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Nonlinear differential equations of the Riccati type for the t-channel partial wavesf, (t )describing 
the scattering of quarks on the mass shell are derived by employing the dispersion relations. The 
derivation applies to high energies s ' I2  in the region a,ln2(s/p2)- 1, wherep is the infrared cutoff 
parameter with respect to the transverse momenta of the virtual particles. For colorless channels 
the solutions are found in explicit form. It is shown that the singularities of partial waves with 
negative signature are in all cases located to the right of the singularities of partial waves with 
positive signature, i.e., the negative signature dominates in the asymptotic region a,ln2(s/p2)g 1. 

PACS numbers: 12.35.Ht 

1. INTRODUCTION 

Knowledge of the scattering amplitudes of quarks and 
gluons is necessary on the parton approach for the descrip- 
tion of inclusive hadron-hadron interactions in which the 
particles are produced with large transverse momenta, and 
for the calculation of the two-particle exclusive reactions at 
large momentum transfers. If the characteristic transverse 
momenta of the hadrons are large enough, the parton scat- 
tering amplitudes can be calculated within the framework of 
quantum chromodynamics by perturbation theory. Substi- 
tuting the results of the calculation in the formulas of the 
parton model and comparing the obtained expressions with 
experiment, one can obtain important information on the 
hadron wave functions, which are determined by the interac- 
tion at large distances. 

We consider in this paper the problem of calculating the 
scattering amplitudes of quarks and their annihilation 
qq--+~g in the Regge region 

s=-u>>pZ>> I t ( ,  (1) 

where, besides the ordinary invariants s, t, and u, we intro- 
duce an auxiliary parameter p which we idenfity with the 
infrared cutoff parameter in the Feynman integrals with re- 
spect to the transverse components of the momenta of the 
virtual particles: 

' I kL'l >P. (2) 

The parameter p is assumed to be much larger than the 
characteristic hadron mass scale A 100 MeV. The effective 
strong-interaction coupling constant is here small: 

There exists a region of energies 

in which the summation of the principal logarithmic terms 
-a, [(a,/n) X ln2(s/p2)] ", which lead to the doubly loga- 
rithmic (DL) asymptotic form of the scattering amplitudes, 
is a valid procedure. 

In our approach, the initial and final particles are as- 
sumed to lie on the mass shell ( p :  = p l 2  = p :  =P;' = 0). At 
sufficiently large momentum transfers ( - t ) " 2 ~ ~  we can 
assume that p2 is of the order of - t. The amplitude ob- 
tained in this manner corresponds to quark scattering ac- 
companied by a jet of partons (quarks and gluons), and the 
transverse momenta of the particles in these fermion jets has 
an upper bound p - ( - t )'I2. 

The infrared cutoff in the integrals with respect to k, 
can be effected in gauge-invariant fashion (for example, by 
introducing a high dimensionality of space-time, D > 4). The 
presence of gauge invariance makes our approach preferable 
to the usual one based on the use of the Bethe-Salpeter equa- 
tions, which operate with scattering amplitudes off the mass 
shell. We shall show in this paper that it is possible to con- 
struct a nonlinear differential equation directly for the t- 
channel partial waves J;(t ) on the mass shell, by tracking 
their variation with changing parameter p2 in Eq. (2). 

There is a close analogy between our approach to the 
investigation of the Regge asymptotics and the renormaliza- 
tion-group method' used in chromodynamics to calculate 
the amplitudes of hard processes. The main idea of our ap- 
proach is to separate in the Feynman diagrams, which de- 
scribe the scattering amplitude, the virtual particles with 
minimum values of transverse momenta k,, followed by 
proving that the integration over the remaining amplitudes 
can be expressed again in terms of the amplitudes f ,  on the 
mass shell, with substitution p-+lk ,  I in Eq. (2). A similar 
idea for the derivation of the renormalization-group equa- 
tions from Feynman diagrams was advanced many years ago 
by S ~ d a k o v . ~  

The DL asymptotics of various electrodynamic pro- 
cesses with participation of electrons andp mesons were ob- 
tained in Ref. 3 and are contained in a monograph on quan- 
tum electr~dynamics.~ The principal mathematical tool was 
in this case the construction of the Bethe-Salpeter equation 
for the scattering amplitudes. For the backward ef e -  scat- 
tering process, the amplitude with negative signature was 
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also ~alculated.~ Summation of large singly logarithmic 
terms -am(t - 4m2)-L'21ns besides the DL terms -aln2s 
has made it possible to investigate the motion of the Cou- 
lomb Regge poles in the j-plane of the t -~hanne l .~  Algebraic 
equations for the partial wavesf, (t ) in the pseudoscalar the- 
ory were first proposed in Ref. 7. In that paper, when dis- 
cussing the dependence of the amplitude on t, nonlinear dif- 
ferential equations of the Riccati type were formulated, but 
these, in contrast to our equations, contain derivatives not 
with respect to j but with respect to t. Equations similar to 
those obtained in the present article were used to calculate 
the asymptotic cross section for e+e-  annihilation into an 
arbitrary number ofp+p-  pairs and photons,8 but the auth- 
ors of that reference regarded the equations they obtained 
simply as a convenient technical device for the summation of 
the principal logarithmic terms. The same results can actual- 
ly be obtained by using the Bethe-Salpeter equation tech- 
nique. 

The results of Ref. 3 can be easily generalized to include 
the non-Abelian theory9 (this was observed independently 
also by Ermolaev and Lipatov). However, the approach 
based on the Bethe-Salpeter equation does not make it possi- 
ble to obtain in this case contributions corresponding to neg- 
ative signature of the partial waves in the t-channel. As will 
be shown below, for negative signature the singularities in 
the j-plane are located to the right of the corresponding sin- 
gularities of the partial waves with positive signature. There- 
fore the amplitudes with negative signature are asymptoti- 
cally more important. 

2. FORMULATION OF PROBLEM 

It  is known" that the behavior of the scattering ampli- 
tudes at high energies and at fixed momentum transfers is 
uniquely connected with the singularities of the partial 
wavesf; (t  ) in the crossing channel. Small-angle scattering in 
quantum chromodynamics (QCD) with exchange of a state 
with vacuum quantum numbers in the t-channel was investi- 
gated earlier." We consider below amplitudes of scattering 
with exchange of nonvacuum quantum numbers, which are 
determined in the framework of QCD by diagrams with two 
fermion lines in the t channel. 

A distinction must be made between two cases: di- 
quark-state exchange with baryon number B = 2/3, and 
"mesonm-state exchange from a quark and an antiquark. The 
corresponding scattering amplitudes will be designated D (s) 
and M (s). D exchange arises in backward scattering of a 
quark and antiquark (u = const). M exchange takes place in 
backward scattering of quarks of different kinds or in the 
q++~Q annihilation forward (the quark Q travels in the di- 
rection of the quark g). In non-Abelian gauge theory with 
SU (N)  group the wave function qi( p) of the quark is a spinor 
in color space (i = 1,2, ... ,N ) ,  whereas theantiquark is trans- 
formed like an antispinor iji. 

We consider for the sake of argument the annihilation 
of quarks with one flavor, q, into quarks with a different 
flavor, Q: 

qi'qlx+plQjz ( 5 )  

It is then convenient, for forward annihilation, to resolve the 

amplitude into two parts corresponding to exchange, in the 
t-channel, of the state of the colorless (M,) quantum numbers 
and the state with gluon quantum numbers (M,): 

I I 
M!'!I= t ,B YP 

S 
(6)  

where y: yb/s corresponds to the spin structure of the Born 
term, which must be calculated in the spinor brackets, and 
the asymptotic form ofs0 is given only by the matrices y, and 
y, (the 3-axis is directed along the particle-collision axis). It 
is known3 that the Born spin structure is preserved in calcu- 
lations with DL accuracy, therefore Mo and M, are scalar 
amplitudes. The matrices Po and P in (6) are projectors on 
singlet and "octet" states: 

Here A " is a generalization of the Gell-Mann matrices with 
properties 

Sp h"h6=2Pb, [h", hb] =2ifbchc, (8) 

wherePbC are the structure constants of the S U  (N)  group. 
For backward annihilation it is similarly convenient to 

resolve the amplitude into two parts that correspond to 
states that are symmetrical (D,) and antisymmetrical (D3)  in 
the color indices 

7pLypL (pi:;: D6+p:;: Dzl , D. = --- 
*ti? (9) 

where 
t 2  ( , :  + 8 )  ~ ~ ~ ~ ~ ' = l / , ( 6 ~ ~ 6 ~ - 6 ~ ~ 8 ~ )  (10) 

are the projectors on the corresponding color states. 
In the Born approximation, the color structure is 

1/4A f,"A y, and we therefore have for small g2 

We divide the amplitudes M,,, and D3,6 into parts that 
are symmetrical and antisymmetrical with respect to the 
permutation s+u 

~ o , ~ = ~ , f s + ~ & ,  M:. (s) =+-MOTS (--s) , 

The dispersion relations in the s plane are equivalent at 
high energies sl" to the following Mellin represetation for 
the amplitudes M * and D ' with definite signature 
p' + I :  

where is a signature factor, conveniently chosen in the 
form 
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In the DL approximation (4), small values of w are signifi- 
cant: 

o-13, (15) 

in which case expressions (13) coincide with the Watson- 
Sommerfeld representation. The variable w has the meaning 
of the complex angular momentum j in the t channel, and the 
functions 

cpip(o) =sin n o  jiP ( a )  (16) 

constitute the t-channel partial waves. We note that the con- 
tribution of the negative signaturep = - 1 to the scattering 
amplitude in the energy region (4) is suppressed (one of the 
Ins is replaced by ir). This is due to the smallness of the 
corresponding signature factor (14) in the region (15). 

For the imaginary part of the amplitudes Mand D in the 
s and u channels we have the following representation: 

~ m ,  ~ , , f = ~  Im, 

The inverse Mellin transformations make it possible to 
obtain pi* in terms of the imaginary parts of the correspond- 
ing amplitudes in the s and u channels: 

-@ Im,Mo,s+p Im, M,,, 
2 7 

In the Born approximation (1 I), the t-channel partial 
waves p+(o) are not analytic in w (they contain 6, singular- 
ities). Therefore equations (13) should have been written 
with nonintegral terms -g2s0. It is known,3 however, that 
the higher radiative corrections -g2(g2/w2)" give for the 
partial waves analytic expressions that coincide as o-0 with 
their values at the physical point o = 0. This means that if 
the nonintegral terms are included in the integral, as is done 
in (13), the suitably redefined functions f + (0) (which we 
shall hereafter call for brevity partial waves) should tend to a 
constant as o-0: 

fi+ ( a )  (,,,+const. (19) 

As will be shown in the following sections, the property (19) 
does indeed hold. 

The functions f :(a) take in the Born approximation the 
form (see (1 1)) 

FIG. 1. 

channel. In the general DL case, contributions to the Feyn- 
man gauge of the gluon Green's function 

D,, ( k )  -6,Jk2 

are made by diagrams of the ladder type in the t-channel with 
arbitrary gluon  insert^^'^ (see Fig. 1). The gluons in the lad- 
der have polarizations perpendicular to the (p,,p2) plane of 
the initial particles: 

DM,-6,,,l/k2, 

whereas the remaining gluons are polarized in the (p,,p,) 
plane: 

DsV(k) - ( P ~ ~ P ~ ~ + ~ I ~ P Z ~ ) /    pip^) k2.  (21) 

Following the t r ad i t i~n ,~  we shall call these ladder and 
bremmstrahlung gluons, respectively. In the single-loop ap- 
proximation the DL contribution comes from the five dia- 
grams of Fig. 2 in the case of exchange of a state of the meson 
type (M)  in the t-channel, and from analogous diagrams with 
coinciding directions of the arrows on the fermion lines in 
the diquark case (D ). Using the fact that the matrices P in  (6) 
and (9) are projectors on states with definite color in the t- 
channel, we can express the contribuions to M,,, and Dj,,  
from the diagram of Fig. 2a in terms of the corresponding 
electrodynamic expressions (the spin-structure simplifica- 
tion is effected similarly3): 

I sl dcr. dfi d2k,.2k12 
2 (-sa+kL2+i&) (sp+kL2+is) (sap+kLz+ is) 

where we have introduced the Sudakov parameters 

k-ap2+ppl+kL, la1 <<I, I <1, p2<-kL2<< I S ( .  
(24) 

The plot of Fig. 2a has singularities only in the s chan- 
nel. Therefore its contribution to the s-channel imaginary 

The degeneracy in signature is connected with the absence in 
this approximation of singularities of the amplitude in the u 
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part M and D can be easily obtained from Eqs. (22) and (23) 
by the substitution 

From the representation (1 3) we obtain partial waves f yo) 
that are degenerate in signature (see (20)): 

Since the gluon carries color degrees of freedom, the 
amplitudes with different color spin in the t-channel are in- 
termixed in the diagrams of Figs. 2b-2d. Using the proper- 
ties (8) of the matrices R ", we can easily express the contribu- 
tion of these diagrams in terms of the corresponding 
electrodynamic constrib~tions.~ Using the matrix-multipli- 
cation rules, we can represent the amplitudes in the form 

where 

J6(s) and J6(u) in (26) are integrals corresponding to the sim- 
plest Sudakov vertices 

(-i) 
J6 (s) =-2s - 

(2n) 

As seen from (26)-(28), the signature degeneracy is lift- 
ed already in the single-loop approximation. The corre- 
sponding partial waves will be calculated in the following 

FIG. 3. 

sections. We note here, however, that to obtain the scatter- 
ing amplitudes in the DL approximation in our approach it 
suffices, as it will be made clear later, to calculate the contri- 
bution of the single-loop diagrams. 

3. CONTRIBUTIONS OF DIAGRAMS WITH SOFT 
BREMSSTRAHLUNG MESON 

In the DL approximation, the perpendicular compon- 
ents of the virtual momenta in the Feynman integrals corre- 
sponding to different loops can be regarded as quantities of 
different order ofmagnitude, lkilglkfl or Ikflglkfl. 

We consider the contributions corresponding to the re- 
striction that the minimum transverse momentum in the dia- 
grams of Fig. 1 has one of the bremsstrahlung mesons. We 
denote this momentum by k: 

It can then be shown (see below) that if we consider the 
dispersion relations with respect to the invariants 

(pl-k)zz--sa,  ( p z+k)2xsp ,  

the principal contribution in the region (29) is made by the 
pole terms, with respect to these invariants, contained in 
diagrams 3a-3d, where the selected soft gluon joins the ex- 
ternal lines (see Fig. 3). The amplitude corresponding to the 
internal block in Figs. 3a-3d goes on the mass shell, but the 
infrared cutoff parameter,u2 in this amplitude should be re- 
placed in accordance with (29) by ( k  : 1; 

pZ- I kL2 I. (30) 

Upon summation of the contribution of the Feynman 
diagrams of Fig. 1, this result seems miraculous, but is in fact 
a consequence of the gauge invariance of the theory. In the 
case of quantum electrodynamics, analogous results for the 
bremsstrahlung of photons, and for the DL corrections to 
elastic amplitudes and to the Coulomb phase of hadron pro- 
cesses were first proved with the aid of the dispersion meth- 
od by Gribov and others.12 A generalization of the corre- 
sponding formulas to the case of the Yang-Mills theory and 
to gravitation was used in Ref. 13 in a check on the gluon and 
graviton reggeization hypothesis. 

To verify the pole dispersion equation corresponding to 
Fig. 3,it suffices to show that the inelastic contributions are 
negligibly small in the region (29) with respect to the invar- 
iants s ,  and s,. Consider, for example, the dispersion contri- 
bution corresponding to Fig. 4, in which the initial quark 
breaks up under the influence of a virtual gluon with mo- 
mentum k into a quark and a gluon. We estimate the corre- 
sponding inelastic amplitude T,. Knowledge of this ampli- 
tude is essential for the calculation of thes, jump with theaid 
of the unitarity condition. The disintegration products trav- 
el in the DL approximation along the directions of the initial 
quark with momentum p ,  and have by virtue of (29) trans- 
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FIG. 4. 

verse momenta k  1 much larger than k, .  Substituting the 
propagator of the virtual gluon in the form (21), and using 
the gauge invariance k, T, = 0 for the amplitude T,, , we can 
make the following substitution in the required matrix ele- 
ment p,,, T, : 

where we have neglected the asymptotically small term 
--s, p,, T, /s l .  Obviously, k,+, in the right-hand side of (3 1) is 
rendered dimensionless by quantities of the order of (or larg- 
er than) k  1. Therefore the inelastic contribution is small 
compared with the pole contributions of Fig. 3a, where the 
virtual gluon k  interacts with the quark color charge, which 
does not vanish as k, 4. The pole dispersion representation 
has thus been proved. 

To calculate the diagrams of Fig. 3 we can use our sin- 
gle-loop calculations (see Figs. 2, b-e) but in place ofM "' and 
D "' we must put in (26) M ( - s /k  :) and D ( - s /k  : ), where 
k, is the transverse component of the integration momenta 
in Eqs. (28): 

D") Jb (u )  -+ - - 
8n2 

M' 

If we write down M ( - s /k  :) and D ( - s /k  :) in the 
form of the Mellin transforms (12) and (13), we can evaluate 
the integral in (32) with respect to k :  as an integral with 
respect tow. (The upper limit Is1 must be replaced in this case 
by co.) The signature properties of the functions 
M * ( - s/k : ) and D * ( - s/k : J, which correspond to the 
blocks in Figs. 3a-3d, are not preserved after the integration. 
Indeed, let us use the equations 

The term in the parentheses in the right-hand side of these 
equations does not change the signature of the functions M 
and D in (32), and its contribution to the Mellin transform 
aan be written with logarithmic accuracy in the form 

The last term in the right-hand side of (33) reverses the sign 
of the signature of the functions M and D in (32). This term 
must be taken into account, with logarithmic accuracy, only 
when M and D have positive signature: 

Thus, from (26) and (32)-(35) we obtain the following 
final result for the contribution corresponding to the case 
when the minimum transverse momentum in the diagrams 
of Fig. 1 has a bremsstrahlung gluon: 

(36) 

We note that the matrices of the derivatives are diagonal by 
virtue of the definitions (27). Moreover, (f ,': (w)), does not 
contain derivatives for the colorless channel. 

4. CONTRIBUTIONS OF DIAGRAMS WITH SOFT QUARKS 

One more possibility of gaining a DL contribution in 
the diagrams of Fig. 1 is afforded by the fact that the mini- 
mum value 1 k ,  I = p is reached in a pair of t-channel fermion 
lines (see Fig. 5). In this case the two blocks in Fig. 5 contain 
all the diagrams for the scattering amplitudes but, just as in 
the case of the bremsstrahlung contributions of Fig. 3, the 

FIG. 5.  
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Feynman integrals with respect to k are cut off from below 
not by the parameter p, but by the transverse fermion mo- 
mentum k,  (cf. (30)): 

p2+ I kL2 I . (37) 
The amplitudes for the blocks at fixed k : can be regard- 

ed as located on the mass shell (k , = 0), inasmuch as by vir- 
tue of (37) they do not contain an infrared divergence and 
have thresholds with respect to k outside the essential inter- 
gration region k , - k :. 

In the calculation of the dispersion diagram of Fig. 5 we 
can use the results obtained above for the single-loop dia- 
gram Fig. 2a [see (22), (23)J: 

where the integration is over the region 
00)-kL2>p2, --00<a, jF-00, sap-k12, I su I 2 - k 1 2 ,  

Obviously, the integral differs from zero only if the signa- 
tures of the two amplitudes in the integrand coincide (to 
check on this statement it is necessary to make the change of 
variables a+ - a ,  P-+ - P ) .  Next, the signature of the re- 
sult of the integration coincides with the signature of each of 
the factors (to check on this we must substitute s--+ - s si- 
multaneously with a-+ - a ) .  The two foregoing facts were 
established in a discussion of the enhancement problem in 
the Reggion diagram technique.I4 

To calculate the contribution corresponding to (38) to 
the t-channel partial waves, it suffices to consider the analo- 
gous integral of the degrees of s a  and sp, multiplied by the 
signature factors 

lsldadpdLk,.k/ s 

( ~ a p + k ~ ~ + i e ) ~  ( - sa )  

where the change of variable x = - s a p  was made. Calcu- 
lating the integral with respect t o p  and next with respect to 
x ,  we obtain 

Locating the contours in the integrals with respect tow, 
and w, in the corresponding Laplace transforms in such a 
way that, for example, Rew, > R w , ,  it is easy to note that 
the contribution of the second term in the brackets of (41) 
vanishes upon integration with respect tow,, and in the inte- 
gral with respect tow, in the first term there is only one pole 
l/(w, - w,) to the right of the integration contour, i.e., this 
integral can be evaluated by residues. We finally obtain for 
the partial waves corresponding to the soft pair of quarks in 
Fig. 5 the following expressions (cf. (25)): 

5. EQUATIONS FOR THE PART IAL WAVES 

Combining the contributions corresponding to the soft 
gluons (36) and quarks (42), as well as taking into account the 
Born term (20), we can write in closed form nonlinear equa- 
tions for the t-channel partial waves in the DL approxima- 
tion (see Fig. 6). For positive signature these equations take a 
particularly simple form 

where 

In the case of negative signature, we obtain from (36) 
and (42) more complicated equations, which contain by way 
of inhomogeneities solutions of the equations (43): 
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where the coefficients ai and bi were defined above [see (44)l. 
We discuss now the analytic properties of the solutions 

of the obtained equations in the w plane. The equations for 
the channel with colorless quantum numbers are purely al- 
gebraic, so that the solution can be written in explicit form: 

fo'(o) =h20 { I -  [ l - g Z ( N Z - l ) / 4 ~ ~ N m ~ ] ' ~ ) ,  

Thus, f ,+ (o) contains a square-root branch point at 

o=o0+= [g"N2-I) /4n2N] ". 
It  is important to note that the partial wave with negative 
signature, which makes in the DL region (4)  a small contri- 
bution because of the suppression on account of the signa- 
ture factor 6 -(o) - iw -g, has a singularity w = w& in thew 
plane to the right of the point w = w$ . Indeed, at sufficient- 
ly large N the function f ,+ (w) can be replaced by its Born 
term, therefore, 

a,-zoo+ ( I + 1 / 2 N 2 ) .  (47) 

It can be verified that the difference o; - w$ remains posi- 
tive for all the admissible values N = 2,3, ... . We thus obtain 
a very interesting physical result, namely that the negative 
signature, initially suppressed by the numerical smallness of 
the signature factor, becomes dominant in the colorless 
channel when the energy is increased. A similar result holds 
also for other channels. To check on this fact, let us find the 
explicit solution of Eqs. (43) for f ,+, i#O. These are Riccati 
 equation^.'^ By standard procedures they reduce to a linear 
Schriidinger equation, and it turns out that the potential in 
this linear equation is harmonic in the variable w, i.e., its 
solution is a parabolic-cylinder function.15 Thus, for partial 
waves with positive signature in nonsinglet channels we ob- 
tain the following result (cf. Ref. 3): 

g2 d ji+ (w)  = a i  -- 
Pi do 

The singularities off ,+ (o) are poles of first order, locat- 
ed at the zeros of the function Dp(x) .  At N = 2, the equations 
for&* (w) and f 8 (w)  coincide with the equations for f ,i (w) 
and f  $ (w), since the isotopic quantum numbers in the chan- 
nels D and M are identical. This means that f Jt (w) has at 
N = 2 singularities to the right of the Rew = 0 axis, but f r 
= f &  has singularities in the w plane even farther to the 
right (see (46)). At N>3 the zeros of the function Dp (x) ,  which 
coincide with the poles off ,+ (w),  are located to the right of 
the imaginary axis,'' whereas the f; (w) have at zero singu- 
larities of the form 

fi- (o )  - i /o  In o. (49) 

i.e., they dominate in the asymptotic relation. Indeed, the 
singular behavior of (49) agrees, as can be easily verified, 
with Eqs. (45). 

To illustrate the appearance of the singularity (49) in 
negative signature, we consider the backward e+e -  scatter- 
ing in quantum electrodynamics, where the equations have 
the same form as the equations for f T and f, [cf. (45)]: 

By changing from the Riccati equation (50) to the 
Schrodinger equation we easily obtain its explicit solution 

This solutions agrees with the result obtained in Ref. 5 by the 
traditional methods, and contains a singularity of the type 
(49) at w = 0 .  

In concluding this section, we note that from the explic- 
it formulas (46) and (48) follows satisfaction of the property 
(19) which guarantees the absence of nonanlytic terms in the 
w plane. 

6. DISCUSSION OF RESULTS 

We have thus obtained in this paper, in the DL approxi- 
mation, nonlinear equations for the t-channel partial waves 
of the scattering of quarks on the mass shell, and investigated 
the analytical properties of their solutions in the o plane. 

The derivation of equations for the diquark system in 
the t-channel is of interest for the discussion of the analytic 
properties of a partial wave in the case of baryon exchange, 
where the singularities of fJ (w) and f,(w) can generate singu- 
larities in the colorless channel by the very same mechanism 
that is responsible in the hadron world for the appearance of 
Mandelstam branch cuts. 

Indeed, exchange of a diquark state having the quan- 
tum numbers 5 of the antiquark according to the S U  (3)  color 
group with a reggeized quark leads to singularities off, (u)  in 
the baryon colorless channel u, in the same manner by which 
a pomeron singularity results from summation of Mandel- 
stam branch cuts due to exchange of two reggeized gluons.' ' 
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In exactly the same way, knowledge of the partial wave f,(w) 
is necessary for the calculation of the branch cut connected 
with the diquark, quark, and gluon exchange. In the color- 
less meson channel, a similar mechanism leads to a branch 
cut in the j plane on account of the exchange of an octet state 
[the partial wavef,(w)J and the reggeized gluon. 

The method developed in this paper can also be success- 
fully used to calculate gluon (or photon) scattering ampli- 
tudes with quark-anti-quark state exchange in the t-channel. 
Notice should be taken of the possible appearance for these 
processes, in the j plane, of new pole singularities corre- 
sponding to quark-quark scattering. It  is easy to generalize 
the formulas derived above for the case p2 < - t, and also 
include the phenomenological region of small k, -A,  which 
is responsible for the onset of Regge trajectories correspond- 
ing to the mesons r,p,w, ... . It is possible to take consistently 
into account, at least near the threshold t = 4mi for the pro- 
duction of massive quarks, the "Coulomb singly-logarith- 
mic terms" (see Ref. 6) that describe the Regge trajectories in 
the nonrelativistic approximation. Great interest attaches 
also to a refinement of the derived equations by taking more 
accurate account of the asymptotic freedom in QCD. 

In quantum electrodynamics, the method proposed 
above makes it possible to obtain the known  result^^.^ in a 
most economical manner [see (48) and (5 I)]. In the case of the 
forward e+e--p+p- annihilation (the charge does not 
change direction) our equations for t-channel partial waves 
with negative signature f; (w) reduce to algebraic ones and 
their solution is elementary [cf. (46)l: 

Besides the singularity at I = 1, the partial wave f -(I) 
has in the I plane a pair of immobile square-root branch 
points at 1~0 .9343  f i0.4804, which lead to scattering-am- 
plitude oscillations superimposed on their monotonic 

growth. This is a new result. The usual method based on the 
solution of the Bethe-Salpeter equations did not make it pos- 
sible to find f -(I). 

Thus, the approach developed in the present article is 
applicable to all gauge theories (including gravitation13). 
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