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Wave propagation is considered in a symmetric layered structure consisting of a layer having a 
linear dielectric constant between two layers of a medium whose dielectric constant depends 
quadratically on the amplitude of the wave electric field. It  is shown that besides symmetric and 
antisymmetric modes there can exist in the structure asymmetric modes at energy fluxes exceed- 
ing a certain minimum value. Plots of the energy flux vs the propagation constant are obtained for 
each of the modes considered. It is shown that asymmetric-modes branch out in these plots from 
the symmetric and antisymmetric modes upon increase of the energy flux in the wave. The plots 
themselves are N-shaped in a certain range of layer thicknesses; this may lead to bistable states of 
the surface waves if the energy flux in the wave is the external parameter. 

PACS numbers:68.25. + j, 43.35.Pt 

1. INTRODUCTION 

Interest in the optics of layered media having nonlinear 
dielectric properties has increased of late. In particular, in 
Refs. 1-4 is considered a new class of surface waves on the 
interface between two media, one of which'-3 or both4 have a 
dielectric constant with a quadratic dependence on the wave 
field: 

E = E O + ' ~  I 1 '. (1) 

A feature of these waves is that the dispersion relation con- 
tains as a parameter, besides the frequency and the wave 
vector, also the square of the field of the electromagnetic 
wave. This means that at a given frequency it is possible to 
control the propagation constant of the wave by varying its 
energy flux, thereby adding substantially to the number of 
phenomena that can occur in the linear optics of surface 
waves. Moreover, as shown in Refs. 1-4, when account is 
taken of the nonlinearity, wave solutions are obtained hav- 
ing no analog whatever in ordinary optics. One of the now 
investigated new properties of nonlinear surface waves is the 
possibility of their direct excitation by a bounded light beam 
incident on the interfa~e,~ without the use of prisms or peri- 
odic structures. 

This paper deals with nonlinear surface waves in a cer- 
tain model layered structure consisting of a layer of thick- 
ness 2d and dielectric constant &,, placed between two layers 
of a medium with a dielectric constant of the form (1). Such a 
system reduces in two limiting cases to those already investi- 
gated: at 2d>;l, waves of the type considered in Refs. 2 and 3 
can exist in it on the two interfaces, and in the case a-+O the 
system is a symmetric dielectric waveguide in which sym- 
metric and antisymmetric modes can propagate. In the gen- 
eral case, as will be shown below, the system has a number of 
new interesting properties, the most pronounced of which is 
that there can exist in it, besides the symmetric and antisym- 
metric modes, also asymmetric types of waves at energy 
fluxes above a certain threshold. A second interesting prop- 
erty of the structure is that the dependence of the energy flux 
in the wave propagating in the layer on the propagation con- 

stant turns out to be N-shaped, and this can lead to bistable 
states of these waves. 

2. DISPERSION RELATIONS FOR A NONLINEAR LAYERED 
STRUCTURE 

Let a plane-parallel layer of thickness 2d occupy a strip 
- d < z  < d .  We assume that E ,  > E, and that the nonlinear 

medium outside the layer is self-focusing, i.e., a >O. The 
problem is to find the solution of Maxwell's equations in the 
form of surface waves for a medium with a dielectric con- 
stant 

The necessary solutions for the electric field in all of space 
will be sought in the form of a wave polarized along they axis 
and propagating along the x axis: 

E,(x ,  z, t )  ==E(z) exp i(kon,x-cot), (3) 

where o is the frequency of the wave, ko = w/c,  and n, is the 
propagation constant. The variables in (3) can be separated 
and then the function E (z) should satisfy the equation 

d%/dzL-ko2[n$-E (z, I E 1 ') ] E=o. (4) 

In a nonlinear medium, Eq. (4) has a solution that decreases 
at infinity and is of the form 

where q = (nX2 - noZ)1'2, no = and zi are constants de- 
termined from the boundary conditions. The form of the 
solution in the Iayer - d < z  < d depends on n, . At n, > n, 
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E(z)= { A  cos key (2-do), 
A sin koy (z-do) , 

where y = (n,, - nX2)lt2. The constants A and do are also 
determined from the boundary conditions. Although (7b) 
can be obtained from (7a) by renormalizing the constant do, 
we shall consider both solutions, since they can be obtained 
by analytic continuation from (6a) and (6b). 

Consider the dispersion relations that result from solu- 
tions such as (6). Equating the fields and their derivatives on 
the boundariesz = - d andz = d we obtain a system of four 
equations with the unknowns A, do, z,, z, and n, : 

A ch kor (d-do) , (94 
sh kor(d-do), (9bl 

2 '11 sh k,q (d-2,) -Arsh k0r  (d-do) , ( 9 ~ )  ( 1  ' ch2 k d 2  -AI' ch koI'(d-do). (9d) 

The system (8) (the upper rows in the right-hand sides of the 
equations) was obtained with the aid of (6a), while the system 
(9) (the lower rows) with the aid of (6b). In the case n, < n the 
system of boundary conditions can be obtained by putting 
r = iy in (8) and (9). We consider first the system (8). Elimi- 
nating the variables in succession, we reduce the system to a 
single equation with unknown do and n, : 

q2-r2 th2 kJ' (d-do) - ch2 kor (d-do) 
q2-r2'th2 kor  (d+do)' - ch2 kor  ( d f  do) (10) 

It  is easy to show, for example by a graphic method, that Eq. 
(10) has a unique solution do = 0 at arbitrary n, > n ,. This 
solution corresponds to the symmetric modes of the layered 
structure. If do = 0 is substituted in the system (8), obviously 
z, = - z, and the second pair of equations is identical to the 
first. Dividing one equation by the other we obtain the dis- 
persion relation in terms of the variables w, n,, and z,: 

r 
th kord at n,>iz,, ( l l a )  

th koq (zi+d) = 1 gkoyd at n,<nl. (lib) 

The square of the amplitude of the field A inside the layer is 
for the symmetric mode, 

If we start from the system of boundary conditions (9), 
the equations for do can be rewritten in the form 

This equation also has a solution do = 0, as can be easily 

verified by direct substitution. There are also other solu- 
tions, which we shall consider below. Substituting the value 
do = 0 in the system of boundary conditions (9), just as in the 
preceding case, we obtain the dispersion relation in terms of 
the variables n,, w, and 2,: 

The square of the amplitude of the field of the antisymmetric 
solution is 

2 q2-r2 cth2 kord 
a sh2 k0rd 

at rz,>n,, (154 

( 15b) 

l - '  -- cth kord at n,>n,, (14a) 

The dispersion relations (1 1) and (14) depend on the param- 
eterz,, which is connected with the energy flux in the system. 
The limit z , -+  + corresponds to the case of extremely 
small energy fluxes, and in this case formulas (1 lb) and (14b) 
coincide with the dispersion relations for the symmetric and 
antisymmetric modes of the dielectric waveguide, which 
have one or several solutions for n, in the interval no < n, 
< n ,, depending on the thickness of the carrying layer. In the 
case of a nonlinear structure, the dispersion relations have 
solutions also at n, > n,. In this case z, < - d and the func- 
tion E (z) is such that the two maximum values of the field 
turn out to be beyond the limits of the field. It is natural to 
name the corresponding solutions nonlinear surface waves. 

We obtain now the nonzero solutions of (1 3). To this end 
we reduce (13) to a common denominator and obtain after 
simple transformations 

th koq (d+z,) = . 

x sh2 koI' (d+do) sh' k0r  (d-do) 

4 
Y 

Equating to zero the first square bracket in (16) yields the 
already known solution do = 0. We transform the second 
bracket in (16) by using the formulas for the sum and differ- 
ence of hyperbolic functions. We then obtain the following 
biquadratic equation in sinh kJd: 

(a1'-1) sh' kordo+2 jb,' (a12+1) +a,z] 

--ctgkoyd at n,<n,. (14b) 
9 

wherea, = r/q and b, = sinh kJd. It has two solutions for 
sinh2kJd: 

In the region n, < n, these solutions can be continued by 
means of the formulas 

300 Sov. Phys. JETP 56 (2), August 1982 N. N. Akhrnediev 300 



where a, = y/q, 6,  = sin koyd. Equations (18) and (19) de- 
termine four different solutions for do. The two positive 
roots d a' and d a' satisfy, for all n, from the region in which 
they are defined, the inequalities d a' > d and d f '  < d, corre- 
spond to two qualitatively different distributions of the field 
E (2). At do = d !) the field has in the regionz < - done max- 
imum from which it decreases on both sides, whereas at 
d = d r' the field has a maximum in the region z < - d, re- 
verses sign at the point z = d f) ,  and has a minimum in the 
region z > d. The two negative roots - d and - d a) corre- 
spond to the solutions obtained for E (z) from the foregoing 
by the transformation z+ - z. 

The roots d !) and d f '  are functions of the thickness 2d 
and of the propagation constant n,. We consider now the 
regions where the roots are defined as functions of these var- 
iables. We investigate first the root d 'I '  (with a plus sign in 
front of the radical). The root is defined for all n, > n,, since 
the expression in the right-hand side of (18) is always posi- 
tive. In the region n, < n ,, the expression in the right-hand 
side of (19) is also positive, but for a solution to exist it is 
necessary that the right-hand side of (19) not exceed unity. 
This condition is equivalent to the inequality 

All the solutions of this inequality are located in the region 
[(n,2 + n$)/2]112< n, < n,. At alld thereexistsasolution nX0 
< n, < n, such that at n, = nz the right-hand side of (19) is 
equal to unity, koydo = ~ / 2 ,  and the solution E(z)  
= A  sin koy(z - do) is transformed into the symmetrical so- 

lution E (2) = A cos koyz. At 2d /A > [2/(n,2 + nI2)]'l2, be- 
sides the indicated interval, there can exist additional inter- 
vals in which an asymmetric mode exists, and at the end 
points of these intervals the solution also degenerates to a 
symmetric one of higher order. Thus, the root d A corre- 
sponds to asymmetric modes, which at definite n, become 
separated from the symmetric modes. To be definite, we call 
the lowest of these modes A.  

We consider now the root d a)(with aminus sign in front 
of the radical). It is easy to show that the right-hand side of 
(19) does not exceed unity in this case at all admissible af > 0 
and 0 < bZ2 < 1, and we must find the intervals of n, in which 
the right-hand sides of (18) and (19) are positive. The corre- 
sponding criteria for the two equatians are respectively 
b12 > 2a12/(1 - a t2)  and b; > 2a2'/(1 + a;). These condi- 
tions reduce to the inequalities 

sin koyd 2 
(-) ># (/cod) (ni2-n:) ( n x t n l )  

All the solutions of (21) are also located in the region 
[(n12 + r ~ $ ) / 2 ] ~ / ~  <n, < co.If2d /A <T-'[2/(n12 - n$)]1'2, 
then the first of these inequalities determines the interval n: 
< n, < 03 in which d a' exists, and at n, = n: we have d t' 
= 0 and the solution degenerates into an antisymmetric one. 

The second inequality has in this case no solutions. On the 

other hand, if 2d /A > ~- ' [2/(n, '  - n,,2)]1/2, the inequality 
(21a) is valid for all n, > n ,, while (21b) has a solution n: < n, 
<n,.  Thus, the interval in which d f '  exists increases with 
increasing d. In addition, as seen from (21b), at 2d /A > [2/ 
(n,' - n,2)]'/2 there arise additional intervals of n,, in which 
d f )  exists, and at the end points of these intervals d f '  = 0. 
Thus, d a' correspond to an asymmetric mode, which be- 
comes separated from the antisymmetric mode at definite 
n, . We call it mode B. 

The square of the amplitude A for both asymmetric 
modes at n, > n, is 

In the case n, < n , 

In (22) both signs in the arguments of the hyperbolic and 
trigonometric functions yield, following the substitution 
do = d a*2', the same value for A '. Substituting the expres- 
sions for dta2) in the system of boundary conditions (8) and 
(9), we can find the dispersion relations for the modes A and 
B, expressed in terms of the variables w, n,, z,, or 2,. In this 
case, however, we choose as the third independent variable 
the energy flux in the mode. 

3. ENERGY FLUX IN THE WAVE 

It  is more convenient to transform in all the dispersion 
relations from the variable z, to the energy flux in the struc- 
ture, since the energy flux, alongside the frequency and the 
wave vector, can serve as an external parameter specified in 
the experiment. The energy flux is calculated by integrating 
the averaged Poynting vector with respect to the variable z 
between infinite limits 

0 

en, s=-J E' (z) dz. 
8n 

This formula gives the energy flux per unit width (along they 
axis) of the layer. For symmetric modes, a simple integration 
using Eqs. (5)-(7), (1 l ) ,  and (12) leads to the following expres- 
sions the function S (n,, a ) .  At n, > n, we have 

2 q + ~  t g  koyd ( i+sin 2 h . y ~  ) 1 
S=S,n,(y-y tg koyd) [/_ + 

,d cos' k,yd 2k,yd I 

where So = cd /4ra. The equations obtained are the disper- 
sion relations for the symmetrical modes in terms of the var- 
iables w ,  n, , and S. At each fixed S these relations give the 
connection between the frequency and the wave vector. It is 
also to easy to verify that at S = 0 Eq. (24b) reduces to the 
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dispersion relation for the symmetric modes of a linear 
waveguide, while as d+ co Eq. (24) yields double the energy 
flux of the nonlinear surface waves considered in Refs. 2 and 
3. 

For the antisymmetrical modes, integration using Eqs. 
(5)-(7) ( 14), and ( 15) leads to the following expressions for the 
energy flux. At n, > n, 

S=S,n,(q+r cth k0rd)  

In the case n, < n, 

Here, too, it is easily seen that at S = 0 Eq. (25b) reduces to a 
dispersion relation for odd modes of the linear waveguide, 
and as d-+m Eq. (25a) gives double the energy flux of the 
nonlinear surfaces waves. 

For the asymmetric modes A and B, the formulas for the 
energy flux are the same, but in place of do it is necessary to 
substitute in them different values : d t )  or d f). At n, > n, we 
have 

1 
S-S .~ ,  {= [2q+r cth koI' (a+&) +I? cth kol. (d-do) ] 

(264 
In the case n, < n ,, 

I 
S=S~nx  {= 12q+y ctg k,y (d+do) + y ctg koy (d-do) ] 

qZ-yZ ctgZ kOy ( d f d , )  sin 2koyd .+ ' 
sinZ koy '(d+do) ( - 2k.yd 

cos 2k0 y do) }  . 

For positive and negative do these formulas give identical 
values of S. At koydo = 7~/2 and at do = 0 Eqs. (26) reduce 
respectively to (24) and (25), as expected. 

4. NUMERICAL CALCULATIONS AND DtSCUSSlON OF 
RESULTS 

We used the formulas derived in the preceding section 
to calculate numerically the functions S (n,, w) for several 
values of the system parameters. The results of these calcula- 
tions are shown in Fig. 1. In place of the frequency we chose 
the equivalent parameter 2d/A = wd/rc. At low energy 
fluxes, as can be seen from the figure, the layered structure 
has a discrete set, which depends on the parameter 2d /A, of 
values of n, . At small 2d /A, the propagation constants of the 
symmetric and antisymmetric modes increase monotonical- 
ly with increasing energy flux (Fig. la). However, at layer 

FIG. 1 .  Dependence of the dimensionless energy flux S/S, on the propa- 
gation constant n, for a structure with parameters n, = 1.5, n, = 2.0; 2d / 
/1 = 0.4 (a), 0.6 (b), 0.8 (c). The curves are marked as follows: S-plot for 
symmetric mode; AS-for antisymmetric mode; A-for asymmetric mode 
A; B-for asymmetric mode B; S,-for a symmetric mode of second order. 

thicknesses exceeding a certain critical value, the plot of the 
symmetric mode assumes an N-shape (Figs. Ib, Ic). On the 
decreasing section of the curve, the symmetric mode is un- 
stable. This means that if the external parameter is the ener- 
gy flux in the structure, the state of the nonlinear surface 
waves is bistable: the same value of the energy flux corre- 
sponds to two stable values of the propagation constant. 

Before the maximum Sis  reached, an asymmetric-mode 
curve A branches away at the point M from the curve of the 
symmetric mode. This branch corresponds to two different 
solutions, which are made equal by the transformation 
2 4  - z. The transition from the symmetric to the asymme- 
tric mode at the point M is continuous. For each layer thick- 
ness there is a certain minimum energy flux needed for the 
existence of the mode A. To the right of the point M, the 
branch of the mode A has a descending section, which is 
apparently also unstable. In order to determine the behavior 
of the system when the point Mis reached, however, we must 
solve the problem of the stability to transformation into oth- 
er modes. We did not do this in the framework of the present 
study. The energy flux in the mode A is smaller than in the 
symmetric mode in the entire interval of variation of n,. 

The curves for the antisymmetric mode can start out at 
small 2d /A from finite energy fluxes (at 2d / A  < 0.4), in which 
case theS (n, ) curve is also monotonic. However, when 2d /A 
increases the antisymmetric-mode branch also assumes an 
N-shape (Fig. Ic). The assymetric mode B is separated from 
the antisymmetric-mode branch at the point N, and the tran- 
sition from the antisymmetric mode to the mode B is also 
continuous in the parameters n, and S. The mode B, in ana- 
logy with the mode A,  can exist only if it has a certain mini- 
mum energy flux. 
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FIG. 2. Dispersion curves for the symmetric (a) and antisymmetric (b) 
modes at a constant energy flux. The numbers on the curves denote the 
dimensionless energy flux S/S, .  The thick points on the curves denote the 
points M (a) and N (b). 

Calculations by formulas (24)-(26) at other values of the 
parameters show that the characteristic features of the S (n, ) 
curve do not depend on the concrete values of no and n,. 
With decreasing difference n , - no, however, these features 
manifest themselves at smaller energy fluxes S and at larger 
thicknesses 2d /A. 

Figures 2 and 3 show the dispersion curves n, (2d /A ) 
for symmetric and antisymmetric modes, obtained from the 
relation S (n,, 2d /A ) = const. At a zero energy flux these 
lines reduce to ordinary dispersion curves of the discrete 
modes of the waveguide. With increasing energy flux, the 
dispersion curves are shifted. In particular, a shift takes 
place in the cutoff frequency of the antisymmetric mode. 

FIG. 3. Dispersion curves for the asymmetric mode A (a) and for the 
asymmetric mode B (b) at a constant energy flux. The notation is the same 
as in Fig. 2. 

This effect can be used, for example, to produce energy flux 
stabilizers in the waveguide. At a certain energy flux (S/ 
So = 10.2 in Fig. 2a, S /So = 4.4 in Fig. 2b) the curves branch 
out at a certain point. For the values 2d /A, which are located 
to the right of the branching point, the S (n,) curves are N- 
shaped. It  is seen from Fig. 2 that the critical value 2d /A for 
the antisymmetric modes is larger than the corresponding 
value of 2d /A for the symmetric mode. 

The curves of Fig. 3 can be regarded as continuations of 
the curves corresponding to the same energy fluxes shown in 
Fig. 2. They branch away from the curves of Fig. 2 at the 
points Mand N, which are shown thicker in the figure. Thus, 
the dispersion curves for the symmetric and antisymmetric 
modes are also split; the dispersion curves of the modes A 
and B branch out from them at certain points M and N. 

5. CONCLUSION 

Our analysis of the nonlinear symmetrical layered 
structure has made it possible to draw a number of interest- 
ing conclusions: 

1. Allowance for the nonlinearity in the layered system 
modifies substantially the set of natural modes of the linear 
waveguide-besides the symmetric and antisymmetric 
mode, asymmetric modes of type A and B can propagate in 
the system. 

2. For the existence of this mode, certain minimum en- 
ergy fluxes are needed. 

3. Branches of these modes are split off at certain char- 
acteristic points from the symmetric and antisymmetric 
mode branches, respectively, and these modes can be trans- 
formed into symmetric and antisymmetric by continuous 
variation of the external parameters-the energy flux and 
the wave vector. 

4. In a certain range of values of the carrying-layer 
thickness or of the wavelength, the nonlinear surface waves 
are bistable: one value of the energy flux in the wave corre- 
sponds to two values of the wave vector. 

These features of nonlinear surface waves can apparent- 
ly find application in integrated-optics instruments and de- 
serve further theoretical and experimental study. 

The author thanks V. M. Eleonskii for a discussion of 
the work. 
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