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A two-field model is set up which describes a binary solution of linear heteropolymers in chemical 
equilibrium. The region of low concentrations and large mean molecular lengths is investigated. 
It  is shown by the renormalization group method that in first-order approximation in E a phase 
transition of first order in the monomer activity occurs in the solution. It is also shown that a 
sufficiently long heteropolymer molecule in such a solution forms a globule. Results are presented 
of calculations for a solution containing cyclopolymers. 

PACS numbers: 82.60.Lf 

51. INTRODUCTION 

The analogy between a solution of linear homopo- 
lymers and the n-component field theory in the limiting case 
n 4  (Refs. 1 and 2) has made it possible to go beyond the 
framework of the mean-field theory and to track, using very 
simple polymer models, the irregularities in the behavior of 
solutions of long molecules. The thermodynamic character- 
istic of the solution and the average dimensions of the mole- 
cules are obtained in this case directly from microscopic 
characteristics of the monomers. 

For heteropolymers, however, there is no such theory 
and the existing studies do not go beyond the framework of 
the mean-field approximation. Many of them pertain to 
melts and to concentrated solutions, and are based on a 
phenomenological approach. This phenomenological ap- 
proach is inapplicable to investigations of dilute and semi- 
dilute solutions of long heteropolymers. 

The present paper makes use of a method similar to the 
des Cloizeaux formalism for homopolymers. It  constitutes a 
simplified variant of a formalism developed by Erukhimo- 
vich in his dis~ertation.~ The polymer is represented as con- 
sisting of beads (monomers) strung on flexible bodiless fila- 
ments. For simplicity it is assumed that the monomers are 
located at the sites of a primative cubic lattice with a period 
a. When setting up such a model with real polymers, the 
polymer segment (two beads connected by a filament) corre- 
sponds not to an individual link of the molecular chain, but 
to a statistical Kuhn segment, i.e., the distance along the 
chain on which the orientations of the links do not influence 
each other. We consider the simplest case, when there are 
only two different monomer species. The difference between 
the properties of the monomers manifests itself in the differ- 
ent bead-interaction energy (the radius of the interaction is 
the same and equals a) and different lengths of the segments. 
The employed formalism, just as the des Cloizeaux formula, 
is applicable only to solutions that are in chemical equilibri- 
um with respect to the breaking and formation of bonds 
between the monomers (segments). Thus, polymers in a solu- 
tion are statistical and have no definite primary structure. 
The partition function of such a solution can be reduced to 
the partition function of the two-field model. The renormal- 
ization group equations of this model are solved in the first E- 

approximation. The solution at high values of the correla- 
tion radius lie outside the region of the physical stability, 
thus pointing to the existence of a first-order phase transi- 
tion. This result is confirmed by a calculation of the equation 
of state of the model. This is followed by a "reconstruction" 
of the solution of the polymer problem on the basis of the 
results obtained for the field model. The physical conditions 
under which this phase transition can take place are investi- 
gated. 

The article is arranged as follows. In $2 is described the 
field model and relations between the polymer and field 
quantities are given. The Hamiltonian of the dilute solution 
is determined in $3. The physical meaning of the results are 
investigated in $4 and certain quantitative estimates are 
made. The results are presented for a solution containing 
cyclopolymers. 

Q2. DESCRIPTION OF MODEL. CORRESPONDENCE 
BETWEEN FIELDS AND POLYMERS 

We consider a solution of linear two-component hetero- 
polymers. The polymers in the solution can be torn up into 
shorter strings and connected into longer molecules. It  is 
assumed that equilibrium with respect to this reaction and 
with respect to all the thermodynamic degrees of freedom 
has been established in the solution. In addition, it is as- 
sumed that the volume considered is part of a large reservoir, 
i.e., a grand canonical ensemble is formed. This ensemble is 
completely specified by the corresponding chemical poten- 
tials pi or by the activities 

Its partition function is 

where E is the configuration energy and N, are the numbers 
of the chemical bonds and polymer ends. The summation is 
over all the different configurations of all possible polymers 
that can be produced for the given Ni, and also over all the 
N,; Z is also the generating functional for a solution with 
definite Ni. 
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In the approach of the present paper we write Z in the 
form of the partition function of a certain field model with 
Hamiltonian H: 

This allows us to use the results obtained in field theory. 
Real physical systems, which can be approximately de- 

scribed by such a model, are solutions of chains in which the 
chemical composition (in this case the species of the mon- 
omer) changes little over distances of the order of the persis- 
tence length (the Coulomb segment). The most suitable 
physical realization of the model is an equilibrium solution 
of polymers, in which the lateral groups can be joined. If the 
density of the lateral appendages is small and the probability 
of two appendages landing on one Kuhn segment can be 
neglected, such a system is sufficiently well described by the 
model constructed. 

The two monomer species will hereafter be designated 
one and two. The corresponding polymer segments (the sta- 
tistical Kuhn segments) will be designated 1 1, 12, and 22. Let 
I,, . (x - y) be the distribution function of the lengths of an 
isolated polymer segment Ad ', and 

its statistical weight (or activity); T is the solution tempera- 
ture. The activity of the terminal monomer of species A is h, . 
We specify the interaction of the monomers in the solution as 
follows: 

Here UAA.  (x - y) is the energy of the interaction of mon- 
omers A and A ' located at the points x and y. 

We choose the Hamiltonian H in the form (see Refs. 3 
and 4) 

H=- x l n  [ I + ( r p A 2  (x)/2+hAcpAl ( x )  ) 
X A  

a-i 

The subscripts A and A ' label the monomer species. The 
matrix JAA - ' (x  - y) is defined by the condition 

The partition function of the model is of the form 

where H,, is the quadratic Gaussian Hamiltonian: 

AA' X - y )  ( p A ' a  (y) - H.='/, cpA. ( x )  f i  ( 
=,Y,a 

Expanaing the sum in the brackets in the expression for Z 
and averaging all the products of the fields 9, with the Ha- 
miltonian H,,, we obtain expression (2. l). An analogous pro- 
cedure is described in greater detail in Ref. 4, where all the 
missing details can be found. The density of the segments 
Ad ' is pAA . = a ln Z /a In fA, . . The correlator 

G A A ~  ( x - y )  = Z - ' d 2 Z / d h ~  ( x )  a h A ,  (y) 

is the correlation function of the terminal monomers of spe- 
cies A and A '. To investigate the behavior of the solution at 
low densities, we expand H in powers of 9, up to terms of 
fourth order. We obtain the following expression: 

The Hamiltonia (2.4) is not connected with the particular 
form of the potential (2.2) and is determined by the second 
virial coefficients 

where a is the lattice period and a3 is the volume of the unit 
cell. On the other hand, if we land in the region of high 
densities, to obtain qualitative results it suffices to take into 
account the third virial coefficients. 

In first order in the monomer density (a small quantity) 
we can write the following relations. The density of the mon- 
omers of species A is the mean value 

C A ' ( ( ~ A ~ / ~ + ~ A ( ~ A , > .  PS5) 
The mean value 

8 ( X - Y )  = ( ~ A f i ( x )  ( p A v i 3 ( y )  ), PZi  (2.6) 

is the correlation function of the terminal monomers of spe- 
cies A and A ' belonging to one and the same molecule. All 
these relations are obtained exactly in the same manner as in 
Ref. 4, where a similar Hamiltonian is used. For convenience 
in the calculation we put 

e = x / ( i - ~ ) ,  

so that the fourth-order terms in (2.4) take the form 

'/. ( I - x )  C [ ((p? ( x )  +cp,'(x) ) 2 + @ ( c p :  (4 1 ' 1 .  

We change in (2.4) to the momentum representation: 
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The terms quadratic in pA in H are diagonalized by the 
transformation 

( F I ~ ( ( I )  = 9 1 a ( q ) ~ 0 ~ ~ ( ~ ) - 9 2 a ( ( I ) s i n x ( ~ )  

where 

tg 2x(q) =2J12(q)/(J2 (q) --It (q)) 

We put for simplicity a = 1; then, after replacing the sum- 
mation by integration, the Hamiltonian of the fields qA, 
takes the form 

where the integral is taken over the reciprocal-lattice cell 
and 

TI. a(q)={'/2(Jt(q)+Jz(q))* ['/4(Ji(q)-J2(q))2 

+J,a2(q)I 'la)-'-1, 7' (q) < 7 Z  (q) , 
hif=hl cos x (0) +hz sin x (0) , hz'=hz cos x (0) -hi sin (0).  

This Hamiltonian differs from the Hamiltonian considered 
by ~okrovskii, Lyuksyutov, and ~hmel'nitski? of the two- 
field model with an artitrary number of field components in 
that, owing to the diagonalization operation, the unusual 
vertices rl., ,r,,,, and r,,, appear. 

It is easy to show that r,(q) has at q = 0 an absolute 
minimum, i.e., at small q we have 

In order of magnitude 

is the mean squared length of the segment A d  '. The Ginz- 
burg number of the model is l/s3 (Ref. 4). At 7, <sP3 the field 
fluctuates strongly-and the scaling relations are valid. 

We consider the case T ~ ) T ~ .  The role of the weakly fluc- 
tuating field $, reduces then only to a renormalization of the 
parameters of the field $, . 

If we multiply all the fAA . by x, 

each polymer enters in F ( x  - y) of (2.6) with an additional 
factor xL, where L is its length. At h = 0 only one polymer, 
starting at the point x and ending at the point y, contributes 
to F (x  - y). Therefore, the correlation functions of a poly- 
mer of fixed length are obtained by taking the inverse La- 
place transform of (2.6) with respect to In x at h = 0. Just as 
in Ref. 2, we find that in the strong-fluctuation region the 
average length of the polymer is 

53. DILUTE SOLUTION OF LONG MOLECULES 

In this section we consider the case z) 1, i.e., r1(1/s3. 
In this region, the correlation radius r, of the field $, is large 
and the system is close to a second-order transition in 7,. A 
similar situation was considered in Ref. 5. 

We consider the Hamiltonian obtained by excluding the 
strongly fluctuating field $,. To this end we integrate in the 
expression for the partition function 

2- J exp l-H *) I U D $ i a  (q) ~ + m  (q) 
q,= 

over all the fields $,, (q), where q>R,  and represent the result 
in Hamiltonian form6: 

q,= P.q'Q 

This integration can be carried out up to A -r,- '. In the 
Hamiltonian H ($,,$,,A ) we are interested here in vertices of 
fourth order at small external momenta. The calculations 
are carried out in first-order approximation in E = 4 - d, 
where d is the dimensionality of the lattice (in the final an- 
swer we must put d = 3 and E = 1). We put r i , k  = ri.k (qj) at 
q, = 0. This integration yields the renormalized quantities 
ri,, as functions of r,. In place of A we introduce the new 
variable 

where S, is the area of ad-dimensional sphere. For f i,k(6 ) we 
obtain the following renormalization-group equations (the 
dot denoted differentiation with respect to 6): 

i71.0=-32r~0, ~3.i=-32r,.or3.i ,  

2 r2=-r i - r2r2r l , o ,  rL.3=-6r2r2rs.l-4r2.zr3Si, 

ro.4=-r;2-2r2r2r2.2. 
Equations (3.1) can be easily solved. The solution is of the 
form 

r4.0=r(g) = r 4 . 0  (0) ( 1 + 3 2 ~ . ~  (0) E) , 
r3.'=c0r (E),  rzr2=i/l~02r (g) +cZf2r5 (E) , 

r2.z=t/,co2r (g) + ~ ~ . ~ r ' ~ ~  (E) (E) In (E+Eo), 

rl.3=i/2~o (r2.2+rz,2-i/4~,2r (g) ) + C I  3r  (3.2) 

ro.p=i/srz.2r2,z/r (2) -3/32r2,22/r (E)  1- i/8~02(3/4r2.2+r2r2) 

- ( i 5 / 5 1 2 ) ~ 0 4 r ( ~ )  +c~ .&,  go= (32rl.o (0)) - I ,  
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where c,, c,,,, c,, , c , , ,  ,c,, are constants that depend on the 
initial conditions. The asymptotic form of r i , k ( f )  as f-+m 

takes the form 

ri  ,=r(E) - (32E) - I ,  r2.2=-'/scz,zl'"(%) In E, 
r o , 4 = ~ ~ j 2  In ~ / ( 6 4 r ' " ( ~ ) ) ,  I'2,2=~2,2r'14 (5) e r ~ . ~ .  

For the terms of fourth order in $ in the Hamiltonian 
H ($,,$,,/i ) to be positive definite, it is essential to satisfy the 
condition r,,, >O or 

r2 0 r 2  (4r4 0r0.4) (1. 

Inasmuch as in the region of large ( we have 

r ~ 2 / 4 r 4 , 0 r o . ~ = i ~ 4  ln (E+EJ > I ,  

there appears in the system(-+co an instability that can lead 
to a first-order phase transition. Interest attaches precisely 
to this case, which corresponds to x > O(B > 0) in (2 .4) .  

To calculate the equation of state, we make the transfor- 
mation 

~ia-+ta'-~o$zaI4, (3 .3 )  

which eliminates the term $: $,, $,, from the Hamiltonian 
(2.8). In addition, this transformation eliminates from the 
solution (3 .2 )  all the terms containing c,. The Hamiltonian 
H ($,,$,,A ) has a minimum with respect to $; at 

where z is the point of absolute minimum of the expression 

P ( X )  =r4 (r2 2+r2,2) X ~ + C ~ . ~ X + ~ ~ . ~ .  

The field h is assumed weak, and we consider the region 

r2,2+22B~1. 
We assume the direction of the vector $,, to be the axis 1. 
We put 

I ts=Qier, 

and assume that the weakly fluctuating field $, does not 
depend on the coordinates. In the Hamiltonian of the field 
and $, we retain terms of order not higher than second in f. 
The result is the expression 

We shall show that the coefficient g at ($: ), is negative. From 
the definition ofz it follows that c, ,z  < 0. We put 

Inasmuch as at large < we have 

I X O ~ < ] C I  31/r2j?, 

it follows that 

Consequently 

y = minP (x) <P(z0) = ~ o . 4 + ~ 4 . 0 x ~ + ~ 2 . 2 ~ 0 2 i I ' z  ;,rO2f c ~ . ~ x ~  
X 

To calculate the free energy of the condensate it is necessary 
to integrate over the field f in the statistical integral with 
Hamiltonian (3.4). The resultant corrections to r, andg must 
be excluded, since they have already been taken into account 
by Eqs. ( 3 .  1). 'r6 

Since Eqs. (3 .1 )  are valid only in first-order approxima- 
tion in E ,  it is likewise necessary to retain in the integration 
only the first order in E. In fact, we can put E = 0, since 
allowance for the first order in E does not change anything 
substantially. As a result we get 

@ ($2) =zz$Z2/2+g ($22) '+ (64n2)-' (q22)2 

X((8r4 ozZ-c,.3/z) 'ln [(8r4.,z2-C, 3/i) (3 .5 )  
~ $ , 2 / ~ , 1 -  (c, 3/2) In (-el 3$z2/ (zz,)  ) } . 

It  is more convenient to reduce @ ($,) to the form 

@ ($2) = z ~ $ 2 ~ / 2 + g ( $ ~ ~ )  '4- 7 (QZ2) 21n(A.$2el~,), 

y= ( 4 r ~ o ~ 4 - r 4 . 0 ~ i . 3 ~ )  /4n2. 

In the region of large 6 we have A- y. The transition line is 
defined by the conditions 

0 =0, a@/d$P=O. 

The density discontinuity in the transition is 

The equation of the transition line is of the form 

y+g+y In (z2h/(2z,y) ) =O. (3 .7 )  

It is seen from (3 .6 )  that $: 2 1, and it is necessary to take into 
account in @ ($,) the higher virial coefficients, which corre- 
spond to vertices of sixth order and higher in the Hamilton- 
ian (2 .8) .  These vertices, however, are weakly renormalized, 
and since g-+ - a, the transition will take place. 

The same holds true also for a magnetic field. A weak 
magnetic field does not change r,, meaning also f .  In addi- 
tion, it is easy to show that introduction of a sufficiently 
weak magnetic field in @ ($,) does not cause the transition to 
vanish. 

54. PHYSICAL MEANING OF THE PHASE TRANSITION 

Let us make clear what corresponds in "polymer lan- 
guage" to a phase transition in the fidd model. In "polymer 
language" a solution of heteropolymers is characterized by 
densitiesp,, . of segments Ad ' and by densitiesp, of termi- 
nal monomers of species A .  The field parameters are the 
activities f,, . (or the chemical potentials p,, . ). The density 
discontinuity in the phase transition means in the model that 
these descriptions are not equivalent: certain values of p,, . 
andp, do not correspond to any solution in chemical equi- 
librium. Indeed, consider in the spacep,, .,p, an arbitrary 
curve whose points correspond to the states of an equilibri- 
um solution of heteropolymers. If this curve lies entirely in 
the region of large Z and joins states with large and small 
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monomer density, then at B>O it cannot be continuous, 
since it crosses a first-order transition line. 

The physical cause of this phenomenon is easiest to un- 
derstand using as an example a concrete physical realization 
of the model (see §2), namely, a linear-polymer solution con- 
taining molecules adsorbed on the polymer chains. A mon- 
omer on which the molecule is adsorbed is repelled (in a good 
solvent) from other monomers more strongly than the single 
monomer. Therefore, the adsorbed molecules increase the 
sizes of the polymer coils. Let us fix the density of the mon- 
omers and then increase the average length of the chains in 
the solution. The coils begin to overlap, so that the configu- 
ration entropy of the polymers decreases. Under these condi- 
tions, it is thermodynamically more favorable to eject part of 
the adsorbed molecules from the region occupied by the 
polymers. The coils then decrease in size and the degree of 
their overlap decreases. The decrease of the entropy of the 
adsorbed molecules is offset by an increase in the entropy of 
the coils. 

The new result compared with the mean-field theory is 
the statement that the transition is of first order. A finite 
fraction of the molecules is immediately desorbed. Similar 
results were obtained recently by ~ r o s s b e r ~ , '  who consid 
ered the globulization of an adsorbed polymer chain. It was 
found that there exists a range of parameters in which the 
"coil-globule" transition is accompanied by an avalanche- 
like desorption. This leads to a jumplike character of the 
transition which is of first order even an infinitely long 
chain. 

In the presence of a first-order transition, a region of 
phase stratification exists in the system. In our case this 
stratification takes place if the numbers Nm of the monomers 
and Na of the adsorbate molecules in the solution are fixed. 
If N ,  and Na were not fixed and were determined by chemi- 
cal potentials, a jumplike change of N ,  and Na would take 
place in the solution with increasing average length of the 
polymers, and the number N a / N m  of adsorbate molecules 
per monomer would then decrease. When Nm and Na are 
fixed (we have in mind, as before, a solution in chemical 
equilibrium) we would have instead the subdivision of the 
solution into regions of more concentrated and less concen- 
trated phases. The excess of adsorbate molecules would go 
over to the less concentrated phase. Of course, it is necessary 
that N ,  /Na in the solution exceed the equilibrium value for 
the more concentrated phase, otherwise there would be no 
excess adsorbate and no stratification at all. 

A similar stratification could be observed in experiment 
by lowering the temperature of the solution described above. 
The activities fAA,  would then increase and the average 
length of the polymer would increase. However, the stratifi- 
cation, as will be shown below, sets in at a very high degree of 
polymerization, and the corresponding time of establish- 
ment of the chemical equilibrium may turn out to be unat- 
tainable. 

An equilibrium solution always contains cyclopol 
ymers, but allowance for them does not lead to vanishing of 
the effect. 

It may seem that the fact that the effective vertex g for 

the field $, is negative should lead to a "coil-globule" transi- 
tion for one isolated molecule. Such fluctuation-induced 
transitions are discussed in Ref. 8. This conclusion, how- 
ever, is refuted when account is taken of the gradient terms 
in Q, ($,) (see (3.5)). If $, depends on the coordinates, then 
@ ($,) takes at h = 0 the form 

+ terms of higher order I ddx.  

Since T, - 1 and the correlation radius of the field $, is equal 
to rc ,  we haveA - e. It is seen from this that if a globule were 
produced the thickness of the surface layer would be of the 
order of r,, i.e., the dimension of the globule would at any 
rate be not less than r,. At the same time, as already indicat- 
ed, the field $, fluctuates weakly and the critical exponents 
in our model are the same as in the des Cloizeaux model: 

i.e., an isolated molecule can form only a non-Gaussian coil. 
It is clear from this reasoning that in a dilute solution, 

where the polymer coils do not interact and the molecules 
behave as isolated unit, no transition will take place. For a 
transition to occur it is necessary that the coils interact, i.e., 
the transition can be observed in a semi-dilute solution or in 
the transition region from the dilute to the semi-dilute solu- 
tion. 

The effective attraction in the solution of heteropol 
ymers leads to one more interesting phenomenon. We con- 
sider such a solution near the point of transition to a less 
dense phase. We denote the average length of the molecules 
in the solution by z. We place in the solution a singled-out 
molecule of length LBZ. Its dimensions are much larger 
than the correlation radius in the solution. It  can be shown, 
by using the method of singled-out molecules~ that the sec- 
tions of the chain of the singled-out long molecule are sub- 
jected at scales of the order of the correlation radius to the 
same effective attraction as the molecules in the solution. 
This result is obvious if it is recognized that sections of 
length of the order Z form "blobsv9 of size rc and behave as 
individual molecules. At the same time, at sufficiently large 
L / Z  the effective attraction is capable of forming a globule 
out of the singled-out chain. This effect is similar to com- 
pactization of DNA in a polyethylene glycol solution.' 

For quantitative estimates it is necessary to express the 
solution (3.2) in terms of the initial conditions for the vertex 
functions ri,, . It turns out that the transition line is very 
close to the r2, (6 ) = 0 line. The point is that the condition 
r,,, (6 ) = 0 is satisfied only at such large that the equation 
(3.7) is subsequently satisfied at a small relative increase of g. 
From this we easily obtain estimates for g and rc at the tran- 
sition point. At $ 4  1 we obtain utterly unrealistic numbers, 
and at B k 1 the change of rc is small. At 8- 1 we have 

As is known from similarity theory,6 the regions of strong 
and weak fields are characterized by the parameter 
k = h ~ - ' ~ + ~ ' .  For a strong field k>l ,  and for a weak one 
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k g  I. In "polymer" language 1 /k  is the average number of 
"blobs" in a molecule located in a dilute solution. Since k is a 
dimensionless parameter, the transition vanishes at k- 1. 
From this we obtain an estimate for the necessary degree of 
poiymerization of the solution: 

L-lo6 s6. (4.1) 

For the reasons indicated in $5 ,  this estimate is probably too 
high. 

The degree of polymerization needed for the existence 
of a transition is lowered if the formation of cyclopolymers is 
assumed. In a real equilibrium solution, cycles are always 
present. It is known3 that the number of field components 
plays the role of the activity of the cyclopolymers. 
Allowance for the cycles leads thus to the fact that the num- 
ber n of the field components pA differs from zero. At n #O 
we can also write equations similar to (3. I), which contain n. 
These equations can be solved and it turns out that a first- 
order phase transition takes place at any n>O. 

Equilibrium between cyclopolymers and linear poly- 
mers corresponds to a value n = 1. In this case the transition 
takes place at an average polymerization degree of the order 
of lo5. 

For a better understanding of the difference between 
our results and those of the mean-field theory, we can briefly 
list the main results of the latter. 

When the activities f,, , increase, a second-order phase 
transition takes place in the system and 

The density of the monomers undergoes no jumps whatever. 
All the densitiesp,, are continuous functions of the osmot 
ic pressure, i.e., everything takes place as in a solution of 
homopolymers. 

they can be obtained in principle from neither the mean- 
field-theory, nor perturbation, nor simplest scaling consid- 
erations. In the investigated region, only the renormaliza- 
tion-group method is applicable, and this method has so far 
been little used in polymer theory. 

The tremendous lengths of the molecules involved in 
calculations for linear polymers are generally speaking arbi- 
trary. The point is that even in the four-dimensional space 
Eqs. (3.1) determine only the asymptotic forms of the func- 
tions r, ,({) at large f. It is possible to use here the initial 
conditions for I', , (f ) at { = 0 only in very rough estimates. 
Since the equation for the transition line contains In 6 (this is 
precisely the reason for so large a value of Z in (4. I) ) ,  the 
possible error increases exponentially. The solution of the 
renormalization-group equations for the case n = 1 (equilib- 
rium of linear and cyclic polymers) does not contain loga 
rithms, and the corresponding estimate is therefore more 
reliable. The final answer for the question can apparently be 
obtained only by experiment. 
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