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Small longitudinal quantum fluctuations of the metric in cosmological models with metastable 
vacuum are considered. A Hamiltonian formalism is constructed and the system of small pertur- 
bations quantized. The single-loop corrections are taken into account in the Einstein equations. 
The stability of the models with respect to perturbations of the metric is investigated. The spec- 
trum of fluctuations of the metric is calculated. Under certain conditions, the amplitude of the 
spectrum is sufficient for the formation of galaxies during the hydrodynamic stage after the decay 
of the polarized vacuum. 
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The significant progress in the construction of a unified 
theory of the electromagnetic, weak, and strong interactions 
achieved following the clearer understanding of the part 
played by the gauge properties of these interactions' has led 
to new and rather unusual ideas concerning the early stages 
in the evolution of our Universe. New possibilities have ap- 
peared for solving a number of important cosmological 
problems associated with the baryon asymmetry of the Uni- 
verse2 and its homogeneity and i~o t ropy .~  In addition, we 
have got nearer to solving two other problems: How and 
from what perturbations were the galaxies and clusters of 
galaxies formed? 

In the present paper, we consider the problem of the 
initial inhomogeneity spectrum and investigate the connec- 
tion between this spectrum and the observed large-scale 
structure of the Universe. It  should be noted that at the pre- 
sent time the problem of the initial fluctuation spectrum is 
solved in a rather pragmatic manner4 in theories of galaxy 
formation. In fact, the perturbation spectrum and its ampli- 
tude are chosen to ensure the observed parameters of the 
galaxies and clusters. However, it would be more satisfac- 
tory to avoid introducing arbitrary additional assumptions 
into the theory and instead obtain the initial spectrum from 
fundamental principles, restricting oneself to fluctuations 
that are unvoidably present on the background of a homo- 
geneous and isotropic Universe. What is the possible nature 
of such perturbations? The most natural would appear to be 
quantum-mechanical fluctuations of the metric. They are 
necessarily present in any system possessing a finite energy 
density, and their existence is intimately related to the uncer- 
tainty ~r inc i~le . '  One also cannot rule out the possibility of 
thermal fluctuations. However, their existence on the scale 
of galaxies raises serious doubts, since at the Planck time the 
co-moving galactic scales greatly exceed the characteristic 
sizes of the causally connected regions6 Therefore, in what 
follows we shall restrict ourselves to considering only quan- 
tum-mechanical perturbations. 

In our earlier paper7 we showed that in a Universe filled 
with hydrodynamic matter, with equation of state p = p ( ~ )  
satisfying the condition p + E - E ,  quantum fluctuations of 

the metric are inadequate for the formation of galaxies. 
Gauge theories of interactions open up new possibilities. 
These theories predict the existence of "quasivacuum" 
stages in the early evolution of the Uni~erse.'.~ During these 
stages, the dynamical evolution of the Universe is deter- 
mined by the vacuum energy with effective equation of state 
p, = - E, .  Under the assumption that hydrodynamics is 
applicable, we demonstrated earlier the fundamental possi- 
bility of obtaining fairly large amplitudes of inhomogeneities 
in models with a quasivacuum stage.' However, due to the 
limitations of the hydrodynamic approximation, we did not 
create a complete theory capable of describing as well small 
quantum-mechanical perturbations in the quasivacuum 
stage in an empty Universe (without particles), in which hy- 
drodynamic fluctuations do not exist. In the present paper, 
operating in the framework of purely field models, we at- 
tempt to construct such a theory. 

Our paper is arranged as follows. In Sec. 2, we consider 
the example of a "typical" gauge theory, which leads to the 
presence of a quasivacuum stage in the evolution of the Uni- 
verse. In Sec. 3, we describe the initial background model of 
the Universe. In Sec. 4, we identify the true physical degree 
of freedom characterizing the system of small longitudinal 
perturbations of the metric, describe the evolution of classi- 
cal perturbations, and derive a variational principle. In Sec. 
5, we present the procedure of canonical quantization. In 
Sec. 6, we consider the stability of the original cosmological 
model with respect to vacuum fluctuations of the metric. 
The spectrum of pregalactic inhomogeneities due to the oc- 
currence of zer3-point vibrations is calculated in Sec. 7. 

2. VACUUM ENERGY IN GAUGE THEORIES 

Gauge theories of elementary interactions have the con- 
sequence that during the very early stages in the evolution of 
our Universe the vacuum could have had a nonvanishing 
energy density. Such possibilities were analyzed in the 
framework of unified theories by Kirzhnits, Linde, and oth- 
ers (see the review of Ref. 8). Let us consider the simplest 
Lagrangian with local Abelian U (1) symmetry: 
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where p is a complex scalar field, D, =a, - ieA,,F,, 
= a, A, - a, A,, where A, is the potential of the vector 

field. The scalar Higgs field p in the Lagrangian (2.1) (or set 
of fields performing the same functions) is a necessary at- 
tribute of all renormalizable gauge theories.'.' Because of the 
specific self-interaction potential of this field, 

the minimum of the potential corresponds to the existence of 
a homogeneous nonvanishing expectation value Ip( = a/ 
d 2  of the field. 

When allowance is made for the single-loop correc- 
tions, the state of the scalar field will be determined by an 
"effective" potential, which is the sum of the "classical" po- 
tential (2.2) and the a-dependent shift of the vacuum energy 
density due to the zero-point (or thermal) vibrations of the 
field p. In this case, if the coupling constants satisfy certain 
relations, the "effective" potential can have an additional 
local minimum at p = 0 (see Fig. If the depth of this 
minimum is sufficiently small, the state with p, = 0 is metas- 
table and has nonvanishing vacuum energy density: 

E,,= V ((p=O) =mrp2miv /8e2. (2.3) 

The vacuum energy-momentum tensor Ti,, = corre- 
sponds to the A term in Einstein's equations. As is readily 
seen in (2.3), the vacuum energy density is determined by the 
characteristic masses and coupling constants. Therefore, in 
principle, there could exist in the Universe condensates cor- 
responding to the different types of interaction and possess- 
ing different energy densities. In particular, the vacuum en- 
ergy density in a grand unification theory could be 
comparable with the Planck density (E,, - g/cm3), since 
the masses that occur in the various forms of the theory may 
be comparable with the Planck  mas^.'.^.'^ 

Suppose the potential of some scalar field p has a local 
minimum as shown in Fig. 1. As an example, let us consider a 
Universe that begins its expansion from the state with p = 0. 
This could be due, for example, to the restoration of symme- 
try at high temperatures (for a detailed discussion of the var- 
ious possibilities, see the review of Ref. 8). At the start of 
expansion, ordinary hydrodynamic matter could also be pre- 
sent in the Universe. However, its density falls during the 
process of expansion, and after a fairly short period of time 
this matter can be ignored and only the purely vacuum stage 
considered.' 

FIG. 1 .  Characteristic form of the effective potential V ( p  ) of the scalar 
field q, in gauge theories. 

Because the state with p = 0 is metastable, this vacuum 
stage lasts for only a finite time, after which the Universe 
must make a phase transition and go over to the state with 
1p1-ad2. Then the vacuum energy is transformed into the 
energy of ordinary matter, and the Universe enters the hy- 
drodynamic (Friedmann) expansion regime. 

We now consider the question of the fluctuations of the 
metric in the vacuum stage associated with the perturbation 
of the condensate field p. In the first order in Sp, the pertur- 
bations of the vacuum energy-momentum tensor are equal to 
zero: 

and, therefore, the corresponding longitudinal adiabatic 
perturbations of the metric will also have the value zero. At 
the first glance, it might therefore appear that there will be 
no longitudinal fluctuations of the metric in the linear ap- 
proximation. However, it can be shown that this is not the 
case. As was demonstrated in Ref. 7, the hope of obtaining 
fairly large fluctuations can be justified only when the den- 
sity of the vacuum condensate does not differ strongly from 
the Planck density. And it is well known that at such densi- 
ties the single-loop polarization corrections to Einstein's 
equations are important. It is allowance for these corrections 
that gives rise to nonvanishing quantum longitudinal fluctu- 
ations of the metric already in the linear approximation. 

To conclude this section, we emphasize that the main 
results of the paper relating to the spectrum of pregalactic 
inhomogeneities will be independent of the concrete as- 
sumptions made concerning the gauge theories. Their valid- 
ity rests solely on the existence in the Universe of a quasiva- 
cuum stage with a definite energy density of the vacuum 
condensate that is transformed into the energy of relativistic 
particles at a certain time as a result of a phase transition. 

3. BACKGROUND COSMOLOGICAL MODEL 

We consider a homogeneous isotropic Universe-for 
simplicity of zero spatial curvature''-with metric 

where 77 is the conformal time. 
As was noted in Sec. 2, the contribution of the energy- 

momentum tensor of the ordinary matter can be ignored in 
the quasivacuum stage. Therefore, in the Einstein equations 
describing this stage we take into account only the energy of 
the vacuum condensate and the contribution of the polarized 
conformal fields in the strong gravitational field: 

where h = c = 1, I,, = ( 8 x ~ / 3 ) ' "  is the Planck length, and 
- ~ 

E ~ ,  = const is the vacuum energy, which remains constant 
during the expansion process. In the conformally flat metric 
(3.1), there is no production of massless particles, and the 
energy-momentum tensor of the polarized quantum fields, 
( T i  ), = (T i ) , ,  + ( T i  ),, consists of solely of local terms 
that arise in the regularization process": 
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(3.3) 
where H = 360?r/Gk2, M = - 360r/Gk3, and the con- 
stants k, and k, are determined by the contribution of the 
quantum fields with different spins. The solutions of Eqs. 
(3.2)-(3.3) are meaningful only when 

I RikR, 1, I R'k'mRi~~m / , . . . -~lp~- ' ,  

since the polarization terms in (3.3) are written down in the 
single-loop approximation. To justify the applicability of the 
single-loop approximation, we assume that (HI,, ),, 
(MIpl ),( 1. These conditions will be satisfied if the number of 
elementary fields is sufficiently large and there is no special 
canceling of the contributions of the different fields to the 
polarization tensor ( T ', ) , . 

For the stability of Minkowski space, which is obvious, 
is necessary for k, to be negative (k, <O, M 2  > 0). If 
E ~ , ,  < $(H1pl)2~p, ( E ~ ~  = 1 pl is the Planck density) and 
H > 0, then it can be shown that the system of equations 
(3.2)-(3.3) has solutions of de Sitter type: 

In the most interesting case, E ~ ,  ((H1pl)2~p,, the solu- 
tion with x l  z H, which was proposed by Starobinsky in Ref. 
12, describes a de Sitter stage in which the energy of the 
polarized vacuum of the conformal fields is dominant 
( ( T i ) ,  -(HI,,)2~p,>~,,). Note that the homogeneity and 
isotropy of the Universe does not make this stage unavoid- 
able. Its existence must be assumed by choosing appropriate 
initial conditions. 

The other solution with X , ~ I ~ , E ~  corresponds to a 
Universe whose dynamical evolution is determined by vacu- 
um energy that arises in gauge theories (E~,,)(T',),, 
- (~,~/(Hlp, )E~" ) .  If the relations between the param- 
eters of the gauge theories are such that the formation of a 
condensate with nonvanishing energy density is unavoid- 
able, then a homogeneous isotropic Universe will necessarily 
pass through a de Sitter stage of this type. 

In the present paper, we concentrate mainly on the 
question of the fluctuations of the metric in the de Sitter 
stage whose existence is due to the scalar fields 
(xz lp l (~Qu)1 '2 ) .  The results associated with the quantum 
fluctuations in the model proposed by Starobinsky12 (x z H  ) 
have been given in our preceding paper Ref. 13. 

We note that the metric (3.1) with scale factor (3.4) can 
be reduced to a static form by a coordinate transformation. l4  

The de Sitter Universe with the metric (3.4) is characterized 
by a constant negative 4-curvature and the absence of mat- 
ter, and formally it does not have a singularity. However, the 

assumption that there is ordinary matter in the Universe or 
allowance for the finite time during which the metastable 
vacuum exists ensures a singular nature of the cosmological 
 solution^.^.'^ 

4. EVOLUTION OF CLASSICAL PERTURBATIONS 

We consider the small perturbations of the metric (3. l), 
(3.4) satisfying Eqs. (3.2). We shall make our analysis in a 
synchronous frame with Sg,, = O,SB,, = - hcrp. 

In the general case, the polarization tensor ( T  ', ), con- 
tains additional terms compared with (3.3), including pertur- 
bations of the Weyl tensor.15 However, for the de Sitter Uni- 
verse (3.4) these corrections to ( T :  ), are zero in the linear 
approximation. Therefore, to investigate the perturbations 
in the given concrete case we can use the expressions (3.3) for 
( T i ) ,  . Using (2.4) and linearizing Eqs. (3.2) and (3.3), we 
obtain the following equations for small perturbations on the 
background of the metric (3.4): 

(4. lc) 

where C = 1 + 4x2/M - 2x2/H 2,C # 0, the prime denotes 
differentiation with respect to 7, and a comma followed by 
an index the partial derivative with respect to the corre- 
sponding xu. 

For longitudinal (scalar) perturbations, SR does not . 

vanish.,' In the general case, the linearized system of equa- 
tions (4. l), written down for such perturbations of the met- 
ric, is a system of two equations, each of the fourth order. 
However, as we shall see subsequently, in the case of the de 
Sitter metric (3.4) (and in Minkowski space) the solution of 
the system (4.1) reduces ultimately to solution of a second- 
order equation for SR. It is obtained by linearizing the con- 
tracted equations (3.2): 

In Minkowski space, for which a = 1, the coefficient in front 
of SR is M 2 .  In this case, the equation analogous to (4.2) 
describes scalar particles with mass M. 

The system of equations (4. lc) is complete for determin- 
ing the evolution of perturbations h = a-,h a of the met- 
ric. For the quantization, we must find the action for the 
considered system of perturbations. The polarization tensor 
( T i ) , ,  is obtained by varying terms of the type 
J R  2,&fd 4x and is conserved: ( T i  ),2;i = 0.17 The tensor 
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( T ', ) ,, is conserved only in the case of a homogeneous, iso- 
tropic Universe. However, it is easy to see that in the first 
order in the perturbations ( T  ', ),, is conserved in the Uni- 
verse we are considering: ( T  2'' + ST ', ) = 0. Therefore, 
for (ST ' , ) , ,  there must also exist a variational principle. 

We find the action for small perturbations in the same 
way as in our previous paper Ref. 7, expanding the total 
action to second order in h g,h g', etc: 

where the symbol (*) stands for divergent terms, and h z,, 
= h = dh ;/dxY. Varying (4.3) with respect to h $, we ob- 
tain Eqs. (4. lc). 

We consider perturbations h of potential type: 

where A is the Laplacian, and Va = V, = d/dxa. In the gen- 
eral case, the solutions of the equations for the adiabatic 
fluctuations contain not only the physical modes but also 
fictitious modes associated with the arbitrariness in the 
choice of the synchronous frame of reference. l 8  Because the 
de Sitter cosmology is translationally invariant with respect 
to the time (the unperturbed R = const), SR = 0 on the ficti- 
tious perturbations. For this reason, SR characterizes only 
the true perturbations and is an invariant variable. 

We express the action (4.4) in terms of 6R. For this, we 
first of all write out the necessary components SR ; : 

1 f,Rp"=- -- 
a' I 

2a2 V'V, (h"+2- a h' + - 3 A (h+p)) for sip, 
(4 .5~)  

We introduce the functions 

Using (4.1) and (4.5), we find that these functions satisfy the 
equations 

Substituting (4.4) in (4.3) and expressingA andp in terms of V 

by means of (4.7), and making fairly long calculations, we 
reduce the action for the considered perturbations to the 
form 

The variation of this action with respect to V gives an equa- 
tion for the variable V. We add to the action (4.8) a number of 
divergent counter terms and express V' in terms of 6R [see 
(4.7)]. Then we finally obtain 

Varying (4.9) with respect to SR, we obviously obtain the 
field equation (4.2). 

5. QUANTIZATION 

To quantize the longitudinal perturbations, we intro- 
duce the new variable 

cp= (18C) -"~a6R/1,,M2, (5.1) 

which characterizes the physical degrees of freedom of the 
considered field. For it, the action can be written as follows: 

It  differs from the action (4.9) by a divergent term.3' Varying 
(5.2) with respect to p ,  we obtain the equation 

We quantize the real scalar field p in the standard man- 
ner in the framework of the canonical Hamiltonian formal- 
ism. We define the generalized momentum conjugate to the 
field variable p by 

n =d9/dqf=rp ' .  

Then the corresponding Hamiltonian is 

Here, we distinguish two terms: Z,, is the Hamiltonian of 
the system in the absence of an external gravitational field, 
and X,,, is the energy of the interaction of the perturbations 
with the external gravitational field. 
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Going over from the field variables q, and .n to the corre- 
sponding operators, we determine for them commutation 
relations on the hypersurface q, = const: 

The field equation (5.3) is equivalent to the Heisenberg equa- 
tions 

=icp', =in'. 
The creation and annihilation operators & ,+ and 6 , for the 
considered perturbatiys (scalarons) are defined by expand- 
ing the field operator q, with respect to a complete system of 
orthonormalized solutions of Eq. (5.3): 

(the functions e'kx/(2a)3'2 are orthonorpalized figenfunc- 
tions of the operator A ). The operators b and b , satisfy 
standard commutation relations for bosons: 

[ba-b,r+] =Saa r .  (5.7) 

It follows from the definition (5.6) and Eq. (5.3) that the 
complex amplitude uk (q) must satisfy the equation 

and the normalization condition 

U~'U~*-U<' uA=2i, 

which is necessary for the consistency of the commutation 
relations (5.5) and (5.7). 

Turning to the definition of the Hilbert state space, we 
assume the existence of an eigenvector LO) of the operators 
6 ,  corresponding to zero eigenvalues: bL10) = 0. The re- 
maining states can be obtained by successive application of 
the operators 6 :. We define the complete system of eigen- 
functions uk(q) as the solutions of Eq. (5.8) with the initial 
conditions 

uk(so) =ncU ukr(q0) =in.', W=k2+M2agE. (5.10) 

These initial conditions are consistent with the normaliza- 
tion (5.9) of the basis funcitons and correspond to the mini- 
mum of the Hamiltonian X,, averaged over the state (0 ) .  

We note that the spectrum of the considered fluctu- 
ations in the region of wave numbers of greatest interest to 
us, namely, - kq,) 1 (qO is the hypersurface on which the 
initial quantum state is specified), does not depend in the 
employed order of perturbation theory on the principle used 
to choose the initial vacuum, since for such fluctuations 

For this reason, the possible changes in sign of the Hamilton- 
ian (5.4) due to the negative interaction energy flint are not 
important for us. 

To conclude this section, we write down the solution of 
Eq. (5.8) with the initial conditions (5.10). It can be expressed 
in terms of Bessel functions and has the form 

+2qO(y&z(-kqJ  J ~ ~ ~ ~ ( - - k q )  - ~ ! ~ , z ( - k q q )  Y2v 2 ( - kq ) )  1, 
(5.11) 

where J,,, and Y,,, are Bessel functions of order 3v/2, 

We emphasize once more that the nonvanishing initial 
conditions (5.10) correspond to minimal quantum fluctu- 
ations and are necessarily present in the considered Uni- 
verse. 

6. QUANTUM FLUCTUATIONS AND BACKGROUND 
COSMOLOGICAL MODEL 

To characterize the level of the fluctuations in the consi- 
dered model, we calculate the correlation function of the 
perturbations of the curvature scalar. The fluctuations due 
to the single-loop corrections to the Einstein equations can 
be appreciable on fairly large scales only when the vacuum 
energy density, which determines the expansion rate of the 
Universe in the de Sitter stage, does not differ too strongly 
from the Planck value. To avoid unnecessary complication 
of the final expressions, we restrict ourselves to calculations 
of perturbations for a Universe with x)M.~' In this case, 
using (5.1) and (5.6) and asymptotic expansions of the solu- 
tion (5.1 l),  we find the following expression for the correla- 
tion function of the curvature fluctuations at times ( q ( 4  IqoI: 

d3k 
(01 6R (x) 6R (x+r) 1 O)= j-pzerp (ikprp) I SR, 1' 

(2n) 

Here, k, = k /a  and r, = ra are, respectively, the physical 
wave vector and the physical scale (measured in cm-' and 
cm); It is also assumed that M 5 H and H > x > 2MH / 
(8M + 9H 2, so that v is a real number. 

The correlation function is conveniently characterized 
by its spatial spectrum P2(kp):  

1 sin k,rp dk,  
< O I S l l ( x ) S f i ( x + r ) l ~ > = ~ J ~ ~ ( k ~ )  --. 

2n kprp kp, 

By virtue of the isotropy, P (k,) depends only on the modulus 
of kp (and the time) and characterizes the amplitude of the 
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FIG. 2. Perturbation spectrum 6R / R  'O' of the curvature scalar in the de 
Sitter stage of expansion of the Universe due: a) to polarization of the 
vacuum of the conformal physical fields in the gravitational field, x ,  z H  
(a, - M  ' / H  for M  2 ( H  ' )  and b) nonvanishing vacuum energy density in 
gauge thories, x , z I , , c ~  ( a 2 z M 2 / 3 1  ;,E, for M 2 ( 3 1 ; , ~ , ) .  

perturbations of the curvature scalar on scales rp - l/kp. 
The dependence of P(kp) and kp given by (6.1) at the time 
171 4 lqO1 (vo is the initial hypersurface) is shown in Fig. 2. 
The broken line corresponds to the case H > x  > H / d 2 ,  
when the vacuum energy density is determined by the polar- 
ization of the conformal fields. The fluctuations in a Uni- 
verse in which the vacuum energy associated with Higgs 
fields is dominant are shown for the case H>x>M by the 
continuous line. 

In Sec. 7, it will be shown that the characteristic pertur- 
bations of the metric correspond to perturbations of the cur- 
vature scalar. Therefore, these last give a fairly good charac- 
terization of the level of the fluctuations. As can be seen from 
Fig. 2, the graphs of P (k,) against kp have three inflections. 
The first, at kp -M (v/vO), is due to the inflection in the ini- 
tial vacuum spectrum, whereas the other two, at k, - X(T/ 
vo) and k, - x ,  are due to the evolution of the perturbations. 
For the intermediate scales x > kp > x(7;l/yo), the amplitude 
of the fluctuations remains constant, and the length of the 
intermediate region increases with the passage of time in the 
direction of small kp. In the caseH>x > H 2/2, the spectrum 
has a maximum, which is situated at k, - x(q/r],). The am- 
plitude of the perturbations in the region of the maximum 
increases and at a certain time 7 = vf the perturbations 
P(kpf) of the curvature scalar at scales kpf -x(rlf/qo) be- 
comes of the same order as the curvature scalar 
R "' = - 12x2, which characterizes the unperturbed model. 
It is clear that from then on the back reaction of multiple 
production of excitations (scalarons) on the evolution of the 

"background" model of the Universe becomes important. 
Thus, the de Sitter Universe with H > x  > H / d 2  is unstable 
with respect to perturbations of the metric of scalar type and 
due to the presence of the vacuum fluctuations of the pertur- 
bation field it has a finite lifetime (for more detail, see Ref. 
13). 

The situation becomes qualitatively different in the case 
of a de Sitter stage due to a delayed cosmological phase tran- 
sition (x < H //2). It  can be seen from Fig. 2 that in this case 
the amplitude of the fluctuations decreases monotonically in 
the region of small kp and the perturbations do not increase 
to the magnitudes that characterize the background model. 
Therefore, this de Sitter Universe will be stable with respect 
to the production of longitudinal perturbations of the metric 
("scalarons"). Nevertheless, the time of its existence will be 
finite. This is due to the metastability of the vacuum conden- 
sate itself, which has a nonzero energy density. The decay of 
the vacuum is a phase transition of the first or second kind 
(the type of phase transition is determined by the parameters 
of the gauge theories).*v9 

We emphasize once more that, depending on x, the de 
Sitter stage is finite for qualitatively different reasons. For 
H)x  > H //2, it is finite because of the instability of the 
polarized vacuum with respect to the production of longitu- 
dinal perturbations of the metric, whereas for H / d 2  > x the 
cause of the finite lifetime of the de Sitter state is the rearran- 
gement of the scalar fields. 

As a result of the instability of the de Sitter models of 
the considered types, matter is produced in the Universe, 
and it goes over to an ordinary Friedmann expansion regime. 
The de Sitter stages described above can be realized only as 
finite (in time) intermediate stages in the evolution of our 
Universe. 

7. FORMATION OF GALAXIES 

In modern theories of the formation of galaxies, one of 
the most important questions is the origin of the initial spec- 
trum of perturbations. It was shown earlier in Ref. 7 that in a 
singular "hydrodynamic" Universe with p + E-E  (P is the 
pressure and E is the energy density) the quantum-mechani- 
cal initial perturbations are insufficient for the formation of 
the observed large-scale structure. Therefore, the question of 
the natural occurrence of an initial inhomogeneity spectrum 
capable of leading subsequently to the formation of galaxies 
and clusters of galaxies in a Universe with a vacuum (de 
Sitter) stage is of particular interest. 

To compare the obtained perturbation spectra with 
modern theories of galaxy formation, we need expressions 
for the correlation functions of the perturbations of the met- 
ric. From Eq. (4.5a) for SR :, integrating, we find 

Using (4.6) and (4.7), we obtain the corresponding expression 
for A : 

1 1 
A A = - - ~  CM" a (,6~) ' dq-Ap. 

Knowingil andp from (4.4), we can find the perturbations of 
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the metric h s. Besides physical modes, they include ficti- 
tious modes corresponding to transformations of the coordi- 
nate system that leave it synchrono~s.~ 

The existence of the fictitious modes unfortunately 
renders the synchronous frame inconvenient for investiga- 
tion of perturbations of the metric. To establish how strong- 
ly the metric of the perturbed de Sitter model differs from 
(3.4), we go over from the synchronous coordinates 77, xa to 
new coordinates ij,Za by means of19 

In the coordinates f~ , . ?~  the interval ds2 in the linear order in 
the perturbations of the metric has the form 

where 

The perturbations SR ( i j ,  5") of the curvature scalar in the 
new coordinates in the de Sitter Universe are equal to 
SR (7, xu) in the synchronous coordinates, since R 17' = 0. 

Substituting the expressions (7.1) and (7.2) forA andp in 
(7.5) and using Eqs. (4.1) and (4.2), we find 

i.e., the scalar perturbations of the metric in the de Sitter 
Universe are conformally flat. For H >  x)M, their ampli- 
tude is exactly equal to that of the relative perturbationsSR / 
R 'O' of the curvature scalar, whose correlation function is 
given in (6.1). In a fairly wide range of scales, the amplitude 
of the perturbations of the metric is proportional to (MI,,). 
The spectrum of the fluctuations deviates only slightly from 
a flat spectrum. In an ordinary hydrodynamic Universe, the 
metric perturbations on scales greater than the horizon have 
two physical modes, one decreasing and one constant. The 
constant mode subsequently leads to the formation of galax- 
ies and clusters of galaxies. The contemporary horizon 
cm) corresponded to the scale5' (1028-1040)lp, at the time of 
transition of the Universe to the Friedmann stage. For exam- 
ple, if the duration of the de Sitter stage is > 102x- ' (Ref. 9), 
(MIpl)- (HI,,)- lo-' (Ref. 12), and E,, - 10-8~,, 
(Ref. lo), then, as is readily seen from (6.1) (see also Fig. 2), 
the spectrum of the perturbations on scales of clusters of 
galaxies will be almost flat with amplitude 6 g -  lop4. Thus, 
if the Universe did evolve through a de Sitter stage with a 
vacuum energy of sufficiently high density the resulting per- 
turbations of the metric (for a reasonable choice of the values 
of M, H,E+,,) were quite sufficient for the formation of the 
galaxies and clusters of them. At the same time, the pertur- 
bation spectrum agrees with the spectra allowed by modern 
theories of galaxy f ~ r m a t i o n . ~  

In conclusion, we note that all quantum fields contri- 
bute to M and H, and their values can be calculated only in a 

future unified field theory. The necessary condition on the 
vacuum energy density E,, can be satisfied in a grand unifi- 
cation theory." 

8. CONCLUSIONS 

During its evolution, the Universe could certainly have 
passed through a de Sitter stage with finite duration. The 
possible existence of such stages arises for two qualitatively 
different reasons. One is that under certain conditions the 
dynamics of the Universe is determined by the energy den- 
sity of the gravitationally polarized vacuum.'' In this case, 
the energy density of the polarized vacuum does not differ 
strongly from the Planck density and during the de Sitter 
stage fluctuations could have arisen sufficient for the forma- 
tion of galaxies.13 Nevertheless, the existence of a de Sitter 
stage of this kind does not appear to us to be sufficiently well 
justified, since homogeneity and isotropy of the metric in no 
way mean that such a stage must have occurred in the past. 

The other possibility of realization of a de Sitter stage is 
associated with the fact that during the early stages in the 
evolution of our Universe the vacuum in gauge theories 
could have had a nonvanishing energy density. For certain 
relations between the parameters of the gauge theories, the 
Universe must necessarily have passed through such de Sit- 
ter  stage^.^ For this reason, de Sitter stages associated with 
delayed cosmological phase transitions appear to us more 
realistic. In the present paper, we have shown that at vacu- 
um energy densities not differing too strongly from Planck 
densities the perturbations of the metric generated during 
the de Sitter stage are quite sufficient for the formation of the 
large-scale structure of the Universe. 
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''For a Universe with nonvanishing spatial curvature all the main conclu- 
sions of our paper remain valid. 

''For gravitational waves, SR = 0. And, as is readily seen from (4.1), the 
equations that describe the evolution of the gravitational waves are iden- 
tical to the linearized Einstein equations with vanishing right-hand side. 
They were quantized in Starobinsky's paper Ref. 16. 

" ~ n  quantum theory, the addition of divergent counter terms to the action 
means that there is a certain renormalization. 

4'If the de Sitter stage is associated with scalar fields with energy density 
E ~ ,  <(HIPI )'E~(,  then the condition x ,  M takes the form E,, ,(MI,, )*E,, . 

"The density at the start of the Friedmann expansion is -E,,. 
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