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The growth of crystals with quantum-rough surfaces is characterized by a kinetic growth coefficient that 
takes account of the temporal and spatial dispersions. It is computed for the boundary between solid and 
liquid 'He for different relations between the wave vector and the mean free paths of the thermal excitations. 
The damping constant of the crystallization waves is found. It is small both in the very-low-temperature 
ballistic regime and in the phonon-hydrodynamics region for perfect crystals, in which umklapp processes are 
ineffective. 

PACS numbers: 67.80.Cx, 67.40.Dv, 61.50.Cj 

The surface of a crystal  can be intwo different states: 
atomically smooth and atomically rough. From the 
thermodynamic point of view, the difference between 
them i s  manifest in the presence o r  absence of equili- 
brium faceting of crystals  with atomically smooth o r  
atomically rough surfaces respectively. Furthermore,  
these s ta tes  differ significantly in the characters  of 
their growth o r  melting kinetics. An atomically smooth 
surface i s  metastable under conditions when the tem- 
perature o r  the pressure  l ies  slightly off the melting 
curve. Therefore,  the growth of a crystal  with such a 
surface i s  an  extremely slow process involving suc- 
cessive decays of the metastable s ta tes  a s  a result of 
the fluctuation formation of nucleating centers  for  new 
atomic layers.  In the case  of an atomically rough s u r -  
face,  the metastability does not occur, and the growth 
of the crystal proceeds significantly faster .  

Ordinary crystals  a t  sufficiently low temperatures 
always have atomically smooth surfaces.  The  transi-  
tion from a smooth to a rough surface occurs in them, 
when the temperature i s  ra i sed ,  a t  quite a definite 
point of the melting curve, which i s  the cri t ical  point 
of a distinctive surface phase transition.'" 

The situation i s  significantly different6 in quantum 
crystals  of the solid-helium type, which a r e  charac- 
terized by a large zero-point particle-vibration ampli- 
tude. The role of the quantum effects manifests itself 
in the fact that the majority of the faces a r e  atomically 
rough even a t  ze ro  temperature. Only a few most 
closely packed faces,  which a r e  atomically rough at  low 
temperatures,  may be a n  exception. The charac ter i s -  
t ics  of the growth kinetics of such smooth faces in 
quantum crystals  consist7 only in the fact that the major 
role,  a s  i s  generally the case  in the quantum kinetics 
of metastable-state decay,*" is played by quantum tun- 
neling, instead of thermally-activated processes of nu- 
cleating-center formation, which a r e  characterist ic  of 
ordinary crystals .  

The peculiarity of the growth and melting processes 
is most clearly manifest on atomically rough surfaces 
of quantum crystals  in equilibrium with the super-  
f l ~ i d . ~ * ' ~ ~ "  In this case ,  realized in practice in 4 ~ e ,  
we can speak of   super crystallization^' o r  "supermelt - 
ing," since these processes occur coherently and v i r -  
tually nondissipatively a t  low temperatures. Even a 

mere  visual observation of the state of the surface 
~ h o w s ' ~ ' ' ~  that it behaves ra ther  like a liquid surface,  
continuously oscillating under the action of external 
perturbations. The reason i s  the possibility of the 
propagation of slowly decaying melting and crystalli- 
zation waves over a quantum-rough s ~ r f a c e . ~ " ~ " '  

Parshin and one of us6 have estimated the growth 
coefficient for  quantum-rough surfaces and of the a s -  
sociated crystallization-wave absorption, and their  
results  confirm qualitatively the experimental results  
reported by Keshishev, Parshin,  and ~ a b k i n . "  The  
present paper is  devoted to the construction of a de- 
tailed theory, not just under the conditions of the 
ballistic regime considered in Ref. 6 (i.e.,  under the 
conditions of sufficiently long thermal -excitation mean 
free paths), but also in the opposite, hydrodynamic, 
limiting case.  We shall s e e ,  in particular, that quan- 
tum-rough surfaces can grow nondissipatively not only 
a t  zero  temperature,  i.e., in the absence of thermal 
excitations in the crystal  and the liquid, but also a t  
finite temperatures when no umklapp processes a r e  in- 
volved in the phonon collisions in the crystal .  The 
results  can be used to compute not only the crystal l iza-  
tion wave absorption, but a l so  the anomalous sound r e -  
flection f rom quantum-rough surfaces,  which has been 
observed by Castaing et  a1 .'2'13 

1. THE HYDRODYNAMIC REGIME 

At zero temperature,  in the absence of thermal exci- 
tations, because of the quantum delocalization of the 
growth steps a t  the phase boundary, it is possible for 
the boundary to execute f ree ,  nondissipative motion 
accompanied by the growth o r  melting of the crystal.6 
At finite temperatures,  the interaction of the thermal 
excitations with the moving boundary of the growing 
crystal  leads,  generally speaking, to dissipation. The 
following circumstance will, however, be quite impor- 
tant hereafter. 

At low temperatures the primary thermal excitations 
in a crystal  a r e  long-wave phonons. If the crystal  i s  
close enough to perfect, the probability for  the occur-  
rence of the umklapp process,  which a r e  the cause of 
the nonconservation of the total momentum of the pho- 
nons , decreases exponentially with decreasing tem - 
perature,  and they can be neglected. It is easy  to s e e  
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that under these conditions nondissipative motion of the 
phase boundary i s  possible at  finite temperatures a s  
well. Indeed, let us go over into the coordinate system 
in which the phase boundary is a t  res t .  In this system 
the thermal-excitation gas  (the volume phonons of the 
crystal  and the liquid, as well a s  the surface phonons 
and the crystallization waves) i s  under steady-state 
external conditions. 1 herefore,  there exists  an  equili- 
brium state described by the Planck distribution func- 
tion n,(Z), where = E - p .  V is  the excitation energy in 
the system in question, E i s  the energy in the labora- 
tory system, in which the crys ta l  lattice is a t  r e s t ,  
p i s  the momentum (quasimomentum), and V i s  the 
velocity of the boundary in the laboratory system in the 
direction parallel to the normal to the boundary. This 
distribution function clearly corresponds to the si tua-  
tion in which the excitation gas a s  a whole moves in the 
laboratory system with velocity V.  Thus,  the moving 
boundary of the growing crystal  completely drags  along 
the normal component of liquid He 11 and the phonons 
of the crystal. In the absence of umklapp processes,  
this is an equilibrium state:  the mutual conversions of 
the excitations a t  the phase boundary do not destroy it. 

The above result indicates satisfaction a t  the phase 
boundary of the following boundary conditions: 

where v, i s  the velocity of the normal component of the 
liquid, v i s  the velocity of the phonon gas  of the crystal  
relative to the lattice, and the z axis i s  normal to the 
boundary. 

The growth rate of classical  crystals  with atomically 
rough surfaces is  normally characterized by the so-  
called growth coefficient ti, given by the relation 

where Ap i s  the difference between the chemical poten- 
tials (per unit mass )  of the contiguous phases. The co- 
efficient G i s  directly related to the surface energy dis-  
sipation. Indeed, the energy. dissipatio? E per unit 
surface a r e a  is  equal to ApM, where M i s  the mass  of 
material converted in unit time from one phase into the 
other. Since M =p,V (p, is the crystal  density), we ob- 
tain by using (2) 

Equation (2) plays the role of a boundary condition 
for the determination of the temperature distribution in 
the crystal and the hydrodynamic motions in the liquid 
a s  a result of the boundary motion. This  definition of 
the growth coefficient allows for  the volume dissipation, 
besides the surface dissipation given by the formula (3). 

The above definition of the growth coefficient is  not 
suitable for quantum crystals .  We shall use the follow- 
ing definition. 

Let z = 5(xu, t )  be the equation of the crystal  surface 
a t  the moment of time t ;  p =1, 2;xu=x,y .  Consider- 
ing the quantity j to be sufficiently smal l ,  we can,  
without loss  of generality, assume that 

gaexp (ikr-iot), 

where k is a two-dimensional wave vector lying in the 
xy plane and w i s  some frequency. Let us emphasize 
that the function s'(x,,t) i s  considered here to be an 
arbitrari ly specified function, the actual form of which 
is formally governed by some external influence on the 
system. Therefore, the frequency w and the wave vec- 
tor  k a r e  in no way connected with each other. Let us 
write the time derivative $ of the total energy of the 
system in the form 

The quantity. f defined by this relation should depend 
linearly on 5 .  Let us s e t  

where G(w , k) i s ,  by definition, the (complex) growth 
coefficient, which allows for the temporal and spatial 
dispersions. Its r ea l  part i s  directly connected with 
the energy dissipation. Indeed, averaging (4) over time 
and using (5) we obtain 

In contrast to (3), we a r e  dealing here  with the total 
(volume plus surface) energy dissipation. 

The function G(w , k) contains full information about 
the crystal-growth kinetics. It determines in particu- 
l a r ,  the crystallization-wave spectrum with allowance 
for  the damping. Indeed, the natural vibrations of the 
system (in the absence of external ,influences) occur 
with conservation of total energy (EP=O). Therefore the 
vibration frequency w = w(k) should satisfy the equation 

G- ' (a ,  k) =O. (7) 

The total energy $ of the system is the sum of the 
volume g, and surface gS energies. The  lat ter  i s  equal 
to 

where a, the energy of a unit surface a r e a ,  depends on 
the orientation of the unit vector n of the normal to the 
surface relative to the crystallographic axes. F o r  
smal l  t we have n, = l  and nu=-ac/ax,, s o  that 

Here the a, and a,, a r e  angle derivatives of the s u r -  
face energy. Substituting the last  expansion into the 
formula (a), we find 

where 6,,= a,,, + a6,,. 
The t ime derivative of the volume energy can clearly 

be written in the form 

where E is the energy per unit volume a t  z =0 ,  Q is the 
energy flux vector at  z = 0, and the subscripts c and 1 
pertain respectively to the crystal  and the liquid. We 
assume that the liquid i s  located in the region of posi- 
tive z .  In the hydrodynamic region, i.e., in the case  
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when the wave vector k and the frequency o a r e  signi- 
ficantly smal ler  than the reciprocal mean f ree  path of 
the thermal excitations and the collision r a t e  respect-  
ively, we can use for  Q,,, the well-known (Ref. 14, 617) 
expressions 

Q I = ~ . ~ + T ~ S ~ V , ,  Q.=T.S.v, (11 

in which we have neglected the quantities that a r e  of 
order  higher than the second in the deviations from the 
equilibrium states.  In the formulas (11) T ,  S ,  and p 
a r e  respectively the temperature,  the entropy per  unit 
volume, and the chemical potential; j =p,vs + pnvn, 
where p, and v, a r e  the density and velocity of the 
superfluid component of the liquid, is the mass  flux 
vector. 

Taking into consideration the boundary conditions (11, 
the thermodynamic relation P=-E + TS +.pp for the 
pressure ,  and the condition j ,  =-(p, -pl)l; for  the con- 
servation of mass ,  we obtain from (10) and (11) the 
expression 

In view of the presence here of the smal l  factor 6 ,  
we should take into account in the expression in the 
curly brackets only the t e rms  that a r e  linear in the 
deviations 6T,,, and 6PC,, of a l l  the quantities from 
equilibrium. As a result ,  we have 

Being interested f irst  and foremost in the crystalliza- 
tion-wave spectrum, we shall compute the growth co- 
efficient for frequencies w of the order  of the eigen- 
frequencies of the crystallization waves with a given k. 
Since the velocity of these waves is  low a s  compared 
with the velocities of f irst  and second sounds, we can 
investigate the hydrodynamic equations in the imcompres- 
sible-liquid approximation. In this ca se  (see Landau's 
paper'5) 6P,  i s  the sum of the pressures  6Pn and 6Ps 
fo r  the normal and superfluid motions, with 

where p i s  the superfluid-velocity potential. It sa t i s -  
f ies  the Laplace equation v2p =O; therefore, 

cp=cpo exp (-kz-ttkr). 

Here  Po is a constant t+at can be determined from the 
conditions j , = - ( p , - p , ) C  and (1). As a result ,  we find 
the pressure of the superfluid component a t  z = 0: 

The temperature shift 6T, a t  z = 0  is, according to 
~andau,"  given by the formula 

Using (13) and (14), we find from (12) that 

A comparison of the definition (4),(5) with the sum of 
the expressions (9) and (15) shows that it is convenient 

to represent  the reciprocal growth coefficient in the 
form of a sum: 

where 

corresponds to the contribution to f from the surface 
energy (9) and the superfluid component [the last  te rm 
in (15)] and G;' i s  given by the formula 

and corresponds to the contribution of the normal com- 
ponents of the liquid and the crystal .  

If we se t  G;' = 0,  we obtain from the equation G;' = 0 
the spectrum of the crystallization waves: 

Treating G;' a s  a smal l  perturbation, we find the f re-  
quency shif t  Aw and the coefficient y of absorption due 
to the interaction with the normal component: 

P iC pepak He cn-l. A ~ = & I ~ G , - ' ,  7s- 
z(p.-p.)' ~ (P, -P. )~  (18) 

T o  compute G;', we proceed from the linearized 
hydrodynamic equations for the normal component. In 
the liquid, these equations have the following formi5: 

where q ,  is theviscosity of the normal component. Gen- 
erally speaking, we should include in the hydrodynamic 
equations for  the phonon gas of the crystal  (see,  for 
example, Ref. 16, 016) additional t e rms  for  the de- 
scription of the umklapp processes:  

q.Av+ ( iov -- ,?) v-s.vT.=O, CZr+l.Si div r=O (20) 

Here q, i s  the"viscosity" of the phonon gas ,  v i s  the 
normal "density ," more  precisely, the coefficient of 
proportionality between the quasimomentum of a unit 
volume and the velocity v ,  H. is the thermal conductivity 
coefficient, and C,  is the heat capacity of a unit volume. 
In (20) disregard for  simplicity the crystal  anisotropy. 

Let us assume that the wave vector k sat isf ies the 
Conditions 

where 1  i s  the mean f ree  path of the quasiparticles of 
the liquid, I ,  and I ,  a r e  the crystal-phonon mean f r e e  
paths characterizing the normal and umklapp processes 
respectively, and a is the interatomic distance. Natur- 
ally, for  the hydrodynamic equations to be applicable, 
the conditions k l ,  << 1 and kl << 1 should be fulfilled. 
In this case  the second t e rm in the f i r s t  of the equa- 
tions (19) for  w -w,(k) i s  smal l  compared to the f i r s t  
te rm.  We can neglect the second and third t e rms  in the 
f i r s t  of the equations (20) and the f i r s t  t e rm in the 
second equation. The  solutions that sat isfy the condi- 
tions (1) for  the crystal  
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and the liquid 

a r e  similar  in the case  under consideration. Two a rb i -  
t ra ry  constants To and Po enter  into the formulas (22) 
and (23). One condition for their  determination can be 
obtained if we note that the interaction of the long-wave 
phonons with the phase boundary in the absence of um- 
klapp processes conserve the tangential components of 
the total momentum of the phonons. The components 
II,, of the quasiparticle momentum flux a r e  equal to 

and therefore the conservation condition gives a t  z = 0  
the relation 

q, (a~,~/dz+ik,u.,) = q c ( a ~ , / a z t i k , , ~ , ) .  (24) 

The remaining condition is a condition on the tangen- 
tial velocities themselves. Under equilibrium condi- 
tions we clearly have v,, = v  ,, at  z = 0. On the other 
hand, the presence of a nonzero flux nu, at  the bound- 
a ry  gives r i s e  to a tangential-velocity jump: 

up-v,,=or~,,. (25) 

Here a is a constant of the order  of (&cp,)",  c is the 
speed of sound, a - (T /o )~  i s  the coefficient of t rans-  
mission of the phonons through the phase boundary, and 
O i s  Debye temperature. At low temperatures the pho- 
nons a r e  practically completely reflected from the 
boundary. The above value of a is obtained (see Ref. 
17) when the capillary effects a r e  taken into account. 

The solutions (22) and (23) possess the property that 
v,(O) and v,,(O) for them vanish together with n,,(O). 
It i s  therefore c lear  that the conditions (24) and (25) 
a r e  actually equivalent to the vanishing at  the boundary 
of the tangential velocities themselves. Thus,  our r e -  
sult does not depend a t  a l l  on the character  of the inter-  
action of the quasiparticles of the liquid and crys ta l  
with the phase boundary. As  a result ,  we find that 

whence we obtain through substitution into (16) the nor-  
mal part of the reciprocal growth coefficient 

The crystallization-wave-absorption coefficient given 
by (18) i s  proportional t o  k2 in our case. The frequency 
of the waves is  proportional to k3I2; therefore, the 4! 
factor of the vibrations increases with decreasing f r e -  
quency. 

Let us point out the following circumstance. The 
boundary conditions (1) hold, a s  we have seen ,  under 
equilibrium conditions. But the solution found above 

leads,  as i s  easy to s e e ,  tp the occurrence of a tem- 
perature jump AT - C?/S)k< a t  the phase boundary. In 
the general case ,  instead of the two conditions ( I ) ,  we 
must use the continuity condition 

for  the heat flux and the relation between the heat flux 
and the temperature spectrum 

where K - (QISC)-' is Kapitza's thermal resistance. The 
rat io AT/K TS corresponding to the above-given value 
of AT i s  of th? order  of a(kl)c,  i.e., it is significantly 
smal ler  than p. The conditions (28) and (29) a r e  actual- 
ly equivalent to the conditions ( I ) ,  and this equivalence 
obtains not only in the considered limiting case ,  but 
whenever the crystallization waves a r e  weakly damped. 

The  phonon mean free path I ,  in the crystal  is  deter- 
mined by the three-phonon processes,  and increases in 
proportion to T+ a s  the temperature falls. In the l i -  
quid the phonon mean f ree  path increases in proportion 
to T - ~  in the low-temperature region, where phonons 
a r e  the primary excitation mode (Ref. 14, 9642 and 43). 
The point is that the phonon spectrum of He 11 does not 
decay on the melting curve, and the three-phonon pro- 
cesses  a r e  forbidden by the conservation laws. The 
mean free path I ,  in sufficiently perfect crystals  in- 
c r ea ses  exponentially with decreasing temperature. 
Therefore,  the f i r s t  inequality in (21) i s  the f i r s t  to be 
violated a s  the wave vector is decreased. 

Let us  assume that 

k l ,  <<all,, kl>all. (30) 

In this case  the old solution (23) i s  valid in the liquid. 
In the crystal  we can neglect in the f irst  equation in 
(20) the te rm with n and everywhere except in a narrow 
region of thickness of the o rde r  of the penetration depth 
6,- [qc/vwo(k)]"2 of the viscous wave, the t e rms  with 
q,. In the second equation in (20) we can neglect the 
f i r s t  te rm,  since the condition necessary for  this pur- 
pose, 

is fulfilled on account of the exponential smallness of 
1;'. The solution that vanish a s  z --~0 has the form 

iwv 6T, = - ceh' v,=Cehl, v =mi 5 
S,k ' , f  . 

We should, in using the boundary condition (24), bear  
in mind that the solution (31) is not valid in the region 
/ z  1 5 6,. In this narrow region v,, being in order  of 
magnitude equal to 5 ,  va r i e s  over distances of the o r -  
de r  of 6,. But because there i s  fulfilled along with the 
inequality q ,  >> q, the stronger inequality q ,  >> qc(k6,)" 
[since 

but ka >> ( T / @ ) ' ~  on account of (30)], we can,  in deter-  
mining the constant Po with the aid of the  condition 
(24), neglect the right-hand side of this condition, SO 

that the ea r l i e r  result  (26) is obtained. As for  the 
computation of 6T,(O), it is not, a s  can be seen from 
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(31), essential that we know the exact value of v, in 
the p r r o w  region 1 z 1 s b,, and we obtain bT,(O) = (iov/ 
S & ) l .  The contribution of the  normal components to 
the reciprocal growth coefficient is, on account of (16), 
equal to 

Here the normal component of the liquid ensures  the 
damping of the crystallization waves and the phonon gas 
of the solid ensures  the frequency shift. 

Now let 

with k significantly grea ter ,  as before, than al l  the ex- 
ponentially smal l  te rms.  T h e  solution for  the crystal  
in the region outside the viscous-wave penetration r e -  
gion is given by the formulas (31). In the liquid in the 
present case,  for  z >> b,, where 6, - (q , / p , ,~ )~  12, the 
solution has a s imi lar  form 

The normal part of the reciprocal growth coefficient is 
equal to 

0 Gn-l=-i- ( P.+v). 
p.k (35) 

The crystallization-wave-frequency shift A@ is signi- 
ficantly grea ter  than the damping constant in the pres-  
ent case. A higher degree of computational accuracy 
is therefore required for the calculation of the damping 
constant. In the formula (10) we should take into ac -  
count in the expressions for the energy fluxes Q,, , ad- 
ditional dissipative termsQL,, equal to 

and specially consider the smal l  regions of thickness 
of the order  of the viscous-wave-penetration depths. 
In these regions the expressions for  v, and v,, contain, 
along with the t e rms  given by the formulas (31)and(34), 
additional rapidly varying t e rms  : 

where a ,  and a, a r e  a r b i t r a r y  constants and 

gt= ( I - i )  (opn12q,)'", gc= ( l - i )  ( v ~ I 2 q . ) ' ~ .  

In the boundary condition (24) we can neglect the 
right-hand side on account of the inequality q ,  >> qc and 
the second term of the left member on account of the 
inequality I q ,  1 S k. As a result ,  we find that a ,  = 0. 
We can also neglect the rightrhand side of the boundary 
condition (25), s o  that a,=-2g. We can, in computing 
the time average of the flux Qi,, take account of 
only the te rm containing the derivative of the rapidly 
varying te rm in (37): - 

av, Quf=-q.v,- =- az (2q,wv)+I~l ' .  

A rapidly varying te rm does not occur in the solution 
for  the liquid. Therefore, 

By comparing the expression 
- . - -  
a=QI/-Q./  

with the formula (6), we find 

F o r  the solutions (31), (34), and (37) to be applicable, 
it i s  necessary that the condition wv >> TS~/U, i.e., 

klN> ( l , / lv )"( lNla)" ,  

besides (33), be fulfilled. But the boundary condition 
(24) presupposes the negligibility of the surface um- 
klapp processes a s  well. These processes a r e  respon- 
sible for the nonconservation of the total momentum 
of the excitations in their  interaction with the surface,  
a fact which can be taken into account by adding to the 
right-hand side of Eq. (24) an extra te rm that is  pro- 
port ional to a tangential velocity (it i s  not important 
which of the two tangential velocities v, and v,, , since 
we can neglect the right member of the condition (25)]: 

a~., a 
q (- + i u )  = (  + ik.u,) +pup. 

az az 
The constant p i s  perfect crystals  with perfect surfaces 
exponentially decreases with decreasing temperature,  
but the exponent i s ,  generally speaking, smal ler  than 
the corresponding exponent for the volume umklapp 
processes. The result  (38) i s  valid provided q ,  ( q  , I  
>> 0 ,  but in this case  a lso  it i s ,  generally speaking, 
necessary to allow for the energy dissipation 

due to the surface umklapp processes,  an allowance 
which leads to the appearance of an additional contri- 
bution to the rea l  part of the reciprocal growth coeffi- 
cient: 

Re G,-+=p/p.. (40) 

In the opposite limiting case q, I q ,  1 << P ,  we find 
from the formula (39) that vu(0) = v,,(O).= 0,  s o  that the 
constants in (37) a r e  equal to a, =a,  =-5 .  It is  con- 
venient t o  compute the energy dissipation in the present 
case  directly with the aid of the well-known expression: 

whence we obtain 

The analogous t e rm corresponding to the crystal-  
phonon-induced dissipation can, on account of the in- 
equality q ,  >> q,, b e  neglected. Finally, let 

This is the region of lowest frequencies where the 
crystallization waves st i l l  exist as slowing decaying 
waves. In the f i r s t  equation in (20) we can neglect the 
f i r s t  te rm and the te rm with v, s o  that the velocity i s  
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expressed directly in t e rms  of the temperature gra-  
dient. In the second equation in (20) we can, a s  be- 
fore,  neglect the f i r s t  t e rm;  whence it can be seen that 
the temperature sat isf ies the Laplace equation. The 
solution satisfying the condition (1) has  the form 

6 ~ , = - ~ ~ , 2 ~ e " " l k .  

From (16) we find 

In the present case  we can neglect the dissipation in the 
liquid. The condition y << w,,(k) for  weak damping of the 
waves i s ,  a s  can be seen f rom (1 8) and (43), violated 
when wo - (V/~, ) (TS; /~V) ,  i.e., in the frequency region 
(42) under consideration. 

2. THE NONLOCAL HEAT CONDUCTION REGIME 

If the crystal contains a large number of defects, the 
mean free path 2, is determined by the interact ion of 
the phonons with the defects, and i s  not exponentially 
large a t  low temperatures. The damping of the crys-  
tallization waves in this  case  i s ,  generally speaking, 
determined by the formula (43). But the important 
case in which we have point lattice defects o r  impuri- 
ties to deal with requires special consideration. It is 
well known that the scattering of the phonons by point 
defects alone cannot (because of the rapid decrease of 
the scattering c r o s s  section with decreasing phonon 
energy) guarantee a finite value for  the thermal-con- 
ductivity coefficient H a t  low temperatures.  As has 
been shown by ~ e v i n s o n , ' ~  there obtains in this case  a 
regime of nonlocal heat conduction. The thermal con- 
ductivity coefficient in the case  of an infinite crystal  
depends strongly on the value of the wave vector k. 
The purpose of the present section is to derive for the 
growth coefficient an  expression that replaces (43) in 
the case of nonlocal heat conduction. 

We proceed from the diffusion equation, used in Ref. 
18, for the distribution function q ( r ,  E) for long-wave 
phonons with energy & significantly lower than the tem- 
perature: 

D ( E )  An=(?z-n , ) / r .  (44) 

Here D(E) = D ~ / & ~  i s  the diffusion coefficient for phonons 
with energy c ;  D , , - ~ O ~ / N ~ ~ ,  where iV is the number of 
point defects per  unit volume of the crystal ,  i s  a con- 
stant; ?= ?,,/&, where ?,, - (o /T)~,  i s  the relaxation time 
time due to the three-phonon processes;  and no(&) 
= T(r) /& i s  the equilibrium distribution function. Set- 
t ing 

T=To+GT, n=n, (T , )  +6n, 

where To is the equilibrium value of the temperature,  
and assuming that the dependence of 6T  and bn on the 
coordinates x, s t ems  from the factor expik,~, ,  we 
rewrite (44) in the form 

where q = (k2 + ~ / D T ) ~ ~ ~ .  The solution that goes to ze ro  
in the interior of the crys ta l  a s  z --a i s  given by the 
formula 

(46) 
Here a =a ( G )  i s  an arb i t ra ry  constant. The boundary 
condition for  i ts  determination follows from the con- 
servation of the number of long-wave phonons in their 
interaction with the phase boundary, and has the form: 
Dan/az =-no(T,)5. The contribution of the right -hand 
side of this condition to the final result  is, however, 
smal l  compared to the contrikytion of the other te rm,  
which is a lso  proportional to 5, but s tems from the 
short-wave phonons. Therefore we can, assume in 
fact that an/& = O  a t  z =O.  A s  a result ,  

Let us formally continue the functions 6T(z) and 6n(z) 
into the region of positive z in an even fashion, i.e., 
in such a way that 

Then 

The  heat flux vector Q is equal to 

where p(&) = (pO = 9 p c / m ~ 3 ,  m being the mass  of 
the atom) i s  the level density. 

Let us  consider the heat-flux potential $, defined by 
the relation Q =  Vlj,, and equal, on account of (49), to: 

From the continuity equation divQ = 0 we obtain the 
equation A$ = 0 ,  s o  that $ =$,,ek*, where $,, is a con- 
stant. For  z = 0 the heat flux (3, =-k$,, through the . 
boundary should, on account of ( I ) ,  be equal to TSJ, 
whence we find $,. If we continue $(z) into the region 
of positive z in an even fashion, s o  that the equality 
(50) obtains for a l l  z ,  then we have 

$(z) =-TScfe-'l"/k. (51) 

Going over from the functions 6n(z), 6T(z), and +(z) 
to the Fourier  t ransforms 6n(p), 6T(p), and $(P), we 
find from (48), (50), and (51) that 

The  normal part of the reciprocal growth coefficient 
is, on account of (16), equal to 

Instead of the law G , c c k ,  (43), which is characteris-  
t ic  of normal thermal conduction, there obtains under 
nonlocal conditions the weaker dependence Grim kSI5. 
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3. THE BALLISTIC REGIME 

For  sufficiently large values of the wave vector k,, 
the wavelength l/k is small  compared to the mean 
free path of the thermal excitations. Under the condi- 
tions of such a ballistic regime, the normal component 
should be described with the aid of the quasiparticle 
distribution function. 

At low temperatures the quasiparticles of the liquid 
and the crystal a r e  virtually totally reflected from the 
phase boundary. In the case of the phonons this follows 
from the above-mentioned results  of Castaing and 
~ 0 z i e r e s . l ~  In the case of the rotons, this will be 
shown below. Under such conditions the quasiparticles 
of the liquid and the crystal clearly make additive con- 
tributions to the reciprocal growth coefficient G,". 
Therefore, we can, in computing the contribution of the 
liquid, neglect the thermal excitations of the crystal. 

The energy per unit volume, the chemical potential, 
and the energy -flux vector in the liquid a r e ,  when ex- 
pressed in terms of the quasiparticle distribution func- 
tion n(p,r,t), equal to (Refs. 14, $37 and 19, $77): 

where E , ( p , )  and p,(p,)  a r e  the values of the energy and 
the chemical potential at T = 0,  E = &(p) is the energy 
spectrum of the quiescent liquid, H = e(p) + pa v, i s  the 
energy (Hamiltonian) with allowance for the superfluid 
motion, and the angle brackets denote multiplication by 
$P/(~TE)' and integration over the entire momentum 
space. 

The reflection of the quasiparticles. from the phase 
boundary, as it moves with velocity 5,  occurs with 
conservation of the energy in the rest  frame of the 
bouqdary, i.e., with conservation of the quantity H 
-p,g. The excitation-energy flux through the boundary 
in this frame should be equal to zero: 

Hence we obtain 

The last term in the right member can be neglected 
as a term of order higher than the second in the devia- 
tion f r o n  equilibrium. We need not distinguish be- 
tween H and c in the first two terms. 

Substituting (55) into (54), and using (10) and the 
definition (4), we obtain 

Let us se t  n=n, + 6n, where no is the equilibrium 
distribution function corresponding to the equilibrium 
temperature, i.e., the temperature at which f = 0. We 
should, in computing the contribution f, made by the 
nonequilibrium part 6n of the distribution function to f ,  
bear the following in mind. The existence of a nonzero 
6n in the boundary layer of thickness of the order of the 
wavelength k" leads to a deviation 6 p ,  of the density 
from the equilibrium value a t  infinity. Owing to the 

smallness of the velocity of the crystallization waves, 
we can assume that the quantities 6n and bp, a r e  con- 
nected with eachother by the equilibrium condition for 
the motion of the superfluid component, i.e ., by the 
requirement that the chemical potential be a constant, 
o r  that 6p,  = 0, thereby neglecting the small contribu- 
tion of the normal component to the real  part of the 
wave frequency. Furthermore, we can everywhere 
neglect the terms of the type 

which a r e  proportional to the product of two integrals 
of the distribution function. Such terms clearly de- 
crease with decreasing temperature much faster than 
the single integrals. 

As a result, we find from (56) that 

The quantity H(p,r)  is  conserved in the free motion 
of the quasiparticles in the absence of collisions. It is 
therefore clear that the distribution function for the 
quasiparticles incident a t  the boundary is equal to no(& 
+ p-v,), i.e., the nonequilibrium part bn entering into 
(57) is, for v,< 0, equal to p.v,an,/a&. Let po(p) for 
v,(p) > 0 be the momentum of such an incident quasi- 
particle, which is reflected (with probability equal to 
unity) into a state with momentum p. Then n(p)=n(p,). 
Since 

for v,(p) > 0 we have 
an 

6n = O [ p v . -  (p.-p,,) b l .  
Be 

Substitution into (57) yields 

where the subscript R indicates that the integration is 
performed over only the reflected quasiparticles with 
v,  > 0. 

The normal part of the reciprocal growth coefficient 
is, on account of (58), equal to 

The long-wave phonons a r e  reflected specularly from 
the boundary, i.e., for them, p, -POI = 20,. In the pho- 
non temperature region the integral (59) is equal to 

To compute the contribution of the rotons, let us con- 
sider their interaction with the phase boundary. Rotons 
a r e  characterized by the fact that there a r e  in their 
case four values of p, for a given energy and a given 
momentum p, tangential to the surface. These four 
states correspond to the four points 1-4 in Fig. 1, 
where the continuous circles represent a doubly con- 
nected constant-energy surface with & > A, while the 
dashed circle represents the & = A  surface (A is the 
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FIG. 1. 

minimum roton energy). The points 1 and 3 correspond 
to the reflected rotons; the points 2 and 4, to the rotons 
incident a t  boundary. Since & - A << A, the pairs  of 
points 1 , 2  and 3 , 4  a r e  close to each other. The  t rans i -  
tions 2 - 1 and 4 - 3 therefore correspond to reflections 
with a small  change in the momentum. It i s  interesting 
that, here,  a s  in the case  of the reflection of electron- 
like quasiparticles from a superconducting-normal 
metal interface:' a l l  the three components of the velo- 
city of the quasiparticle change sign. It is easy to s ee  
that, for sufficiently smal l  values of c - A ,  reflections 
of this type occur with overwhelming probability from 
an arbitrary liquid boundary, i.e., under conditions 
when we could, generally speaking, expect the p,-con- 
servation law to be violated because of the roughness 
of the boundary. Indeed, let us consider the energy & 

of the roton a s  a function of p, for a given p, in smal l  
neighborhoods of the pairs  of points 1 , 2  and 3 ,4 .  Let 
q, be the value of p, measured from pio ' ,  the middle 
of the straight line joining the points 1 and 2 (or 3 and 
4). Expanding the roton-energy spectrum in powers of 
q , ,  we obtain 

where cos8 = P ~ ~ ' / P ~ ,  p o  and p being the roton momen- 
tum and effective mass .  The corresponding Schroding- 
e r  equation for the wave function $ describingthe4'chan- 
nel," under consideration here,  of reflection involving 
a small  change in the momentum has the form 

Here U(z) is  the energy of interaction of a roton with 
the surface at  large distances I z 1 .  Arguments that 
a r e  literally a repetition of the arguments adduced in 
Ref. 21 for the case of the interaction of grazing elec-  
trons with a metal boundary show that, if U(z) decreas-  
e s  a s  1 z 1 - m faster  than / z 1 -' (which i s  virtually a l -  
ways the case) ,  then the 2 - l o r  4 - 3  reflection proba- 
bility tends to unity a s  c - A. 

Fo r  the two points 1 and 3 the difference p, -Po ,  in 
(59) is  equal to 

Substitution into (59) uields after  simple calculations 
the expression 

2poZpT d cos e cn-1 = - e - 4 1 ~ j  - 
nzhJpc cos0 ' 

The logarithmically diverging angle integral should 
be trancated at the limit 

of the region of applicability of the expansion of (61) in 
powers of q,. The lower limit of the integral i s  there- 
fore  the quantity (p~ /p i )114 .  As a result ,  the roton 
part of the reciprocal growth coefficient i s  equal to 

Under the conditions of the ballistic regime,  the pho- 
nons of the crystal  make to G," a contribution of the 
s ame  order  of magnitude a s  the contribution (60) of 
the phonons of the liquid. Since in the case  of the crys-  
tal phonons the exact computation of the coefficient of 
T* would require allowance for  the anisotropy of the 
elastic moduli of the crystal ,  we shall not consider 
this problem here ,  especially a s  there exists  a broad 
frequency region where the phonons of  the liquid a r e  
ballistic, but, f o r  the crystal  phonons, because of their  
significantly shorter  mean f ree  path, the regime it3 hy- 
drodynamic. 

4. DISCUSSION OF THE RESULTS 

Let us track the frequency dependence of the dimen- 
sionless crystallization-wave absorption coefficient y' 
=y/wo(k) (the reciprocal Q factor of the vibrations). 
In the region of extremely low frequencies, where the 
waves st i l l  exist a s  slowly decayingwaves, y decreases,  
accordingto (18)and (43), in proportion tow a s  thef re-  
quency increases.  Fo r  perfect c rys ta ls ,  the umklapp 
processes become ineffective a s  the frequency is in- 
creased in the hydrodynamic region, and the decrease 
o f f  is  replaced by a n  increase f i r s t  according to the 
law w1 '"(41), (38)], and then like w1 l3 [(38), (32), (27)] 
(in the intermediate frequency region the law w"I3 i s  
possible a s  a result of the surface umklapp processes). 
Finally, in the ballistic region the coefficient 7 again 
decreases in proportion to w-'I3 [(60), (6211 a s  the f r e -  
quency increases.  In the region o f  s t i l l  higher frequen- 
cies the decay of the spectrum of the crystallization 
waves should have an effect, and the coefficient y' 
should increase,  a s  the frequency increases,  in pro- 
portion to ( ~ 1 ' ~ ~ ~  a s  a result of the processes involving 
the decay of one vibration quantum into two quanta. 

The maximum value of the coefficient 7 a t  the bound- 
a r y  between the ballistic, (60), and hydrodynamic, (a?) ,  r e -  
gimes in the phonon temperature region i s  of the order  of 
(p~,/~)(l/a)l 12. F o r  l - ~ ( B / T ) ~ ,  this value is large,  
and, therefore, the slowly decaying waves exist either 
a t  lower, o r  at  higher, frequencies only. In contrast ,  
in the high-temperature roton region, the peak value 
of is proportional to exp ( -A/~T) ,  i.e., it i s  smal l ,  
and, consequently, the transition from the hydrodynam- 
ic to the ballistic regime occurs under weak-damping 
conditions. 

In the case  of sufficiently imperfect crystals ,  only 
the laws (43) and (53) can exist besides the ballistic 
laws (60) and (62). In the former  case  7 is proportion- 
a l  to w"lf15. There  i s  no hydrodynamic damping mini- 
mum. 
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Judging by the frequency dependence of the damping, 
the experimental data reported by Keshishev, Parshin,  
and ~ a b k i n "  pertain to the ballistic regime. In the 
roton region the observed temperature dependence of 
the damping i s  in good agreement with the formula (621, 
but the experimental value for  the damping constant 
itself is roughly an  o rde r  of magnitude higher than the 
theoretical value (62). In the phonon region the experi- 
mentally obtained value of the coefficient attached to 
T~ is roughly 5 t imes higher than the value given by the 
formula (60), which corresponds to the situation in 
which only the phonons of the  liquid a r e  taken into ac-  
count. This discrepancy can hardly be ascribed to the 
crystal  phonons, since, according to the latest  data:' 
their  mean f ree  path in the temperature region investi- 
gated by Keshishev et al." i s  significantly shor ter  than 
the wavelength of the vibrations. These discrepancies 
can be attributed to the state of the crystal  surface. As  
in the case of heat exchange between solid and liquid 
helium:3 the limiting low-temperature laws of reflec- 
tion of quasiparticles from the boundary can actually 
be valid a t  temperatures lower than those a t  which the 
experiment was performed. 

We express our  gratitude to A. V. Babkin, K. 0. Kesh- 
ishev, I. M. Lifshitz, A .  Ya. Parshin,  L.  P. ~ i taevski ; ,  
and A.  I. Shal'nikov for  a useful discussion of the paper. 

'w. K. Burtonand N. Cabrera,  Discuss. Faraday Soc. 5, 33 
(1949). 

'w. K. Burton, N. Cabrera,  and F. C. Frank, Philos. Trans. 
R. Soc. London Ser. A 243, 299 (1951). 

3 ~ .  T. Chui and J. D. Weeks, Phys. Rev. Lett. 40, 733 (1978). 
4 ~ .  D. Weeks and G. H. Gilmer, in: Advances in Chemical 

Physics (ed. by I. Prigogine and S. A.  ice), Vol. 40, 1979, 
p. 157. 

5 ~ .  F. Andreev, Zh. Eksp. Teor. Fiz. 80, 2042 (1981) [Sov. 
Phys. J E T P  53, 1063 (1981)l. 

%. F. Andreev and A .  Ya. Parshin, Zh. Eksp. Teor. Fiz. 75, 
1511 (1978) [Sov. Phys. J E T P  48, 763 (197811. 

IA. F. Andreev, in: Progress  in Low Temperature Physics 
(ed. by D. F. Brewer). Vol. VIII, North-Holland, Amster-  
dam, 1982, p. 67. 

M. Lifshitz and Yu. M. Kagan, Zh. Eksp. Teor. Fiz. 62, 
385 (1972) [Sov. Phys. J E T P  35. 206 (1972)l. 

9 ~ .  V. ~o rdansk i r and  A. M. Finkel'shtek, Zh. Eksp. Teor. 
Fiz. 62, 403 (1972) [Sov. Phys. J E T P  35, 215 (1972)l. 

"k. 0. Keshishev, A. Ya. Parshin, and A. V. Babkin, Pis1- 
ma Zh. Eksp. Teor. Fiz. 30, 63 (1979) [ JETP  Lett. 30, 56 
(1979)l. 

"K. 0. Keshishev, A. Ya. Parshin, and A. V. Babkin, Zh. 
Eksp. Teor. Fiz. 80, 716 (1981) [Sov. Phys. J E T P  53, 362 
(1981)l. 

"B. Castaingand P. Nozieres, J. Phys. (Par is )  40, 701 
(1980). 

1 3 ~ .  Castaing, S. Balibar, and C. Laroche, J. Phys. (Par is )  
41, 897 (1980). 

141. M. Khalatnikov, Teoriya sverkhtekuchesti (Theory of 
Super-fluidity), Nauka, Moscow, 1971. 

1 5 ~ .  D. Landau, Zh. Eksp. Teor. Fiz. 14, 112 (1944); Sobra- 
nie trudov (Collected Works), Vol. I, Naulta, Moscow, 1969, 
p. 453. 

L. Gurevich, Kinetika fononnykh s is tem (The Kinetics of 
Phonon Systems), Nauka, Moscow, 1980. 

'Iv. I. Marchenko and A. Ya. Parshin, Pis'ma Zh. Eksp. 
Teor. Fiz. 31, 767 (1980) [JETP Lett. 31, 724 (1980)l. 

181. B. Levinson, Zh. Eksp. Teor.  Fiz. 79, 1394 (1980) [SOV. 
Phys. J E T P  50, 704 (1980)). 

'$E. M. Lifshitz and L. P. ~ i t aevsk i r ,  Fizicheskaya kinetika 
(Physical Kinetics), Nauka, Moscow, 1979 (Eng. Trans l . ,  
Pergamon P res s ,  Oxford, 1981). 

"A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 31964) [Sov. 
Phys. J E T P  19, 1228 (1964)). 

"A. F. Andreev, Usp. Fiz. Nauk 105, 113 (1971) [Sov. Phys. 
Usp. 14, 609 (1972)l. 

?A. A. Golub and S. V. Svatko, Fiz. Nizk. Temp. 7, 970 
(1981) [Sov. J. Low Temp. Phys. 7, 469 (1981)l. 

2 3 ~ .  Kinder, Physica (Utrecht) 107B +C, 549 (1 981). 

Translated by A. K. Agyei 

234 Sov. Phys. JETP 56(1), July 1982 A. F. Andreev and V. G. Knizhnik 234 




