regime, when T > T (T) ,  it reduces to only two 
equations: 

- 
where the effective "temperature" T =  To  + 2v:(coyp)-I. 
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The system (18) is identical to the system that describes (de- 
pending on the combination of the signs of the right-hand 
sides) the self-focusing or self-defo~using.~~ 

Self-focusing leads to narrowing to the beam if (aside 
from the negative nature of y,) a = x(7!yp Ic$)-' < 1 the 
loss of heat by streaming does not compensate for the heat- 
ing. In viscous liquids, the inequality a < 1 is well satisfied; a 
(benzene) = 2 x  10W2,  glycerin) = 3 x lo-'; the choice of 
the liquid that is capable in principle of assuring self-focus- 
ing is not a difficult one. 

The focal length of the thermal lens23 is equal to 
L, = (x/SIy, 11)'12, and the condition (4) requires the satis- 
faction of the inequality 

if the mechanism of absorption is the classical one. At a fre- 
quency of 1 MHz, the condition (19) is satisfied in benzene 
and-with a margin of almost two orders of magnitude-in 
glycerin. In the first case, however, the damping 6-u2 is not 
exactly satisfied; for similar liquids, (19) is replaced by a 
more general condition, which limits the frequency range: 

Substitution here of the parameters of benzene and glycerin 
yields a positive result for w/27rz 1-10 MHz. 

It remains only to estimate the temperature changes 
produced by the sound; they should not be too large in order 
not to destroy the homogeneity of the liquid: 

T"26a211x= (21) Y, I ) (ai&;p 
It then follows that the overheating is not too large, 
To- 1 "C, even if a shortfocus lens is formed: Lf ~ 8 . 5  cm 
(benzene) and 16 cm (glycerin). The attenuation at such 
lengths is also small: SLf = 8 X loa2  (benzene) and 4 x lo-' 
(glycerin). The corresponding intensities are 
I = x(2Sa2)-' = (0.3-0.2) W/cm2. 

4. In the pulsed self-focusing regime, the critical param- 
eter is the energy W = na21r; it also determines the focal 
length of the lens; therefore the conditions of observation of 
self-focusing should impose now the lower limit of the dura- 
tion of the pulse. In the experimentally most convenient 
range ~ ( v )  < T < T(T), this limitation is governed first of all by 
the requirement up < col yp I T0/2-the thermal converging 
lens should be stronger than the diverging streaming lens. 
Substitution of formulas (16) and (17) in the latter inequality 
yields 

In glycerin, T ,  = 7 . 6 ~  s-the heating is stronger than 
the streaming over the entire range T > T(U) Benzene defo- 
cuses-because of the more developed streaming[r] (ben- 
zene)/p(glycerin) = 4 X pulses of duration less than 
4.9 s. 

We find the critical self-focusing energy by equating Lf 
(14) to the diffraction length L, introduced in subsec. 2, with 
accuracy to within the numerical factor 8 lAcl/c, = (0.61A / 
a)2, where the change in velocity Ac is given by the substitu- 
tion of (16) in (9): 

For benzene, this quantity amounts to 63 J, for glycerin, 340 
3. We recall that up to now we have used in the estimates the 
well-known tabulated data for the frequency w/2r = 1 
MHz. The quantity Wcr falls off sharply with increase in 
frequency; for the classical mechanism of absorption, it is 
proportional to wd4; at o/27r = 3 MHz, for example, Wcr 
(glycerin) = 4.2 J. 

The self-focusing length, in this regime, 

in glycerin, is already equal to 3-8 cm at frequencies of 1-3 
MHz, when the threshold is exceeded by 1.5 times. 

The condition (4), with account of (22), imposes, as 
pointed out above, a limitation on the pulse length: 

at 6-02 it does not depend on the frequency; T, (ben- 
zene) = 1.8 s, T, (glycerin) = 0.6 s. This estimate essentially 
prohibits the transition to durations r < ~ ( v ) .  

The absolute increase in the temperature can be calcu- 
lated by using (16) and (21); 

T=W(0.61h/2a)2/1 yp 1 W,, . 
For glycerin at W/Wc, = 1.5 and a = 0.5 cm we have at 
frequencies of 1 and 3 MHz T = 12 and 1.5 "C, respectively, 
i.e., no dangerous overheating of the liquid takes place. 

4. CONCLUSION 

Observation of continuous TSFS is entirely realistic in 
terms of the physical parameters a source power below one 
watt in a beam with a radius of several millimeters at fre- 
quencies of 1-3 MHz. It is required, however, by the geome- 
try of the experiment that the development of convection be 
maintained for a period of time of the order of minutes. 

Realization of the pulsed TSFS regime is possible in the 
same frequency range in the case of pulse durations T from 
hundreds of milliseconds and upward; in the opposite case, 
at above-critical values of the energy, a shock wave is gener- 
ated. Removal of the defocusing effect of the acoustic 
streaming is also possible in sufficiently viscous liquids in 
practically the same range of T. No dangerous overheating 
should take place here so long as the energy does not exceed 
the critical value (which amounts to tenths of a joule in the 
best case) by not more than 2-3 times. It is essential that even 
at such energy levels, the observation distance should 
amount to no more than several (up to ten) centimeters. 
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