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The coefficients that determine the neutron heat transfer and diffusion in the crusts of neutron 
stars are calculated on the basis of a solution of the Boltzmann equation with allowance for 
degeneracy. Exact expressions are obtained for the cases of strong and weak degeneracy together 
with interpolation formulas valid for all values of the degeneracy parameter. 
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1. INTRODUCTION conductivity coefficients for arbitrary value of the degener- 
The processes that take place in the solid crusts of neu- acy parameter. 

tron stars are very important for their observational mani- 
festations. The crusts can crack, tEis providing an explana- 
tion for the observed glitches in pulsar periods.' When a 
neutron star is formed, a nonequilibrium layer can arise in its 
crust, this layer consisting of superheavy (A =: 300-400) nu- 
clei which form a crystal lattice and free neutrons moving 
between them.'v3 The matter density in the region of the non- 
equilibrium layer is in the range - 10" < p  < - 10" g/cm3. 

The neutrons in the nonequilibrium layer form an al- 
most ideal degenerate Fermi gas. Because of the strong gra- 
vity force, the neutrons diffuse into the star. To investigate 
the diffusion, it is necessary to know the neutron transfer 
coefficients in the crystal lattice formed by the nuclei. The 
present paper is devoted to calculation of the neutron diffu- 
sion and thermal conductivity coefficients under the given 
conditions on the basis of solution of the Boltzmann equa- 
tion. 

Investigation of the diffusion process on the basis of a 
rough estimate for the diffusion coefficient4 showed that dif- 
fusion can result in stretching of the crust and, possibly, the 
formation of cracks and fractures. Starquakes in the pres- 
ence of an equilibrium layer can result in nonequilibrium 
matter being carried to the surface of a neutron star and to a 
rapid nuclear explosion. Such explosions are invoked to ex- 
plain the observed cosmic bursts of y The use of 
the exact value of the diffusion coefficient calculated in the 
present paper will make it possible to draw more definite 
conclusions concerning the processes that take place in the 
crusts of neutron stars. The expressions we obtain can be 
used to describe transport properties in other objects con- 
taining free neutrons if their dimensions appreciably exceed 
the neutron mean free path. 

To find the diffusion coefficients, we solve the Boltz- 
mann equation with allowance for degeneracy using the 
methods developed in Refs. 8-11, in which the transport 
coefficients of a simple gas are calculated. In the present 
paper, we consider a neutron gas in the crystal lattice of 
heavy nuclei. We take into account the interaction of the 
neutrons with the nondegenerate nuclei and also with one 
another. We obtain exact expressions for the cases of weak 
and strong degeneracy (as in Refs. 10 and 11, respectively) 
and interpolation formulas for the diffusion and thermal 

2. BOLTZMANN EQUATION AND TRANSFER EQUATIONS 

To calculate the transport coefficients in the present 
paper, we use a Boltzmann equation with allowance for de- 
generacy'-" but only two-body collisions. This equation is 
valid for the neutrons if the neutron gas is nearly ideal. At 
the same time, the neutron interaction energy must be much 
less than the kinetic energy of the random motion. For nu- 
clear forces, these energies become approximately equal at a 
nuclear density of p -- 2 x loJ4 g/cm3. Because of the short 
range of the nuclear forces, a neutron gas rapidly becomes 
ideal when the density decreases at any temperature, this 
being due to the Fermi energy of the degenerate neutrons. 
The densities in the nonequilibrium layers are between two 
and four orders of magnitude less than the nuclear density, 
and therefore the Boltzmann equation applies well. 

The nuclear component of the matter in the nonequilib- 
rium layer is evidently in the crystal state, and therefore the 
isotropic part of the distribution function fNo may differ 
from the Maxwellian distribution. However, if the mass m, 
of a nucleus is much greater than the neutron mass m, , then 
to terms -mn /mN the details of the distribution function 
f,, of the nuclei are unimportant, and the calculation can be 
made for effectively arbitrary f,, . A magnetic field could 
lead to anisotropy of the nuclear distribution function, 
which would affect the transport properties. In an anisotro- 
pic medium, diffusion and heat transfer are determined by 
second-rank tensors rather than scalar coefficients. Because 
of the large mass of the nuclei, and also the high density and 
temperature of the matter in the nonequilibrium layers, the 
anisotropy in the distribution of the nuclei is slight up to 
magnetic fields of 1016 G if the densityp exceeds 10" g/cm3 
and the temperature is T2 107"K. Then the Larmor fre- 
quency of the nuclei is much less than the lattice vibration 
frequency, and the Larmor frequency quantum energy is 
much less than the mean thermal energy of the nuclei. 

The neutron-neutron interaction must be taken into ac- 
count because the neutron component can make an appre- 
ciable contribution, up to - 50%, to the matter density in 
the nonequilibrium layers. For an estimate it can be as- 
sumed, as for elastic spheres, that the neutron-nucleus inter- 
action cross section a,, is -A times greater than the neu- 
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tron-neutron cross section q,,, . At neutron density p,  , the 
number density nN of the nuclei is n, = ( p - p, )/Am,, and 
then allowance for the neutron-neutron interactions be- 
comes necessary when a,, n, /anN n, > 1, which corre- 
sponds to the inequality A 1'3p, /( p - p, ) > 1. For A = 300- 
400, it is already necessary to take into account the neutron- 
neutron interactions when p, /p 2 0.1. 

In what follows, we shall restrict ourselves to a Boltz- 
mann collision integral with the cross section of elastic colli- 
sions. Under the high-density conditions in the nonequilibri- 
um layers, the superheavy nuclei are stable. They do not 
break up as a result of interaction with thermal or even fast 
neutrons, and beta decay is forbidden because of the high 
energy of the Fermi  electron^.^.^ Under these conditions, the 
only inelastic interaction of a thermal neutron with a nucleus 
is a process of "charge exchange" type, consisting of ex- 
change between a free and a bound neutron. Because the 
binding energy of the last neutron in the nuclei in the non- 
equilibrium layers is near zero, the inelasticity of this pro- 
cess, i.e., the fraction of kinetic energy transformed into 
thermal energy, is small, and the charge exchange process 
can be regarded formally as electric and its cross section 
taken into account as a term in the total elastic scattering 
cross section a,, . 

The transfer equations for the neutron number and en- 
ergy in the two-component mixture of nuclei and neutrons, 
and also for the total momentum can be obtained in the usual 
manners from the Boltzmann equation for Fermi parti- 
cle~.~-" 

dn, dcoi 8 -+ n,-+ -(n,<vi>)=O, 
dt dri dri 

Here 

f;. is the acceleration produced by the external forces, coi is 
the mass-average velocity, vi is the thermal velocity of the 
neutrons, and the quantities in the angular brackets are cal- 
culated by averaging over the neutron distribution function 
f. The neutron diffusion velocity ( v i  ) and the heat flux (qy ' )  
are related to the thermodynamic parameters and their de- 
rivatives by means of the transport coefficients, which are 
found by solving the Boltzmann equation. 

The crystal formed by the heavy nuclei in the crust of a 
neutron star differs from an ordinary crystal in that the elas- 
tic energy of unit volume is appreciably less than the kinetic 

energy of the degenerate electrons. The presence of the crys- 
tal may sometimes be important in the equation of motion, 
which contains elastic forces that depend on the displace- 
ments. In the present paper, we calculate only the heat and 
neutron number transport coefficients, which depend weak- 
ly on the physical state of the heavy nuclei. We ignore the 
interaction of the neutrons with the electrons, and in the 
equation of motion we include the electron pressure P, in the 
nuclear pressure P, . 

3. DERIVATION OF GENERAL EXPRESSIONS FOR THE 
TRANSPORT COEFFICIENTS 

The Boltzmann equation can be solved by the Chap- 
man-Enskog method of successive approximation.'-" The 
zeroth approximation to the neutron distribution function f 
is found by equating to zero the collision integral: 

Here, p is the chemical potential of the neutrons, k is Boltz- 
mann'sconstant, Tis the temperature, and B = 2m3, / ( 2 d ~ ) ~ .  

The nuclear distribution function in the zeroth approxi- 
mation, fN, ,  is assumed to be isotropic with respect to the 
velocities and to depend on the local thermodynamic param- 
eters; otherwise, it can be arbitrary with normalization 

j fxodcNi=n,, cNi=v,i+coi. 

Using (5) in (1)-(4), we obtain the zeroth approximation for 
the transfer equations. In this approximation (u ,  ) = 0, 
qi = 0, LIik = (P, + PN )6, (the electron pressure is includ- 
ed in PN ), 

In what follows, instead of G, (x,) we will everywhere write 
G, , since the argument is the same. 

In the first approximation, we seek the function f in the 
form 

We take the deviation of the nuclear distribution function 
from the zeroth approximation in the form 

We obtain the equation  for^ in the standard manner.'-" It is 
linear and admits representation of the solution in the form 

At the same time, 
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The functions Ai , D i ,  A ,  , and DNi determine the diffusion 
and heat transfer. Substituting (9) and (10) in the equation for 
X, we obtain the equations for Ai and Di : 

mnu2 
G512) vi=Inn ( A i )  +In,  ( A t ) ,  fo(1-fo) (%--- 2 Ga 

where I,, (R  ) and I, ,  (R  ) are the linearized collision integrals 
defined in Refs. 8-1 1 .  We see the solution of Eqs. ( 1  1 )  in the 
form of an expansion in polynomials Q,  (x )  that are ortho- 
gonal with weight fo(l - fo)x3l2. These polynomials are 
analogous to Sonin polynomials (see Refs. 8 and 12). We use 
only the first two polynomials: 

We seek Ai and Di in the form 

In A N ,  and DNi , we take into account only the first terms of 
the expansion, which are determined from the condition that 
the corrections to the equilibrium distribution functions do 
not contribute to the mass-average velocity. We have 

Aivi=~oNQo~Ni, D N I = ~ O N Q O U N I ,  (14) 

Using (9), ( l o ) ,  (13), and (14) in (7)  and (8 )  in the calculation of 
the mean values, we obtain 

The distribution function fNo is here assumed to satisfy the 
relation 

which is analogous to the Maxwell function. Using (14), we 
finally obtain 

Using (4)  and (13), we obtain an expression for the heat 
flux transported by the neutrons: 

4. FINDING OF THE MATRiX ELEMENTS a, AND b, 

Multiplying Eqs. (1 1) by BQo(x)ui and BQ,(x)ui and in- 
tegrating with respect to dc, ( c = coi + ui ), we obtain a sys- 
tem of equations for the coefficients: 

Here, W(6,g)dO is the effective differential cross section for 
scattering of particles with relative velocity g that is de- 
flected through angle 6 and after the collision lies in the solid 
angle d o .  Using (14), we obtain 

where uNi = (mN/2kT)uNi .  

a) Calculation of b, 

Assuming that the mass of the nuclei is much greater 
than the neutron mass, m,)m,  , and using the normaliza- 
tion of fNo , we obtain from (2 1 )  

Using the law of momentum conservation in a collision, we 
obtain 

From (22), we obtain 

x Q j ( x )  x2 (I-cos 0 )  W n N  ( 0 ,  x )  sin 0d0dx. (24) 

We introduce the functions 5 $!, (r), which are defined 
as in Ref. 8: 

00 I 

il.':'(r) = J J d ~ ~ o ( i - ~ o ) x r + ~ ( ~ - ~ ~ s i  0 )  WnN(8, x )s in  0 .  
0 0 (25) 
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Then the coefficients bjk can be written in the form 

Substituting the cross section W,, (x,B ) in the form1' 
03 

Wn, ( x ,  0 )  = C w.';' ( x ) P ,  (00s 0 ) .  (27) 

we obtain from (25) 

a::' ( r )  =2 J W ~ N ( X ) ~ ~ ( ~ - ~ O ) X " ' ~ X ,  

w,, ( x )  =w?d ( 5 )  --'lsMtStl: ( 5 ) .  (274 

In the crust of a neutron star the density is much less 
than the nuclear density, the energy of the neutrons does not 
exceed a few MeV, and they can be regarded as having a "low 
energy" for nuclear reactions. In this case, S-wave scattering 
is predominant, and its cross section Wfk(x) does not de- 
pend on the angle." 

b) Calculation of a,, weak degeneracy 

In the case of weak degeneracy (e ) l) ,  the quantities 
ajk were calculated in Ref. 10. We go over to the variables Gi 
and g, : 

We introduce the dimensionless velocities 

Using (12) and (28)-(29) in (20), we obtain 
a,, = a,, = a,, = 0. This is also true for the case of arbitrary 
degeneracy. For a , ,  in the general case we obtain the expres- 
sion 

Expanding with respect to the small parameter ex(' and 
using (5 ) ,  (12), (28), and (29), we obtain 

f n f o l  ( I - f o r )  ( I - f O J f )  =exp [- (G2+g2) +2xnI 

~ ( 1 - 2  exp [x,--'/ ,  (G2+g2)  ] [ C O S ~  (Gig,) + C O S ~  (Gigif)  I ) .  

(31) 
Calculating a , ,  with allowance for (30) and (3 I), we obtain2' 

n 

e-dpg2r+3dgj  (I-cos' 0 )  W,,. ( 0 ,  g)  sin Ode. 
a 

(33) 

Using the expansion of the cross section W,, (g,B ) with re- 
spect to Legendre polynomials, 

we obtain 

c) Calculation of a,, strong degeneracy 

We make the calculation as in Ref. 1 1. The dependence 
on the cross section can be expressed in terms of the function 
[see (3411 

W..(g) =E W':: (g) [Pi (0) 12. (36) 
l = O  

As a result of integration, we obtain'' 

5. INTERPOLATION FORMULAS FOR THE TRANSPORT 
COEFFICIENTS 

For arbitrary degree of degeneracy of the neutrons, it is 
not possible to obtain an analytic expression for a ,  ,. There- 
fore, we construct an interpolation formula for a , ,  that gives 
correct results in the limiting cases of weak and strong de- 
generacy. For simplicity, we retain only the first term in Eq. 
(32). Expressing x, in terms of n, and T by means of (6) and 
substituting in (32) and (37) in the two limiting cases ex"> l 
and xxlJ ( 1, we obtain 
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'1, ( 2 )  

Q,, ( 2 )  for e"K1, 

25%- ( k T m . ) " ( k T ) ' "  (38) 
all= - 2n6n, - I for eqWl.  

21 2n2hz mn 

Introducing the parameter 

where R (2)-f2 (2, l), see (33) and (35), we obtain an in- 
terpolation formula for a,, which holds approximately for 
arbitrary x,: 

25615 kTm, 
all= - 

21 (40) 

a) Diffusion and thermal diffusion 

We write the difference between the mean velocities 
((vi ) - (v, )) in the following standard form (Ref. 8, p. 176 
of the Russian translation): 

Comparing (41) with (16), we find that the diffusion coeffi- 
cient D, and the thermal diffusion ratio k, are determined 
by 

a.1) Diffusion coefficient 

Substituting the solution of the system (19) in D, (42) 
and using (26) and (40), we obtain 

( I )  -5% fi:: ( 2 ) +  6i::' ( 3 )  
Gv2 

32 n, F 
A=Q:! ( l )Q, , ( i )  ( 3 ) -a : i 2  ( 2 ) + - n b ~ Y i  ( I ) - I -  

2 2 n, I f & '  
(44) 

We consider the limit of a nondegenerate gas: ex<' (1, 
e g l .  From (6) and (25), we obtain 

L ( 1 )  
( r )  = eXoQnN ( r )  , 

1'27 

where [see (27)] 

X 

( r )  = I n  e-@gZri3 dg (I-cost  0) W I N  ( g ,  0) sin 0 do, - T  0 

- (46) 

Q.': ( r )  =27; 5 e-@Wn, (9)  gZr+' dg. 
0 

For D, , we obtain the expression 

A,no,,deg)=~n? ( I )  Q,$' (3) - Q ~ ~ " ( 2 )  +a,,(:' ( I )  !2: ( 2 )  nn/nNl% 

(48) 
In the limit of strong neutron degeneracy, exO > 1, e )  1, we 
obtain from (6),  (25), and (27), using the asymptotic expres- 
sions in Ref. 14 (p. 188 of the Russian original), 

where the prime denotes the derivative with respect tox,. In 
this limit, the diffusion coefficient 

does not contain terms with neutron-neutron interaction. If 
in (13) for Di we retain only one term of the expansion, with 
do, then in the nondegenerate case we obtain [like Eq. (47), 
see Ref. 8, p. 200 of the Russian translation] 

,nand,) 3 1 kT 'I2 1 [on I - ( )  -. 
1672 n m ,  Qi: ( I )  

For the classical interaction of elastic spheres, 

where R,, = R, + R ,  is the sum of the radii of a neutron 
and a nucleus. Using (52) in (50) and (5 I), we see immediately 
that D 2 (50) can be obtained, apart from a numerical coeffi- 
cient, from (5 1) by replacement of the characteristic velocity 
(kT/m, ) 'I2 by thecharacteristic velocity in a degenerategas, 
(kT~,/rn,)"~, where x, is determined in (49). Such an ap- 
proximation was used in the calculations in Ref. 4. 

a.2) Thermal diffusion ratio 

Substituting the solutions of the systems (18) and (19) in 
k, (42) and using (26) and (40), we obtain 
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5 n, 7 GI,, 5 GI,, 5 Gsl, ( t l  kT=-- ----- -- From (58) in the limit n,/n, -A we obtain the well-known 
2 n ( 2 G,, 2 G,,* ) [ 2 G,/* '"" (2)] (Ref. 8, p. 198 of the Russian translation) expression for the 

coefficient of thermal conductivity of a nondegenerate neu- 
Gs/r (1, ~ i ,  32n4 nn I-' tron gas: (1)-5-anN (2) +QnN (3)+--I-  . 
Gal9 21 nru I + &  

(53) 
For nondegenerate neutrons, using (45) and (46), we obtain 

In the case of strong degeneracy, using (49), we obtain 

In n, - i  
25 a::' (1 )  -5~:: ( 2 )  +n:; ( 3 )  +a::) (2),] . (54) 

nNY2 

For strong degeneracy, using (49), we obtain 

1 nn 3 " ti2 nn" 
k ? ) = - - [ ~ + ~ ~ ( ~ )  -- From this in the limit n,+O we obtain the coefficient for a 

2 n mn kT WnN(za) degenerate neutron gas (see Ref. 11): 
64 n " mnZ 

X I + - -  -- [ 2 ln  ( 3 ) A' n."n, W,, ,(x0) (55) =7nhann/256Tmn2Z. 

b) Neutron heat transfer 

We find di using (16) and substitute it in (15). Then, 
using k, from (53) and (15), we obtain an expression for the 
neutron heat flux in the form 

which is a generalization of the classical definition (see Ref. 
8, p. 176 of the Russian translation) taking into account de- 
generacy. For the neutron coefficient of thermal conductiv- 
ity A,, we obtain 

In the limit of nondegenerate neutrons, we obtain, using 
(45) and (46), 

"The expansion (27) is not suitable for the Coulomb interaction because of 
the strong divergence at small angles 8. 
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