Incommensurate system on a deformable substrate
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An exact solution describing a system of adsorbed atoms on a deformable crystalline substrate is found. It is
shown that the deformation of the substrate gives rise to a correction to the repulsion energy of the solitons
that arise in the incommensurate phase. This correction, which does not depend on the form of the atom-
substrate interaction potential, is always positive, and, as a result, the transition into the incommensurate

phase is of second order.

PACS numbers: 68.45.Da, 68.40. + ¢, 81.40.Lm

Recently there has been an upsurge in interest in the
study of monatomic films of different materials ad-
sorbed on crystalline substrates. Transitions from the
commensurate into the incommensurate state have been
experimentally observed in such films.!™ A number of
theoretical papers®” have been devoted to the transition
into the incommensurate phase. In these papers it is
assumed that the crystalline substrate is so rigid that
it is not deformed by the forces exerted on it by the ad-
sorbed atoms. It is shown that, in the incommensurate
phase and near the transition point, almost all the
atoms are located very close to the minima of the sub-
strate potential. But there are regions, called soliton
lines, where the atoms are appreciably displaced from
these minima. If the energy characterizing the inter-
action between the atoms and the substrate is much
smaller than the characteristic energy of the elastic
interaction between the atoms, the width of the soliton
lines is many times greater than the lattice constant.
Therefore, elasticity theory can be used to describe
the distortions of the adsorbed-atom lattice.

Various relative dispositions of the soliton lines are
possible. In particular, a structure consisting of
parallel soliton lines spaced L apart is possible. The
energy per unit area of such a structure is equal to

E=|—A(6-6.)+Bexp (=L/l,) /L, (1)

where A, B>0 are some constants, [, is the soliton-line
width, and 6 is a linear function of the chemical poten-
tial of the atoms. The quantity A(5, - 6) is the self-en-
ergy per unit length of a soliton line. It vanishes at the
commensurate—incommensurate (C-I) transition point,
where 6= 6,. The second term in (1), i.e., the term
containing exp(-L/l,), describes the repulsion of the
solitons that arise in the region 6>5..

Minimization of (1) with respect to L leads to the fol-
lowing dependence of the soliton spacing on o:

L~1,1n [8./(6—6.)]. (2)

Gordon and Villain® have noted that allowance for the
deformability of the substrate leads to the appearance
of an additional contribution, equal to C/L? (where C is
some constant), to the energy E of the soliton lattice.
If C <0, then the C-I phase transition should be of first
order. If, on the other hand, C >0, then L~(6- 5,/
in the vicinity of the C-I phase transition point.

The experimental observation of the structure con-
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sisting of parallel soliton lines has been reported by
Jaubert et al.,* who studied the behavior of Xe adsorbed
on the (110) face of copper. This face is prepared as
follows. It has troughs in the x-axis direction. The Xe
atoms are located in these troughs. The distance be-
tween the atoms in the x direction changes during the
transition into the incommensurate phase, while the
spacing in the perpendicular (y) direction remains un-
changed with high degree of accuracy. Therefore, the
structure of the incommensurate phase can be charac-
terized by the displacement ¢(x) of the Xe atoms along
the x axis from those positions which they occupied in
the commensurate phase. For the systems in which the
atoms inthe incommensurate phase are displaced onlyin
one direction, we shall compute exactly the contribution to
the energy E, due to the deformation of the substrate.

At zero temperature, the total energy of the deform-
able substrate and of the system of adsorbed atoms in-
teracting with it can be written in the form

= I[’g(;“;p) Kot V(p—us(z=0)) [dzdy + f[%(a_u)

oz oz
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where the first integral is over the surface and the
second is over the volume of the substrate. In the for-
mula (3) K is the elastic constant of the adsorbed-atom
lattice; 6 is a linear function of the chemical potential
of the atoms; A4, A_, A, and u are the elastic con-
stants of the substrate; and u, and «, are the compon-
ents of the displacement of the substrate atoms. The
use of elasticity theory is legitimate when the atom-
substrate interaction potential V is small compared to
the characteristic elastic energies, i.e., if

|V|<K, K<A\b,ub, (4)

where b is the lattice constant of the substrate. Under
the conditions (4), we can write V in the form of a
periodic function of the argument [¢ ~u(z=0)].

Let us first consider the particular case in which the
energy (3) can be computed exactly. Let V, as a peri-
odic function of its argument a, have the form shown in
Fig. 1, i.e., let

V(a)=xa?/2 for |a|<b/2, (5)

and let the function V(a) for the remaining values of o
be obtainable by periodic continuation with period b. A
potential of this form is used in Ref. 5.
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We shall seek the solution to the equilibrium equa-
tions, in which 8¢/8x and ., «, are periodic functions
of the coordinate x with period L. The equilibrium
equations are solved with the aid of the Fourier trans-
formation procedure. The energy per unit length of a
soliton line turns out to be

Kb 3 K -t
E=3p ) (1+Kk,.’+len|) — Kob, (6)

%®

n=—x

where k= 2mn/L and
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The sum in (6) can easily be computed for the region
near the C-I phase transition point, where L —w:

E.= (“If)%bz [1— ("ﬁ)‘h +2exp(—(£,—)"rL>] —b6K+6£—-———(I:ZZZ )

(8)

This formula agrees with (1) if

et () (- ) ()

The last term in (8) gives the soliton-repulsion energy
that arises as a result of the deformation of the sub-
strate. This energy is always positive. Therefore, the
C-I phase transition is of second order.

1t follows from (8) that, for a given soliton-line spac-
ing L, the contribution to the energy from the deforma-
tion of the substrate does not depend on the magnitude
% of the adsorbed atom-substrate interaction potential.
This suggests that the soliton-repulsion energy E, that
arises as a result of the deformation of the substrate
does not depend on the form of the adsorbed atom-sub-
strate interaction potential V, and is equal to

= (Kb)?
VA )

And, indeed, a computation of the energy per unit
length of a soliton line by perturbation theory in 1/A
yields the energy (9) for a periodic potential V(a) of
any form. But the dimensionless parameter of the per-
turbation theory in 1/X is unknown. On the face of it,
we could show that this parameter is equal to K/Ab.
But we can, by expanding the sum over n in (6) in pow-
ers of 1/, easily verify that the expansion proceeds in
powers of the small parameter

e=(Kx)"/\A=K/M,.

On account of the conditions (4), the soliton width [, is
much greater than the lattice constant b. Therefore,
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£< 1 even when K ~Ab. It is natural for ¢ = K/Xl, to be
precisely the expansion parameter, since the smaller
the adsorbed atom-substrate interaction energy is, the
smaller should be the corrections to the energy that
arise as a result of the deformability of the substrate.

In spite of the fact that the corrections to the sum in
(6) are always small, they give rise to an important
qualitative effect. The reason is that the dominant, L-
independent part of the sum in (6) is conceled out at the
C-I phase transition point by the term containing 6.

For a periodic potential V of arbitrary form, the en-
ergy per unit area is equal to

E=[—A(6—08.)+Bexp (—L/L,)]/L+n(Kb)*/6AL?, (10)

where A, B, 0., and [, can be obtained from the formu-
las given in Ref. 7. The term in (10) exponentially
small in L can be neglected in the region sufficiently
close to the C-I phase transition point, and minimiza-
tion of (10) with respect to L yields the estimate

L~(86—8.)~" (11)

instead of (2). Such a dependence of the mean distance
between the solitons on 6 - §, is obtained when allow-
ance is made for the thermal fluctuations on the unde-
formable substrate. The relation (11) was experimen-
tally discovered by Jaubert et al.* Because of the fact
that the Xe-Xe and Xe-substrate interaction potentials
are not sufficiently well known, we cannot at present
identify with certainty the cause of the relation (11)
found by Jaubert ef al.,* i.e., whether it is the thermal
fluctuations or the substrate distortion.

In the case of a substrate that can be described by
the isotropic elasticity theory, Lyuksyutov® has ob-
tained by perturbation theory an energy of the form (9)
in which A is expressed in terms of the bulk modulus
and Poisson’s ratio.

In conclusion, I wish to express my gratitude to V. L.
Pokrovskii for useful discussions.
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