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A generalization is given of Tolman's potential form of the integral of the total mass-energy for 
nonstatic, centrally symmetric matter distributions in R regions of V4. A local conservation law 
for the total energy of the gravitational field and matter in general relativity is discussed on the 
basis of the quasi-Newtonian Gauss-Tolman theorem. It is shown that the Schwarzschild mass, 
the equivalent of the total energy, is positive in the presence of T regions in "semiclosed" models 
of a sphere, and thus the gravitational mass defect cannot exceed the total self-energy of the 
matter. 
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INTRODUCTION 

Besides numerous applications in relativistic astro- 
physics and cosmology,3~4 spherically symmetric nonstatic 
fields in general relativity2 are of great methodological inter- 
e ~ t . ~ ' ~  Analysis of their characteristic properties is also im- 
portant for establishing different aspects of the relationship 
between the Einsteinian and Newtonian theories of gravita- 
tion (as is clearly shown by the simple example of the Tol- 
man-Friedmann "du~t"models~~~),  and especially in the in- 
vestigation of gravitational binding energy (the mass 
defe~t)~,~-'O and the problem of the positive definiteness of 
the active Schwarzschild mass, which is the equivalent of the 
conserved total energy of any sphere in general relativity." 

In Sec. 1, we consider in detail centrally symmetric so- 
lutions of the Einstein equation in R regions of space-time V4 
(where the closest connection and similarity to Newtonian 
theory  obtain^).^.'^ On the basis of the chronometrically in- 
variant formulation of general relativity,'* and in a physical- 
ly chosen polar R system of Schwarzschild  coordinate^,^ we 
obtain general-relativistic analogs of the Poisson equation 
with 3-scalar potential U = and a corresponding quasi- 
Newtonian Gauss t h e ~ r y . ~ , ~ . ' V h i s  last leads to a generaliza- 
tion of Tolman's well-known f ~ r m u l a ~ - ~  and gives a new in- 
tegral representation for the total Schwarzschild 
mass-energy for a nonstatic sphere expressed in terms of the 
instantaneous distribution of the material sources alone 
within an R region of V4.Ia 

On the basis of the Gauss-Tolman theorem, we briefly 
discuss a local conservation law for the active mass, the equi- 
valent of the total energy of the matter and the gravitational 
field for isolated systems in general relativity. 

In Sec. 2, using a convenient formulation of the Einstein 
equations in terms of the Lemaitre invariant mass function14 
for general spherically symmetric matter distributions in a 
comoving system, we analyze the gravitational mass defect 
in the presence of essentially relativistic T regions of V, (see 
Refs. 3 and lo), and we then prove positivity of the total 
mass-energy of "semiclosed" models of a bounded sphere 
(for which Tolman's formula and the other pseudotensor ex- 
pressions for the energy integral are no longer valid). 

It is k n o ~ n ~ . ~  that the gravitational field of V4 in general 
relativity does not possess a localized self-energy density, 
but nevertheless, through the specific nonlinearity of the 
Einstein equations, the gravitational field makes a perfectly 
definite contribution to the conserved total mass-energy of 
an isolated system with asymptotically flat Schwarzschild 
metric at spatial infinity." For an equilibrium sphere, this 
delocalized field contribution is negative and represents the 
gravitational binding energy-the mass defect corresponding 
in Newtonian theory to the potential energy of the self-at- 
traction of matter, R o a  Gdi /R, ,  which has no lower 
bound as R o 4 .  But in general relativity a static sphere with 
given self-mass do cannot have radius less then the gravita- 
tional radius R, = 2GM/c2, and its Schwarzschild mass is 
M < d 0 . 3 s 4  For general nonstatic matter distributions it is to 
be expected that the negative contribution of the gravita- 
tional binding energy must decrease the active mass M = E /  
c2 (the source of the field) and progressively weaken its self- 
interaction, so that already in the quasi-Newtonian approxi- 
mation, when allowance is made for the equivalence princi- 
ple, the total mass-energy of a sphere, 

always remains positive even in the limit M 4  of maximally 
complete binding of the 

As was shown by Novikov" and Zel 'd~vich ,~ .~  it is pos- 
sible in general relativity to have "semiclosed" models of a 
nonstatic sphere (for example, part of a closed Friedmann 
model) in which the gravitational binding energy of individ- 
ual spherical layrs exceeds their self-energy, so that there is a 
self-screening effect, which takes the form of a weakening of 
the exterior Schwarzschild field due to the decrease in the 
total active mass when shells of matter are added. The gen- 
eral-relativistic mass defect of a sphere is manifested charac- 
teristically through the curvature of the space V, which is 
comoving with the matter7'8 and in semiclosed models leads 
to an essentially non-Euclidean topology of the V, with a 
"throat," which is necessarily situated in Tregions of V4 (see 
Refs. 3,9, and lo), and at which the radius ofcurvature of the 
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Lagrangian spheres and the active mass reach maxima and 
; then decrease with increasing distance from the "center." 

It would appear that, because of the predominant con- 
tribution of the gravitational binding energy of such matter 
layers after the throat, one could have a negative total mass- 
energy of a sphere. In fact, general relativity does not pre- 
clude a negative sign of the mass M in the Schwarzschild 
metric, but the nature and global properties of the exterior 
field in vacuum then differ radically, since there is no pseu- 
dosingularity (R = R, > 0), no null horizons, and no T re- 
gions of V4 when M < 0. It follows from the requirement of 
correct matching of the semiclosed models to the exterior 
Schwarzschild field (which is possible only through vacuum 
T regions when M >  0) that the total mass-energy of any 
sphere in general relativity must be positive or vanish for the 
special case of spatial closure2 (as in a closed Friedmann 
r n ~ d e l ) . ~  

1. GAUSS THEOREM AND GENERALIZED TOLMAN 
FORMULA FOR NONSTATIC, CENTRALLY SYMMETRIC 
SYSTEMS 

Among the nonstatic Einstein gravitational fields, the 
centrally symmetric fields in R regions of V4,24 like static 

are closest to and most similar to Newtonian fields 
on account of Birkhoffs theorem, which precludes the exis- 
tence of gravitational waves. Therefore, the case of spherical 
symmetry is interesting for studying the connection between 
the relativistic and classical theories of gravitation, especial- 
ly with regard to noninvariant concepts such as the potential 
and "intensity" of the field, the inverse square law, Gauss's 
theorem, and the distribution of the gravitational 
"chargew-the active mass of the material sources with ener- 
gy-momentum-stress tensor qk ( x). These questions have 
previously been discussed only for static and usually spheri- 
cally symmetric6*13 (and stationary15) systems in an invar- 
iantly defined "rigid" frame of reference that is comoving 
with the matter and based on a congruence of trajectories of 
the "static" group G,  with family of hypersurfaces ortho- 
gonal to them-the spatial sections V3 at each chosen uni- 
versal time x, = t = const. Then U = & = ( g l i  )'I2 (the 
norm of the Killing vector) plays the role of a relativistic 
potential, and it satisfies the generalized Poisson equation 
(see Refs. 2,6): 

while the spatial acceleration vector of test bodies at rest, 

measures the intensity of the Einstein gravitational field. 
It is natural to introduce this last by analogy with the 

Newtonian concept of a potential field of the gravitational 
force as a 3-vector I" = Ufa = F a a  U in the Riemannian 
space V3 (t = const) of the invariant "rigid" frame of refer- 
ence as follows: 

- 
Div F= V , F a = a ~ = l / , ~ ~ * ,  pa= (Too-l'aa) U,  (1) 

so that the flux of its normal component through a closed 
surfaces determines the active gravitational mass within the 

region, this giving the analog of Gauss's theorem in general 
re la t i~ i ty~.~ . '~ :  

The correspondence between general-relativistic and New- 
tonian spherically symmetric fields is most clearly revealed 
in a canonical polar R system of the f ~ r m ~ - ~  

-ds2=-U(r,  t )  dt2+dlZ=-ev('9 t'dtz+e'('s ')a?+ 
+P (dfi2+sin2 @dcpZ) , (2) 

where the chosen universal time lines with tangent velocity 
4-vector 12 = U - '66 of the test particles coincide with the 
invariant static congruence of the exterior vacuum 
Schwarzschild field, which can be uniquely continued for 
the interior nonstatic R region. The radial curvature coordi- 
nate is the analog of the Euclidean radius, since the area of 
the sphere and the length of the circumference are, respec- 
tively, r t  and 2rr. 

Using the chronometrically invariant formalism of 
(3 + 1) decomposition of V4  field^'','^ onto the distinguished 
universal time t and its orthogonal spatial sections 
V3(t = const) in the polar R system (2), we can express all the 
geometrical characteristics of the V4 in terms of the 3-scalar 
relativistic potential U (r,t ) = ev'2 and the variable metric 
d l 2  = yaadxad# of the physical space V3 of this chosen 
frame of reference: 

Ro"-U-'AU-tO, 

- - 
Here, A U = v, I" = y"B (V, Vp U )  is the generalized La- 
place-Beltrami operator, xaB is the Ricci tensor of the in- 
trinsic curvature of the V,, and Daa is the rate-of-deforma- 
tion tensor, the exterior curvature of the spatial sections 
t = const; all 3-tensor operations are performed by means of 
the metric tensor yap f?f = 6 5 ,  and the prime and the dot 
denote differentiation with respect to r and t. 
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In the canonical R system (2), the Einstein equations The radial component of the acceleration 4-vector of 
have a simple f ~ r m , ~ . * * ~  and the time component the test particles of the canonical R system (2) 

of the Ricci tensor gives, when (3) is used, a generalized Pois- satisfies in accordance with the Einstein equationsz.6 a modi- 
son equation for the scalar potential U = e"l2 : fied inverse square law: 

In the case of spherical symmetry, the Einstein equations 
lose their wave hyperbolic nature and admit a formal solu- 
tion of quasistatic type, so that the metric potentials (2) are 
determined by the instantaneous, without retardation, non- 
static distribution of the material sources with the hydrody- 
namic energy-momentum-stress tensor, which has nonvan- 
ishing components of the f ~ r m ~ . ~  

1 
-f =e-vrOO'  = --;;- e-xv' = 

xiri (r, t )  
... 8nr2 ' 

jji (r, t) =m (r, t) -4nr3Tl', 

where the attracting mass of the interior "liquid" sphere 
iii(r,t ) contains the additional contribution of the pressure, 
P #O, and for a homogeneous distribution in Friedmann 
models with m(R,t ) = 4mR 3/3 the effective density of the 
active gravitational mass is (6 + 3P).3 

As in the Newtonian case, the relativistic potential of a 
centrally symmetric matter distribution can be written in 
two different forms by integrating the Einstein 

dl ("P' e(v-k)j2. p= (-1 =e(k-v),z To' = - 1. U(r, t )  =v (r, t )  =-A (r, t) + re'('rt) [Too (r, t )  -Tii (r, t )  ]dr 
(l-p21 ds % ( I )  

where@ is the radial velocity, and R ( t , ~ )  is the law of motion 
of a fixed layer of fluid with x = const. 

From the first integral of the dynamical Einstein equa- 
tions with allowance for (3), 

Go0='/217=-~Too, 

augmented by the requirement of regularity of the metric at 
the center r = 0, it follows that the non-Euclidean geometry 
of the space V,(t = const) is completely characterized by the 
Lemaitre invariant mass function14 

e-~" , t )=  1 - xm(r' t, , m (r, 1 )  -4n 5 Too (r, t )  Pdr. ( 5 )  4nr 
0 

This "geometrical" active mass is the total energy of the 
gravitating matter contained within the Lagrangian spheres 
with R = R ( t , ~ ) :  

As in the classical theory of gravitation, the acceleration of a 
given spherical layer is determined solely by the interior 
sources, although the potential U = eV" < 1 also depends on 
the exterior parts of the distribution, reaching a minimum at 
the center r = 0; further, the centrally symmetric motion of 
the matter does not influence the exterior Schwarzschild 
field in vacuum at all. However, in general relativity the dis- 
tribution of the sources T,, ( x )  cannot be taken arbitrarily 
independent of the V, field they produce, and both must be 
found by simultaneous solution of a self-consistent problem, 
since the Einstein equations also contain the equations of 
motion of the matter in the form of the Bianchi identities 
T :, = 0.2,6 One of these conservation laws (i = 0) is equiva- 
lent to (6), and the dynamical equation of the radial motion 
(i = 1) makes it possible to write down in a simple manner 
the additional term 8 in the Poisson equation (4) due to the 
nonstatic nature of the interior field, expressing it in terms of 

and it changes only due to the work of the pressure forces the energy-momentum-stress tensor of the material sources: 

P +O, this being similar to the adiabatic behavior of the ener- 
gy of a Newtonian "fluid" sphere. On the boundary with the 2 r d -  d - @ = ---(~-gTlO) =re-('+A".)z - ( e ( ~ + L ) I ~ ~ , ~  
vacuum R, = R,(t,x), where P(R,,t ) = 0, it is equal to the x dt d t  
constant gravitational mass of the exterior vacuum (9) 

Schwarzschild solution 
xM xM -' d r 

1 -  d t -  1-- 
-dsz=-( 4nr)  ( 'tnr ) dr2+rZ (de2+sinZ 8 dvZ) 

by virtue of continuous matching of the V,  metric^^"^"^: For static distributions, we have O = O,Ty = O,T; 
= E(~) ,T  = T :  = T :  = - P (r) and Eq. (9) goes over into 

&('I 

M=m(R,, t) =4n J T,O ( r ,  t) r2 dr=const. the condition of hydrostatic equilibrium of a gravitating flu- 
id with P # 0.2-5 

Like the Newtonian potential, the relativistic potential 
which determines the total mass-energy E = Mc2 of the U =  ev/2 In ' the polar R system (2) satisfies the generalized 
sphere in general r e l a t i~ i ty .~ -~  Poisson equation (4): 
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Therefore, it is natural to regard the distribution of its effec- 
tive sources, u*(r,t), as the density of the gravitational 
charge-the active "potential" mass. This last depends on 
the potential U and, when (9) and also Eqs. (5) and (8) are 
taken into account, can be expressed soley in terms of two 
basic components of the energy-momentum-stress tensor for 
a centrally symmetric, nonstatic matter distribution in the 
form 

By direct integration of the Poisson equation in the polar 
coordinates (2) we obtain the following expressions for the 
norm of the stress vector F = (FIF ')'I2e - A / 2  U'  and the po- 
tential U = eVl2 : 

1 F(r, t) = - e-(k+v)/2y '  = 
xm' (r, t) 

2 8nP ' 

We here have an inverse square law for the radial field "in- 
tensity" if we take as the active potential mass a quantity 
different from the one in (7) and (8), namely, 

r 

rn* ( r ,  t )  =4n 5 p' (r, t) Pe'(r.t)" dr, dV=4nFe'12 dr. (12) 
0 

Comparing (7) and (1 1) and using the relation P= Uf, we 
obtain a nontrivial relation between the active "geometri- 
cal" mass (5) and the active potential mass (12) of the central- 
ly symmetric matter distribution in general relativity: 

r% (r, t) =m (r, t) -4nr3T,' (r, t )  =e-(*+')I2m* ( ,  I .  (13) 

For arbitrary choice of the coordinates xa in the spatial sec- 
tions V3(t = const) of a Schwarzschild R frame of reference 
of the type (2) with dl  = yaBdxa dx @ ,  the Laplace operator 
can be represented as a 3-covariant divergence of the poten- 
tial vector Fa = d, U of the intensity: 

In accordance with the generalized Green's formula for the 
Riemannian V4,2,6 

the volume integral over the distribution of the gravitational 
charges,u*( xa ,t ) in an open, simply connected region of the 
space V,(t = const) can be transformed into a surface inte- 
gral of the flux of the gradient of the potential of the intensity 

3-vector through the bounding closed 2-surface. Here, 
dV = y1I2d is the proper volume of the V, elements, and 
d 2  is the area of the element of the boundary S defined in 
accordance with the condition relating the dual 3-vector of 
the element of surface to its exterior unit normal: 

. !%d~~=n~dx,  d 0 a = ~ / z ~ ' ~ ~ ~ a p ~ 6 ~ ~ 6 2 ~ ~  n,na=l. 

Integrating the Poisson equation (10),(14) over any 
closed region of the spatial sections V,(t = const) and using 
the Green's formula (1 5), we obtain the relativistic variant of 
the Gauss flux theorem for a centrally symmetric nonstatic 
field in a R frame of reference of the type (2): 

Thus, the flux of the normal component of the field "intensi- 
ty" through an arbitrary simply connected surface S is a 
measure ofthe 3-scalar active gravitational mass m*[V] con- 
tained within it. For any surface in vacuum completely sur- 
rounding the interior region of a centrally symmetric matter 
distribution, the integral of the intensity flux has a constant 
value and is proportional to the gravitational mass param- 
eter of the exterior Schwarzschild field with 
ev = e P A  = 1 - (~cM/4.rrr): 

The curvature coordinates (2) are not admissible in the sense 
of L i c h n e r ~ w i c z ' ~ ~ ' ~  but the weaker boundary conditions 
obtained by matching the interior and exterior solutions of 
the Einstein equations in the manner proposed by Israel or 
O'Brien and Synge6 in the Schwarzschild R system ensure 
continuity of the potential U = eVI2 and the field intensity 
Fa .  Thus, the Gauss theorem (16) together with the require- 
ment of continuity of the "intensity" flux (17) on the bound- 
ary R,  = R,(t ) of the sphere gives the following integral re- 
presentation for the total gravitational mass of a nonstatic 
sphere in general relativity: 

M=m* {R,, (t), t)= I (T,"-T." + 
1C 

(18) 

Y - g =  U Y ~ .  

Here, the integral is taken only over the interior region 
V3(t = const) occupied by matter, Ti, #O, since the density 
of the gravitational "charge" vanishes in vacuum (O =0) due 
to the uniqueness and static nature of the vaccum Schwarzs- 
child metric for the R system (2). Since the metric potentials 
are determined by the instantaneous distribution of the ma- 
terial sources in accordance with ( 5 ) ,  (8), and (1 1), we can use 
the relations (9), (lo), and (12) to express the conserved mass- 
energy (18) of the nonstatic sphere in terms of the character- 
istics of the gravitating matter alone; namely, the two essen- 
tially independent components of its energy-momentum- 
stress tensor at any fixed time: 
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This new representation of the total Schwarzschild mass- 
energy for a centrally symmetric distribution and motion of 
the fluid together with the formula 

M=m{Ro(t), t), ( 64  

which is obtained from the active geometrical mass (6), is 
well known in the static case of equilibrium configurations of 
a gravitating sphere2-? 

Ro 

M= J ( e + 3 ~ )  ~ G d 3 z - 4 n  J ( E + ~ P )  e(A+v)12 rz d r  

The relativistic analog of Gauss's theorem (1 6)-(18) leads to 
the Tolman form of the total mass-energy of the sphere, 
which is also obtained from the canonical energy-momen- 
tum pseudotensor t : of the gravitational field in the form of 
integrals over the whole of the space V,(t = c o n ~ t ) ~ :  

where t : and, in particular, the energy density t of the gra- 
vitational field are introduced in the standard manner in 
terms of the Einstein Lagrangian 

(21) 
Using the relations for the variation of this Lagrangian, 

and the explicit form of the Christoffel symbols in the R 
system (2), we can readily show that (1 8) and (20) are identi- 
cal, since 

Although the canonical pseudotensor (21) depends on the 
choice of the coordinate system, it, like the other affine com- 
plexes (for example, the Landau-Lifshitz complex2), yeilds 
an entirely satisfactory integral formulation of the conserva- 
tion laws in general relativity for isolated systems with as- 
ymptotically flat Schwarzschild-Minkowski metric in an ap- 
propriate quasi-Galilean coordinate system. The integral of 
the total energy of the matter and the gravitational field over 
any volume V,(t = const) is transformed into the surface flux 

of a combination of the first derivatives of the V, metric, so 
that the total energy is determined solely by the asymptotic 
behavior of the field g, at spatial infinity and for an isolated 
system always coincides with the conserved Schwarzschild 
gravitational mass E = Mc2 =  ons st.*-^ 

We note that a similar and more general form of a quasi- 
Newtonian Gauss theorem for the general case of nonstatic 
V4 fields with gravitational radiation was discussed by Pirani 
and ~ o m a r ' ~  in connection with the conservation laws in 
general relativity. If in V, there exists an invariantly chosen 
frame of reference, i.e., a congruence of univeral time lines 
x, = t or an associated family of spatial sections V3 (distin- 
guished by local characteristics of the geometry such as the 
Petrov curvature scalars or by globally asymptotic symme- 
tries such as, for example, quasistatic behavior at infinity), 
then, applying the chronometrically invariant (3 + 1) for- 
mulation of general relati~ity,".'~ and using a Gauss 
theorem of the type (16),(20), we obtain a local conservation 
law for the total energy of the matter and the gravitational 
field in the form a 3-covariant continuity equation for the 
gravitational charge: 

I d  1 d 
Div S + --(y"y') =01 S=- --(y'"F), Fa;,=-U 

y'Iz dt y'" at ,a. 

(244 

Thus, in the privileged frame of reference one can give a 
certain physical meaning to the localization and transport of 
the energy of the free gravitational field if this energy is re- 
garded as a 3-scalar density of the active mass in vacuum of 
the form 

In contrast to the pseudotensor expressions for the energy, it 
does not depend on the choice of the spatial coordinates and 
is determined by the nonstatic nature of the gravitational 
field in terms of the contraction of the 3-tensor of the rates of 
deformation, i.e., the exterior curvature of the distinguished 
spatial sections V3(t = const) with variable metric 
dl = yaB dxa dx though this is achieved at the price of its 
containing second derivatives, and it is not a positive-defi- 
nite quantity. In agreement with the results of Pirani and 
Komar, l 7  the general-relativistic analog of the Poisson equa- 
tion (4) and the Gauss theorem (16),(20) for arbitrary isolated 
matter distributions in the physically distinguished frame of 
reference, which is quasi-inertial at infinity, lead to a Tol- 
man form of the total energy integral (1 8), which is defined as 
the total gravitational mass, like the charge in electrodynam- 
ics, by the flux of the intensity 3-vector Fa = - U,, and is 
determined by the Schwarzschild asymptotic behavior of the 
3-scalar potential U = &, which describes the longitudi- 
nal Coulomb component of the gravitational field. Together 
with the well-known 3-geometrical representation ofthe Ha- 
miltonian of general relativity1 ' (which is expressed in terms 
of the Cauchy data for the Einstein equations, i.e., the metric 
and the extrinsic curvature of any asymptotically flat spatial 
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section V3(t = const), which are related to the dynamical 
transverse part of the free gravitational field), the Tolman 
potential form of the active mass (18) can also be used to 
investigate the problem of the positive definiteness of the 
total mass-energy of isolated systems (cf. Refs. 18 and 19). 
Because of the specific global nonlinearity of the Einstein 
equations, the gravitational field occurs as an effective self- 
source and makes a quite definite contribution to the con- 
served mass-energy integral of the system; this contribution 
can be decomposed formally into the positive energy of the 
free radiation field, i.e., the gravitons, and the negative delo- 
calized energy of the attractive Coulomb interaction of the 
matter and waves. The case of spherically symmetric matter 
distributions is a most important and instructive example, 
since it follows from BirkhotPs theorem that there is no gra- 
vitational radiation and the total energy integral of a bound- 
ed sphere is uniquely determined by regular matching of the 
interior solution of the Einstein equations to the exterior 
metric of the Schwarzschild field-the only one possible in 
vacuum, so that here it is easy to elucidate the necessary 
conditions guaranteeing positivity of the Schwarzschild 
mass-energy E = Mc2 in general relativity. 

2. POSITIVITY OF THE TOTAL MASS-ENERGY OF A 
NONSTATIC SPHERE 

A characteristic manifestation of the nonlinear self-in- 
teration effects of the gravitational field in general relativity 
is the partial self-screening in the relativistic Poisson equa- 
tion (lo), which takes the form of a dependence of the active 
mass density p *  on the potential U = eVI2 which generates 
it. In accordance with (8) and (1 l), the addition of a spherical 
layer lowers the potential and decreases the active mass 
(1 8),(19) of the interior region of the sphere, so that in general 
relativity distributions is violated in a distinctive manner. In 
the nonrelativistic limit of weak fields with 

there follows after linearization from (4) and (10) an equation 
of Neumann-Seeliger type for the Newtonian potential, 

with finite gravitational screening radius of the order of the 
radius of curvature of the non-Euclidean space V3 (3a),(5), 
this being due to the negative compensating contribution of 
the gravitational potential energy to the active mass density 
(10) of the matter distribution. Taking the simple example of 
an equilibrium sphere of nonrelativistic fluid in the Newto- 
n i a n  approximation (10 J/c2<1,e = pc2 + e,e/pc24 l), we 
readily see that the Tolman integral of the active Schwarzs- 
child mass (19) includes not only the rest mass and the inter- 
nal energy %' of the fluid but also the negative gravitational 
energy R, (see Refs. 3 and 4): 

clidean nature of the physical space V3(t = constj 3f the stat- 
ic R system (2), from the total self-energy of the fluid 

Rr 

i?' =.,#I ( R  ) =4n J ~e"'r' dr 

by the negative binding energy, i.e., the gravitational mass 
defect3v4: 

a. 

Q= ( M - d o )  c2=4n 5 (1-el ') er' di  

In constrast to the Newtonian gravitational binding en- 
ergy, for which there is no lower bound, the general-relativ- 
istic mass defect of a sphere made of normal matter with E,  

P > 0 cannot exceed its self-energy. For example, for equilib- 
rium relativistic states of gravitating matter of the type of 
neutron stars324 it follows fromBondi's estimates2'" that for 
E > P >  0 we have2 /2 < 2 , d 0  < 2M, (0 I < M < d o .  Thus, the 
total Schwarzschild mass-energy of a sphere must always be 
positive in accordance with the two different integral repre- 
sentations (6) and (19) of it, this also being true for nonstatic 
matter distributions in an R region of V4 with 
e c A  >O,p*>O,ml>O. 

It is well k n ~ w n ~ . " ~  that if one does not require the 
matter distribution to be static the total energy of a sphere 
can be made arbitrarily smally by virtue of the gravitational 
mass defect. Since the negative potential enery 0 - GM 2/Ro 
of the attraction decreases the positive active mass M > 0 and 
progressively weakens its gravitational self-interaction, one 
would expect on qualitative arguments that the total mass- 
energy E = Me2 > 0 of a sphere should not change sign and 
in the limit of maximally strong binding M-0."" However, 
study of this equation in the framework of the canonical R 
system (2) is not exhaustive, since it is unsuitable for describ- 
ing the T regions within the gravitational radius of the mat- 
ter distribution due to the appearance of null singularities 
like the Schwarzschild sphere, where r < ~ m ( r , t  )/47r,e - A  < 0, 
i.e., the angular coefficient of the metric (2) acquires a time- 
like nature and cannot be taken as a radial coordinate. In 
fact, the Gauss theorem (16) and the integral representations 
(6),(18) of the active mass are valid for only a restricted class 
of nonstatic matter distributions in only R regions of V, with 
e c A  = 1 - (~m/47rr)>0. 

Because of the existence of T regions of V4 with mat- 
ter," it is necessary to use the formulation of the Einstein 
equations for general diagonal spherically symmetric me- 
trics on the basis of the Lemaitre invariant mass functionI4 

.xm (T, X) I4n=R (l+e-"R2-e-"R'Z). (27) 
For the R system (2), this quantity goes over into the distri- 
bution of the active "geometrical" mass (5),(6) of the matter; 
it is constant in the exterior vacuum region, and due to the 
continuity at the boundary its value can be identified with 

E=Mc2=doc -+ l tQo ,  a,=-aGdo~Ro, a-1. (25) the constant gravitational mass of the vacuum Schwarzs- 
child field, M = rn(r,x)I,, which determines the integral of 

The active geometrical mass (5),(6) contains the same deloca- the total mass-energy E = Mc2 of the sphere in general rela- 
lized field contribution and differs, because of the non-Eu- tivity.14 
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It is convenient to investigate the gravitational mass 
defect and the positive definiteness of the total mass-energy 
of a nonstatic sphere in the general case in comoving (TA 
= 0) frame of reference with metric2 

-dS2=-e0(T .  ~)dr2+~"('. x )  dxZ+R2 ( r ,  X )  [d62+sinWdcp2], (28) 
where x is a Lagrangian radial coordinate. For hydrody- 
namic energy-momentum-stress tensor the conservation 
laws T:,  = 0 and the Einstein equations take a simple form 
in terms of the Lemaitre mass function m(r,,y)14: 

m'=4neR2R', riz =-4nPR2A, 
(29) 

If we introduce auxiliary quantities of the "radial" velocity, 

then in the new notation the dynamical equation 

is the relativistic equivalent of the inverse square law, like (7), 
and its first integral 

vZ=W-l f xm/4nR (31) 

is the analog of the Newtonian energy equation f = W2 - 1 
for a spherical layer withx = const. Therefore, the function 

W ( X ,  a )  =e-""R1= (If ~ ~ - - x . m / 4 n R ) ' ~  

can be interpreted as the relativistic specific energy of La- 
grangian spherical shells, which, besides the self-energy of 
the fluid, includes the kinetic energy of its "radial" motion 
and the gravitational potential binding energy. We shall re- 
strict ourselves here to considering centrally symmetric mat- 
ter distributions for which the spatial sections V,(T = const) 
in the comoving system (28) have a topological centerx = 0, 
where R ( 0 , ~ )  = 0 and the metric (28) is locally regular and 
Euclidean: = R ', W ( 0 , ~ )  = 1 ,Y(~ ,T)  = O,+(O,r) = 0, 
m(0,r) = 0. Then the Lemaitre active gravitational mass 

gives the total energy contained within the Lagrangian 
sphere, and due to the non-Euclidean nature of V, for W + 1 
it is not equal to the self-energy of the fluid in the sphere, 

A ( r ,  X )  =4n j ERZe*12 dx= j e dv, (33) 
0 0 

so that even for "dust" with P = 0 (see Refs. 7 and 8) it differs 
from the total conserved rest mass 

X 

( x )  =4n J pR2e"" d ~ =  
0 

When an individual spherical layer is added, the ratio of 
their increments 

differs for W <  1 by the amount of the negative gravitational 
binding energy and for W >  1 by the excess kinetic energy of 
the matter. These general-relativistic nonlinear effects-the 
gravitational mass defect and the gravitation of kinetic ener- 
gy-are manifested through the on-Euclidean nature of the 
comoving space V3, since the active specific energy W = mr/ 
AY' determines also the geometry of the spatial sections 
T = const in (28): 

In particular, the sign of the quasi-Newtonian energy 
f = w2 - 1, which characterizes the infinite (f > 0) or finite 
(f < 0) types of motion of the Lagrangian layer (A = 0), is 
opposite to the sign of the scalar curvature of V3 (see Ref. 7): 

For bounded centrally symmetric models, when there is 
an exterior vacuum region with unique (by Birkhoffs 
theorem) Schwarzschild field, it follows from the require- 
ment of their continuous matching to the vacuum16 that on 
the boundary sphere ,y =,yo = const, where necessarily 
P(;yo,r) = 0, the constant (by virtue of (29)) value of the 
Lemaitre mass function (32) gives the conserved total mass- 
energy of the sphere in the form of an integral14b: 
M = mCy0,r) = const, and this is expressed in terms of the 
initial distribution of the matter alone. 

From the condition for the frame to be comoving, Th 
= 0,2 which can be written in the form 

it follows that the rate of change of the specific active energy 
of a Lagrangian spherical layer is determined by the pressure 
gradient. Therefore, in the simplest case of dust matter with 
P = 0, and also for homogeneous distributions with P = P (T) 

in the comoving system (28) (for example, singular Tmodels 
of a "sphere"1b with W #O) we have the helpful integral 

which for isotropic Friedmann models ensures separation of 
the variables in the metric (28)24214a : 

-ds2=-dr2+a2 ( r )  {dx2+SZ (x) [d6'+sin2 6drp2] ) , 

( x ,  7 )  =a( ' t )S(x) ,  m ( x ,  7 )  = p  ( r ) S 3  ( x ) ,  
sin x + 1 

s O i = [  x k=( 0 .  (37) 
sh  x - 1 

In accordance with (29), the variation in time of the instan- 
taneous active mass m(,y,r), the equivalent ofthe total energy 
of the interior "fluid sphere," is due to the work of the pres- 
sure forces on its boundary sphere, so that for dust with 
P = 0 in the Tolman-Bondi models2,' a gravitational mass 
distribution mCy) of the type (33) is an integral of the motion 
together with the conserved rest mass A,( x ) and the specif- 
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ic relativistic energy W(X) = m1/&; = dm/d&,.'.' For 
P = 0, such exact Tolman-Bondi s o l ~ t i o n s ~ ~ ~ ~ ~  admit regular 
matching to the vacuum in the coordinate system (28), which 
is comoving with the "dust," and the necessary requirement 
for such matching is continuity of the active mass on the 
boundary with the exterior Schwarzschild field. Therefore, 
the value of the arbitrary function m( x ) (which specifies the 
interior distribution of the active gravitational mass) on the 
boundary with the vacuum x = X, = const determines the 
total mass-energy E = Me2 of the gravitating dust 
sphere.'-''. 

Xa Xa 

M=m (x . )  =4n pR2R' d ~ = 4 n  J p W R 2 e w / ' = A r  W d d , .  
0 0 0 

(38) 

As is shown in Refs. 9. 10. and 14a, the presence of T 
regions in V4 makes it possible in principle, contrary to Bon- 
di's opinion,' for there to be semiclosed centrally symmetric 
models with non-Euclidean topology of the spatial sections 
V3(r = const) in which the radius of curvature R ( x, r )  of the 
Lagrangian spheres and the active mass m(x , r )  vary non- 
monotonically: With increasing distance from the center 
x = 0, they first increase, reaching a maximum at the throat, 
where 

R ' ( x , ~ )  < 0 mGst also hold in the vacuum, and R ( x , ~ )  first 
decreases with increasing X. But for M >  0 it is possible to 
have a regular change of the sign R ' <O at the vacuum 
"throat" R '( x*,T) = 0 in the Tregion of the Schwarzschild- 
Kruskal field with R (x ,~ )gxM/4 .n  and then a transition 
along the branch with R ' > O  to the asymptotically flat R re- 
gion of V4. The complete solution for such a sphere with 
positive mass-energy M >  0 necessarily has a time singular- 
ity on the spacelike hypersurface R ( r , ~ )  = 0 within the 
Schwarzschild sphere, and this singularity can be extended 
continuously to the interior T region as collapse of the mat- 
ter: E,P+O. If M <O, then in the globally static Schwarzs- 
child field there are no Tregions at all, so that the derivative 
R ' cannot change sign but decrease monotonically, and in 
the vacuum there is unavoidably a spatial sinnularitv, R = 0. - - .  
of the type of a localized source with negative mass. 

Thus, the physically admissible centrally symmetric 
distributions of normal matter (E,P>O) in the form of a 
bounded sphere that satisfy the criterion of minimal regular- 
ity of the complete "fitted solution of the Einstein equa- 
tions at least on one initial hypersurface V3(r = const) al- 
ways have positive total mass-energy E = Me2 > 0. 
Therefore, the gravitational mass defect of any nonstatic 
sphere in general relativity and the maximally possible ener- 
gy release on its formation do not exceed the self-energy of 

R'(x*, T) =rnT(x*, T) = W (x*, T) =0, e"'2=R'IW+0, the matter. For semiclosed models, the active Schwarzschild 

and they then begin to decrease. This "throat'* x * = x *(T) 
(for P = 0, it is fixed in the Tolman-Bondi models: 
x * = const) is characterized by the fact that at it the relativ- 
istic specific energy changes sign and, together with the re- 
gular branch of the distribution R ' <O, m' < 0, W = (dm/ 
d d )  < 0 it must necessarily be in a Tregion." Therefore, in 
such a maximally strong field the gravitational binding ener- 
gy of the matter may be greater than its self-mass and with 
the buildup of layers after the throat with W< 0 the active 
mass of the sphere decreases, m' = Wd' < 0, so that when 
matter is added the exterior Schwarzschild-Kruskal field be- 
comes weaker; this is the self-screening The ques- 
tion naturally arises of whether one could construct such 
semiclosed models from normal matter (E,P> 0) in such a 
way that, through the predominant contribution of the nega- 
tive gravitational binding energy of the layers with W<O 
after the throat in the interior T region, an inversion in the 
sign of the active mass of the sphere is obtained. However, 
the correct matching of the bounded semiclosed models to 
the vacuum must necessarily be made through the exterior T 
region of the maximally extended Schwarzschild-Kruskal 
field,9 which exists only when M >  0, and it is therefore im- 
possible to obtain a regular, causally complete solution for a 
sphere with negative gravitational mass M < 0. 

Indeed, the boundary conditions of smooth matching of 
the V4 geometry of the interior region of the sphere and the 
vacuum Schwarzschild field presuppose continuity of the 
metric (28) and its first partial derivatives, this requirement 
being necessary for the invariant angular coefficient R Cy,r) 
and the invariant mass function m(x,r).I6 For semiclosed 
models, when the boundary sphere x = X, = const lies be- 
hind the throat with R ' = m' = W = 0, the inequalilty 

mass M = m(x0,r) = const can vanish together with 
R ( xo,r)-+0 when the boundary sphere x = X, degenerates 
into a point. This corresponds to closing of the V3 space with 
3-spherical topology in the limit of complete gravitational 
binding of the entire self-energy of a finte amount of matter 
(as, for example, for the closed Friedmann model (37) as 
Xo_+~)2-5,9: R = a sin x,, M = ,u sin3x0-0. 

The positivity of the total conserved energy of the gravi- 
tational field and its material sources for isolated systems 
(when correctly determined using the asymptotically 
Schwarzschild behavior of the V4 metric at spatial infin- 
ity2") has fundamental significance as the criterion for the 
existence of a ground state (and, in the first place, a stable 
vacuum) of the gravitational field and its sources and is nec- 
essary ifgeneral relativity is to be physically reasonable. This 
problem has been studied on a number of occasions, "." pri- 
marily for free vacuum Einstein fields of the type of localized 
wave packets, and positivity has been established for the in- 
tegral of the Schwarzschild mass-energy for both weak''" 
and strong gravitational fields in the case of Euclidean topol- 
ogy of asymptotically flat V3 spaces, l9 and also in some wave 
solutions R : = 0 with axial symmetry.lsb Therefore, of 
greater importance is the question of the sign of the total 
mass-energy of isolated systems in the presence of normal 
matter (E,P> 0) in view of the negativity of the contribution 
of its gravitational energy of the attractive Coulomb interac- 
tion due to the longitudinal nonwave part of the tensor mass- 
less field. In this respect, the most significant case is the criti- 
cal case of centrally symmetric semiclosed models with 
non-Euclidean V3 topology, when the total mass-energy of 
the sphere is a well-defined quantity, there is no positive 
contribution of the radiation field, and the negative gravita- 
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tional binding energy of the matter is maximal." Since for all 
physically acceptable models of a sphere the gravitational 
mass defect cannot exceed the matter self-energy, the exis- 
tence of this lower bound for it guarantees positive definite- 
ness of the conserved mass-energy as well for general sys- 
tems with normal matter satifying the dominant energy 
condition, which evidently solves this problem in general 
relativity. '' 
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