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The effect of partial reversal of the wave front during the reflection of a wave in a randomly 
inhomogeneous medium is discussed in detail. It is noted that the presence of the reversed compo- 
nent in the field of the reflected wave leads to the appearance of long-range correlations of the 
reflected field and the enhancement of the mean intensity of the reflected wave in the focal plane 
of a lens. 

PACS numbers:03.40.Kf 

As is well known, the backscattering of waves in a large- 
scale randomly inhomogeneous medium Ieads to the appear- 
ance of specific effects connected with the double transmis- 
sion of the forward and backward waves through the same 
inhomogeneities. These are primarily the mean-backscatter- 
ing-intensity enhancement effect, the multichannel coher- 
ence effects,' and the similar effects of phase-fluctuation in- 
tensification and reflected-wave-intensity enhancement (see 
Ref. 4 and the references cited therein). In the present paper 
we discuss another class of phenomena connected with the 
double transmission: the effects of the partial reversal of the 
wave front during the reflection of a wave in a randomly 
inhomogeneous medium. 

The function g,, = g( p,, p,), (2), possesses the reciprocity 
property: 

a consequence of which is, in the final analysis, the partial 
wave-front reversal effects. 

Let us, using the general formula (I), consider the case 
in which the incident wave is emitted by two point sources 
located at the points p = p, and p = p, in the x = 0 plane: 

For such a prescription of the primary field, the complex 
amplitude (1) of the reflected wave is equal to 

41. PARTIAL PHASE REVERSAL IN THE CASE OF TWO POINT I& (p) =ulg (pi, P) fuzg ( ~ 2 ,  PI. ( 5 )  
SOURCES 

Accordingly, the cross-coherence function for the reflected- 
Let us consider the statistical properties of waves re- wave field at the points where the emitters are located con- 

flected from obstacles located in a large-scale randomly in- tains four terms: 
homogeneous medium whose permittivity 2( p, x) (where x 
and p are the longitudinal and transverse coordinates re- <us (p,) u,'(pz) )= ( u ,  1 2<g,,g,2*)+ 1 uz 1 2(g,,g~~*) 

spectively) undergoes fluctuations. For definiteness, we shall 
describe the propagation of the wave incident on the reflec- 
tor and the wave reflected backwards in the approximation 
of the parabolic-equation method (PEM).' 

Let the complex amplitude of the wave at the beginning 
of the path (i.e., in the x = 0 plane) be equal to u,( p). If a 
reflector with a local reflection coefficient f ( p) is located at 
the end of the path (i.e., in thex = L plane), then the complex 
amplitude of the reflected wave in the x = 0 plane is equal 
to6.' 

+u,uz'<g,,gz2')+u,'u2<g2,g121>. (6) 

Let us locate the sources such that the distance between 
them is greater than the coherence length p, of a spherical 
wave that has traversed a path of length L through the ran- 
domly inhomogeneous medium i . . ,  such that 
I pI - p21>pc). The quantity p,(L ) is determined from the 
well-known equation5 

D$ (p,, L)=l,  

u.(p) = s uo (PI g(P1 P) 4. ( 1) where 

Here D * ( P . L ) = ~ { D ( P + )  dr, D(p)=A(o)-A(p). 

6 ( q . ~ ) =  J / ( P ) G ( P . O ; P ~ L ) G ( P , O ; P . L ) ~ P ,  (2) 
4 

where G ( p', x', p, x) (xl(x) is the stochastic Green function, 
which satisfies within the framework of the PEM the equa- 

* 

A (p) = t r  (p', z) s(pl+p, x+r) )dr. 
- m 

tion 

a G 
2ik - + A,G+k2€(p, x) G=O, 

d x 

G (p', x'; p, X I )  =6 (P-p') . 

Let us also assume that the random phase advances that 
occur on a randomly inhomogeneous path of length L are 

(3) not great, so that (g) = 0. When these conditions are ful- 
filled, all the mean quantities on the right-hand side of (6),  
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except the last term, are equal to zero on account of the 
uncompensated random-phase advances occurring before 
and after the reflection. Thus, the equality (6) assumes, when 
allowance is made for the reciprocity property (4), the form 

( ~ ~ ( p i ) u ~ * ( p z ) ) = u ~ * u 2 ~ z ( f ) l ,  pz)), (7) 

where I ( p,, p,) is the intensity at the point p = p, in the 
x = 0 plane of the reflected wave generated by the unit 
source at the point p = p,. Similarly, the mean reflected- 
wave intensity at, for example, p = p, is equal to 

If the strengths of the sources are comparable, i.e., if 
luIl=lu2l and (I( p,, pl))=:(I(p,,  p,)), then thecorrelator 
(7) is smaller than the mean reflected-wave intensity by only 
a factor of two. Thus, there is long-range correlation 
between the waves that have traversed in opposite directions 
the path pl$reflectore p,. Let us note that a similar cross- 
coherence of waves that have traversed the same inhomo- 
geneities in opposite directions is pointed out in Ref. 8. 

Evidently, the high degree of coherence of the reflected- 
wave fields at the widely separated points p, and p2 de- 
creases sharply as soon as the distances between the points of 
observation and the points where the emitters are located are 
greater than p, . Figure 1 shows the qualitative shape of the 
reflected-wave-coherence function in the case when the 
points of observation are located symmetrically along the 
straight line joining the emitters: 

The above-indicated long-range correlation of the re- 
flected-wave fields at the widely separated points p, and p, 
at which the sources are located is due to the fact that the 
mutually coherent components of the reflected field at these 
points are phase-reversed relative to the fields of the sources. 
Let us explain the phase-reversal mechanism that leads to 
the situation in which the correlator (7) is proportional to 
u,*u2. Let the first source emit a wave with phase q,; the 
second, a wave with phase $,. Then the mutually coherent 
components of the reflected-wave field at the locations of the 
sources are equal to 

Let us take the random phase fluctuations on the path 
pl-+reflector+ p2 into account by introducing a phase fac- 
tor into the function g: 

Then, according to (4), gIZ = $t2,, and the phases of the mu- 
tually coherent components of the reflected wave at the 
points p, and p, are respectively equal to $, + $,, and 
$1 + *I,. But 

Consequently, up to the common term p, the phases of the 
mutually coherent components of the reflected wave at the 
points p, and p, are respectively equal to - $, and - $,, 
i.e., are reversed with respect to the initial phases of the emit- 
ted waves. 

52. PARTIAL REVERSAL OF THE WAVE FRONT IN THE CASE 
OF EXTENDED SOURCES 

Let us first carry out a qualitative investigation of the 
problem. Let us divide the extended source of diameter 
d% p, into separate small beams with diameter do - p, . Evi- 
dently, the number of such partial beams is roughly given by 
the relation 

M=d2/d,2-dZ/pc2> 1. 

If p, and p, are the centers of the mth and nth beams 
(the distance between them is greater than the coherence 
length p,), then, as a result of the phase reversal during the 
propagation along the randomly inhomogeneous path p, 
+reflectow p, , the coherence function 

will be proportional to the product uo*( p,)uo( p,). Let us 
emphasize that the coherence channel p,+reflectore p, is 
formed only in the case when the radiations of the partial 
beams in question overlap in the plane of the reflector. The 
radius of the spot of each partial beam in the plane of the 
reflector is, on account of the diffraction-induced divergence 
of the beam, of the order of 

a, (L) ~Llkpc .  

Thus, the partial reversal of the phases of the reflected- 
wave fields at the widely separated points p, and p, will 
occur only if the following condition is fulfilled: 

y=o, (L) /p, (L) =LlkpcZ~l ,  (8) 

and, what is more, the greatest reflected-wave-field-correla- 
tion length due to the partial phase reversal is equal to d if 
d < op , and does not exceed up if d > up. 

Let us note further that, since only the fields of two 
partial beams are responsible for long-range correlations of 
the fields at the points p, and p,, whereas the intensity of 
the reflected-wave field is the sum of the intensities of many 
partial beams, (I, ) )T,( p, , p, ) (quantitative estimates for 
the ratio of the mean reflected-wave intensity to the magni- 
tude of the long-range correlations will be given below). The 
general shape of the reflected-wave coherence function is 
shown in Fig. 2, in which the pedestal represents the enve- 
lope of the small correlation "spikes" of width - p,, corre- 
sponding to the partial beams. 
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FIG. 2. 

Let us note again that the condition (8) is known as the 
condition for saturated intensity  fluctuation^.^ The region of 
saturated fluctuations is characterized by a multibeam wave 
propagation that leads to the formation of the p,ereflec- 
t o m  p,-type coherence channels that are responsible for 
the partial wave-front reversal and the long-range reflected- 
wave-field correlation. 

Let us turn to the quantitative description. According 
to ( I )  and (2), the reflected-wave-coherence function can be 
expressed in terms of the fourth-order moment of the Green 
function of the incident wave7: 

As is well known, the general solution to the equation for the 
fourth-order moment G has not yet been But in the 
case when the saturability condition (8) for the intensity fluc- 
tuations is fulfilled, and the partial reflected-wave front re- 
versal and long-range reflected-beam-field correlation ef- 
fects manifest themselves most distinctly, the mean value 
(G ) is practically equal to zero, and the stochastic Green 
functions of the incident wave are asymptotically Gaussian, 
so that the average of their product can be broken up with 
the aid of the laws of the Gaussian As a result, 
the coherence function (9) breaks up into the sum of two 
terms: 

r, (p,, p2) =r (pi, p2) frreV(pi,  PJ,  ( 10) 

where 

r (p,, p2) = j no (q,) uoo (qz)F(q., q2; Pi, ~ 2 )  dqi dq2. 
(11) 

r, (pi, h) = 1 uo (qJ  UO* (qdF(ql, PZ; 92) dqidq2. 

Here we have introduced the notation 

~ ( q , ,  q,; p,, p2) =I f (pi)? (pz) (G(qi, 0; pi, L)G' ((1270; P21 L )  ) 
X:G (p:, 0; pi, L) G' (pz, 0; PZ, L) (12) 

The first term on the right-hand side of (10) describes-the 
reflected-wave coherence function without allowance for the 
correlation between the direct and reflected waves, while the 
second takes account of the double transmission of a wave 
through the same inhomogeneities of the medium, and de- 
scribes the effect of partial reversal of the wave front of the 
reflected wave. 

Using the known5 expressions for the spherical-wave 
coherence functions entering into (12), we can express the 

reflected-wave coherence function f, in terms of integrals 
that are easily analyzable for virtually all types of reflectors 
and incident waves. Here we shall limit ourselves to a discus- 
sion of the most interesting case of a collimated incident 
beam of radius d ,  pc propagating along the x axis with an 
initial complex amplitude u,( p). We shall, for simplicity, 
consider the reflector to be a point reflector: f ( p) =@ ( p). In 
this case the formulas (1 I) and (12) give 

where 

It is convenient to interpret the function W (  p; L ) as the 
transverse-beam-deflection probability density: it is normal- 
ized to unity only by the condition 

and has a width up - L /k p,, which can be interpreted here 
as the root-mean square deflection of the beam for the unper- 
turbed position. The quantity up also characterizes the dif- 
fraction-induced broadening of each partial beam in the 
plane x = L of the reflector. Only those partial beams that 
fall on the reflector participate in the shaping of the mean 
reflected-wave intensity and in the formation of the coher- 
ence channels for the various partial beams. Thus, in the 
case, under consideration, of a point reflector only the par- 
tial beams occurring in the emission plane in a circle of radi- 
us --up participate in the partial reversal of the wave front. 
If d < up,  then the number of such beams 

If, on the other hand, d >up,  then their number is of the 
order of 

(op!pc) 2=y2. 

Consequently, as follows from (1 3), when d <up,  the ratio 
f ,,, /(I, ) is, in order of magnitude, equal to 

1/M- (p,/d)'. 

If, on the other hand, d > up, then 

rre"l(Is)-1/y2. 

53. EFFECT OF AMPLIFICATION OF THE REVERSED- 
COMPONENT INTENSITY UNDER CONDITIONS WHEN THE 
REFLECTED WAVE IS FOCUSED 

In the case, considered here, of broad incident beams, 
i.e., beams with d> p,, the double transmission of the wave 
through the same inhomogeneities of the medium does not 
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lead to the effect whereby the mean intensity of the reflected 
wave is amplified.lg4 But the appearance, as a result of the 
partial reversal of the wave front, of a highly coherent com- 
ponent in the field of the reflected wave creates the condi- 
tions necessary for the focusing of this wave with the aid of a 
lens. This gives rise to a new effect: the amplification of the 
mean intensity of the reflected wave in the focal plane of the 
lens precisely as a result of the partial reversal of the wave 
front of the reflected wave. 

Let us illustrate this effect in the simple particular case 
in which the reflected wave is incident on a lens, located in 
the x = 0 plane, whose aperture coincides with that of the 
emitter, and is described by the function uo( p). The field in 
the focal plane of such a lens is equal to 

Under the conditions of a plane incident-on the reflector- 
wave (i.e., for d)up > p,), when the usual amplification of 
the mean reflected-wave intensity clearly does not occur, we 
find from (15), (lo), and (13) that the mean reflected-wave 
intensity in the focal plane of the lens is equal to 

where 

FIG. 3 

tal, whose dimensions ( - d F / L  ) are of the order of the di- 
mensions of the intensity-distribution spot for a spherical 
wave reflected from a point reflector in a homogeneous me- 
dium, and "underfocused" in the focal plane of the lens, 
corresponds to the "usual" component J ( p,). The intensity 
J,,,(p,), on the other hand, forms a narrow peak corre- 
sponding to the quasiplane (as a result of the reversal) reflect- 
ed-wave component with coherence length of the order of 
up. The appearance of the narrow peak J,,, ( p,) can further 
be interpreted as the result of multichannel coherence ef- 
fects: the interference of waves propagating along cross 
channels4 

In conclusion, we express our profound gratitude to B. 
Ya. Zel'dovich, who drew our attention to the possibility of 
the presence of a reversed field component in the reflected 
wave, and thereby stimulated the investigation summarized 
in the present paper. 

It  can be seen from this that the mean reflected-wave intensi- 
ty at the center of the focal plane of the lens is equal to twice 
the intensity in a homogeneous medium: 

This means that an absolute effect of intensity amplification 
with coefficient N,  = 2 should be observed at the center of 
the focal spot. It can also be seen from (16) and (17) that the 
amplification effect manifests itself only at a small spot of 
radius of the order ofp,F/L, where the reversed component 
of the reflected wave is focused. Figure 3 shows the intensity 
distribution in the focal plane of the lens. The broad pedes- 
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