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The main mechanisms of electron relaxation in two-dimensional systems are studied; these mechanisms are 
associated with electron-phonon, electron-electron, and phonon-phonon collisions. It is shown that under 
phonon-drag conditions the electric conductivity of a pure two-dimensional metal differs from that of an 
ordinary three-dimensional metal not only in order of magnitude but also in the nature of its temperature 
dependence. The temperature-dependent corrections to the residual resistance are also calculated for 
conditions in which electron - impurity scattering predominates. 
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1. INTRODUCTION an electron whose velocity is  almost  perpendicular to 

It is well known that a t  sufficiently low temperatures 
the electron-phonon scattering is mainly a t  smal l  an-  
gles. This allows us to t rea t  the electr ic  conductivity 
(and other transport processes)  in t e rms  of the diffu- 
sion of an  electron over the F e r m i  surface (FS) with a 
step equal to the thermal momentum q of a phonon.' 
With phonon drag taken into account, this diffusion is 
described by the equation2 

(l i \ . ( i ( \  %,-n{V%,})=eE11. (1) 

Here X, is the distribution function of the nonequilibri- 
um electrons; the diffusion tensor D is proportional to 
the constant of the electron-phonon interaction and de- 
pends on the temperature a s  T5; div and v a r e  two-di- 
mensional operators in the tangent plane to the FS; n is  
a unit vector along the velocity of the electron; and E 
is the electric field strength. The linear integral func- 
tional 

is due to the phonon drag; the diffusion flux a t  the point 
p is governed by phonons emitted over the entire FS 
(for details see  Ref. 2). 

Equation (1) describes the stationary process of dif- 
fusion of electrons, which "arise" on one half of the FS 
(where eE. n >  0) and "disappear" on the other half 
(where e E  n <  0). This equation leads to Bloch's law 
for the temperature dependence of the electric r e s i s -  
tance: p, - T5. 

The situation is entirely different for  a two-dimen- 
sional metal, in which the energy of an  electron de- 
pends only on two components of its quasimomentum. 
It can be proved rigorously that in this case,  and only 
in this case,  the integrodifferential equation (1) is un- 
~ o l v a b l e . ~  With a two-dimensions1 FS the kernel A,,. 
has singularities a t  the points p' = i p ,  and Eq. (1) takes 
the form 

This equation cannot be solved, because its left s ide is 
an even function of p and its right s ide i s  an odd func- 
t ion. 

Let us elucidnte the physical meaning of this last  r e -  
sult. As is  well known. a phonon can interact only with 

the momentum q of the phonon (in the approximation to 
which the diffusion equation (1) corresponds these vec- 
t o r s  a r e  exactly perpendicular, q. n =  0). In a metal 
with a cylindrical FS this means that exchange of a 
phonon is possible only between electrons whose veloc- 
ities a r e  parallel o r  antiparallel to each other (Fig. 1). 
The electrons with a given velocity direction i n  and the 
phonons that interact with them form a closed subsys- 
tem, which cannot exchange momentum with another 
subsystem corresponding to a different direction n'. On 
the other hand, the diffusion flux of electrons a t  a given 
point of the FS must have a definite direction and con- 
sequently there  must be constant absorption of phononin 
this direction (or  emission in the opposite direction). The 
result  wouldbe to s t r i p  the subsystem of suchphonons, and 
s o  the diffusion process i s  locally forbidden a t  eachpoint of 
the FS. Things a r e  quite different in ordinary three-dimen- 
sional metals, where any two electrons can exchange a pho- 
non (with its momentum in the direction of the vector 
product of their  velocities), and therefore mixing of the 
momenta over the entire FS occurs. Accordingly, the 
relaxation mechanism of the electron gas  in two-dimen- 
sional and in three-dimensional systems a r e  qualita- 
tively different, and this must result  in differences be- 
tween their  kinetic properties. 

The purpose of the present  paper is  to systematically 
study the possible conductivity mechanisms in metals 
in which the electron spectrum is two-dimensional and 
the phonon spectrum is  three-dimensional.') In classi-  
fying the relaxation processes  we note that the conclu- 
sion that the electron-phonon sys tem i s  broken up into 
isolated groups is only approximate, for  severa l  rea-  
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FIG. 1 .  Convex and nonconvex Fermi  surfaces (FS). 
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sons. Fi rs t  of all, the momentum and energy of a pho- 
non have been regarded a s  infinitely small [ ~ q .  (1) was 
derived in the quadratic approximation in the "inelas- 
ticity parameter" s/v, where s is the speed of sound]. 
Besides this, in considering only electron-phonon col- 
lisions we have neglected the contributions of other in- 
teraction processes among the quasiparticles. Owing 
to these facts there a r e  three groups of relaxation 
mechanisms. They a r e  a s  follows: 

1) Scattering of electrons by phonons with small but 
finite momenta obviously destroys the mutual isolation 
of the groups of electrons. This, however, leads to 
relaxation only for FS of a particular structure. 

We f i rs t  show that in metals with convex FS taking the 
finite momenta of the phonons into account does not 
lead to relaxation. In fact, suppose that a stationary 
flux of electrons has been established on the FS in the 
external electric field. Then there a r e  pairs of points 
p and k for which the transition p- k occurs more fre- 
quently than the opposite transition. Then there is con- 
tinuous production of phonons with momentum q = p - k 
(or destruction of those with momentum -q). Accumu- 
lation of such photons blocks the channel p - k. The 
presence of a symmetrical pair of points does not al ter  
this conclusion; if, for example, x,> x,, then X-,< X-, 
because X, is an odd function, and therefore photons in 
this direction will accumulate in the channel -k- -p. 
Accordingly, relaxation in any electron distribution that 
is not centrally symmetrical turns out to be impossible. 
We emphasize that this conclusion holds only in the 
elastic-collision approximation (see Fig. 2). 

Relaxation is possible if there a r e  "many-channel" 
processes brought about by the exchange of photons 
among several pairs of electronic states. For this it 
is necessary that the FS contain a t  least two points with 
any given normal direction *n [or else that there be 
none a t  all, see  Fig. l(b)], and that the radii of curva- 
ture be different a t  these points. We shall provisionally 
call such surfaces "nonconvex," although they include, 
for example, arbitrary multiplically connected FS. 

In the case of a nonconvex FS the relaxation process 
(we call it q / p  superdiffution in analogy with the mech- 
anism of Gurevich and Laikhtmans) is described by a 
local differential equation, in which, however, there 
exist simultaneously all  states with a given direction of 
the normal. The corresponding resistance is decreased 
compared with the Bloch value by a factor ( T / @ ) ~ :  p 

= p B ( ~ / ~ ) 4 ,  where O is the Debye temperature. 

2) The second group of relaxation mechanisms is due 
to the fact that the phonon energy is finite. It is clear 
that in dealing with them we a re  concerned with the en- 
ergy distribution of the electrons in the neighborhood of 
the FS. It turns out that the energy dependence that is 
established here (we call corresponding electron dis-  
tribution the "local drift") is such that there is no re-  
sistance not only in zeroth order but also in the approx- 
imation quadratic in the parameter s/u. For an arbi-  
trary structure of the FS relaxation of the local drift 
can be assured by two mechanisms of different nature. 

The f i rs t  is a nonlocal mechanism associated with the 
scattering of electrons by phonons whose momentum is 
almost parallel to a generator of the FS (angles of de- 
viation of the order of s/u). Obviously, such glancing 
phonons can be exchanged by any two electronic states 
(as  in the case of a three-dimensional FS). The corre- 
sponding resistance is p- pB(s/u)2. 

The second is a local mechanism of superdiffusion, in 
which relaxation is brought about by exchange of pho- 
nons between states close together within the thermal 
layer. Its contribution is p- p B ( ~ / p ) 2 ,  where p is the 
chemical potential. 

3) Of the mechanisms of the third group, the simplest 
to deal with is the contribution of phonon-phonon colli- 
sions. They make possible exchanges of momentum to 
"isolated" groups of electrons, widely separated in 
their velocity directions n. This is a nonlocal mechan- 
ism, and is described by an equation of the form ( I ) ,  p 
- ( ~ 1 0 ) ' .  

Here we note that normal collisions between electrons 
in two-dimensional metals can be ineffective. In fact, 
in the case of a convex FS it follows from the conser- 
vation laws that the initial electron states p, and p, 
agree up to quantities of the order T / p  with the final 
states p, and p4 (see Fig. 3). Relaxation occurs in a 
higher order in T/p ,  corresponding to a time T,," T-4. 

The behavior of the resistance in a region where im- 
purity scattering predominates depends on the geometry 
of the FS and the ratios of the characteristic param- 
e ters  of the system. The resistance can also be due to 
small  deviations of the FS from exact two-dimensional 
form. This gives p- pBy2, where y is the characteris- 
tic deviation of the FS from cylindrical form. 

Finally, we note that in a number of two-dimensional 

FIG. 2.  The states with which a phonon with momentum q can 
interact are not, strictly speaking, centrally symmetrical: 
p* # - k, -p # k*, with the characteristic angle of deviation 
a - s / v .  

FIG. 3 .  The initial and final states of colliding electrons in a 
two-dimensional metal with convex FS are equal up to quanti- 
ties of order T / p ;  pi+ p2 = p3+ p4. 
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metals an anomalous behavior of the resistance is ob- 
served, which is ascribed to an alteration of the spectrum 
or  to spatial localization of the conduction electrons. 
Our treatment will be for conditions where these proc- 
esses do not occur. 

2. THE ELECTRON-PHONON INTERACTION. THE 
ELASTIC-COLLISION APPROXIMATION 

The relaxation mechanisms that a r e  due to scattering 
of electrons by phonons can be investigated by directly 
expanding the kinetic equation in the small parameters 
q/p and s/v. Even in the simplest cases,  however, 
such calculations a r e  very cumbersome. Here we shall 
describe a different scheme, based on a variation prin- 
ciple." It permits considerable simplification of the 
derivation of equations analogous to Eq. ( I ) ,  and makes 
it relatively easy to calculate the electric conductivity 
of a metal in each specific case. 

1. Calculation procedure 

As is well known (cf. e.g., Ref. 6), the system of kin- 
etic equations that describes the interaction between an 
electron and a phonon in an external electric field can 
be derived from the condition that the functional 

be a minimum, with the supplementary condition 

Here the functions xp and 9, are  associated in the 
usual way with the nonequilibrium corrections to the 
distribution functions of electrons and phonons: 

Gn,=-~,~n, /d~, ,  6.+',=-@q~Nqlaoq. 

where n, and N, are  the equilibrium Fermi and Bose 
distribution functions, bpkg is the matrix element of the 
interaction between electron and phonon, and g is a 
vector of the reciprocal lattice. 

We note that with the normalization (3) which we have 
adopted for the distribution functions the variational 
equations differ from the kinetic equations by a numer- 
ical factor p / ~  in the right-hand side; here the electric 
resistance is 

We shall show that the temperature dependence of the 
resistance can be obtained from the variation principle. 
In order not to complicate the exposition, we shall r e -  
gard the electron-phonon collisions a s  elastic and ne- 
glect quantities of order s/v. To calculate the resis-  
tance we suppose that the functions that minimize the 
quantity (2) satisfy the relation 

It is not hard to determine the exponent n. To do s o  we 
solve the system of equations 

successively in the linear, quadratic, and so on approx- 
imations in the parameter q/p, in the class of functions 
periodic in the reciprocal space. Let Y; be the se t  of 
solutions of this system in the i-th approximation. The 
functional F being positive-definite, it is  readily seen 
that it is in the n-th approximation that the system (6) 
becomes unsolvable. 

We write out the value of the functional F ( x ,  ih )  in 
terms of functions from Yn',_,, in the f i rs t  nonvanishing 
approximation in q/p- T/O:  

where V) is a differential operator of order n, and 
e = q/q. We have written the square of the matrix ele- 
ment for scattering of an electron by a long-wavelength 
phonon in the form 

From Eqs. (41, (5), and (7) we have a s  the result 

To obtain the approximate kinetic equation we have 
only to vary the functional (7) with respect to X,  ih in 
the class g., subject to the supplementary condition 
(3). 

This scheme is convenient for the following reasons. 

a )  It is much easier to analyze the system of Eqs. (6) 
than the kinetic equation itself. 

b) Although the system (6) is examined only to accu- 
racy (q/p)", the result provides the kinetic equation in 
the 2n -th approximation. 

c) In the function G,, we a r e  to confine ourselves to 
the main approximation, since x,, ih, E g,,. This is not 
s o  obvious in the direct expansion of the exact kinetic 
equation. 

We point out that there a r e  no umklapp processes in 
the integral (7); when they a r e  not included the bracket 
(x, -xk -'ha) vanishes for the drift distribution functions 

Formally, therefore, our results apply only to metals 
with open FS, where drift is prevented by the condition 
that the function X, must be periodic in the reciprocal 
space. In the case of an open FS with an odd number of 
electrons and holes, on the other hand, a term which 
takes umklapp processes into account must be added in 
Eq. (7). In what follows, however, we shall not take 
umklapp processes into account, and accordingly stipu- 
late that the drift distributions (9) a re  forbidden. 

2. The diffusion approximation 

In the diffusion approximation the equation (6) takes 
the form 

and the differential operator I? in Eq. (7) is equal to qv. 
If the FS is not cylindrical, the system (10) has no solu- 
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tions distinct from the drift solutions (see Ref. 3). In 
this case the process of electric conduction is de- 
scribed by Eq. (1) and Bloch's law is valid. 

The situation is  different in metals with cylindrical 
FS. In fact, the equations (10) imposes a single condi- 
tion on the function x,. Namely, the values of the quan- 
tity q-vx, must be equal a t  points of the FS where the 
normals a r e  parallel: 

where a phonon with momentum q can be emitted. 
These conditions a r e  satisfied by a function X, which is 
such that: 

o~-'ax,lacp=f (cp) =-f (cp+n). (12) 

Here the angle cp gives the direction of the normal to 
the FS, and R and o a r e  the radius of curvature and the 
sign of the curvature of the FS at the point p; f (q)  is an 
arbitrary function of cp. 

Accordingly, in a two-dimensional metal the diffusion 
of electrons on the FS cannot produce electric resist- 
ance. The process i s  blocked at every point by non- 
equilibrium phonons. 

3. q/p superdiffusion 

First  let us verify that in the case of a convex FS 
there is no relaxation to all  orders in q / p .  In fact, 
considering only normal electron-phonon collisions, we 
get from Eq. (6) 

This condition is satisfied by any odd function xP. 

Let us now consider the case of a nonconvex FS. As- 
suming a fixed direction of e u = q ll/q # (q 11 is the compo- 
nent of the phonon momentum along the normal to a 
generator of the FS), we e x y n d  in powers of the 
modulus 911. The operator K(q, V) contains odd powers 
of q 11. Keeping the cubic terms, we have 

Here x = sign(e 11. e,), with e, the unit vector for the 
direction of the vector ap/aql,,,. 

For the equations analogous to !11) we now have 

K(q, V)xplpi=X(q1 V)XPllj 1 

(13) 

In this expression we must consider the coefficients of 
q,, and qi separately, since the value of the phonon mo- 
mentum is arbitrary. It is easy to verify that if R i f  R,, 
then the conditions (13) a r e  satisfied only by drift solu- 
tions, which must be discarded. Thus in this case p 
- T9. 

The approximate kinetic equation is found from the 
condition that the functional (7) be a minimum; for this 
we can assume the function X, in the form 

where x:' satisfies the requirement (12). Then for the 

function f (cp) we get the superdiffusion equation 

with the following boundary conditions 

where 

Here the summation is over points of the FS with the 
same value of the angle cp, and e, is a unit vector per- 
pendicular to the electric field. The parameter A is de- 
termined from the condition that the boundary-value 
problem be solvable: 

Vmax 

j d~a(cp)e,n=o. 
v m ~ n  

The function f(cp) is subject to the supplementary con- 
dition 

Wmln 
1 

which corresponds to the periodicity of the electronic 
distribution function in the reciprocal space. We point 
out that the diffusion equation (14) can be solved by 
quadratures, and accordingly the electric conductivity 
can be found in general form for arbitrary FS and arbi-  
trary electron-phonon interaction. 

We give the expression for the function D ( q )  in the 
simplest case of a FS with one point of inflection [Fig. 
l(b)]: 

where 

As can be seen from this expression, relaxation is 
provided by the interaction between electronic states 
with parallel velocities by way of phonons distributed 
over values of q,,.  

3. THE APPROXIMATION OF INELASTIC 
ELECTRON-PHONON INTERACTIONS 

When inelasticity of the electron-phonon interaction 
is taken into account, phonon exchange occurs between 
electrons whose momenta a r e  not strictly symmetrical, 
so  that the isolation of electron-phonon groups is brok- 
en (Fig. 2). To study the relaxation processes that oc- 
cur owing to this we again use the scheme of Sec. 2, 
subsection 1. 

We write the equation analogous to Eq. (10) in the lin- 
ea r  approximation in q 

qVx.l.. ,,-.I. a=@s (15) 

and examine its solvability in each order in the small 
parameter s/v. Here sin a= S / ( V  sin9),  where 9 is the 
angle between the vector q and the axis p,, and q,, 
= q sin9. 
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As was pointed out in the Introduction, in this case  
the energy dependence of X, is  important; therefore, 
writing it in the form 

we have 

q ~ ~ ~ = q , ,  [xocos uf (cp+xoa)+sin ag(cp+xou)] =@,, (16) 

where cp is the coordinate of the point on the FS a t  
which n- e = 0. Keeping t e rms  quadratic in a! in this last  
equation, we get 

Requiring that the left-hand side in this system take the 
same value a t  a l l  points of the FS where n. e = 0, we find 
the conditions for  it to be solvable. In zeroth order  in 
(Y we have the se l l  known relation (12). In f i r s t  order  
the condition is 

because only in this way can the t e rm linear in a, (an 
odd function of p) be the s ame  a t  the 9 points p and -p. 
Thus the function X ,  which sat isf ies the condition (18) 
(local drift) makes the functional (2 )  (and with it the r e -  
sistance) vanish to accuracy ( s / ~ ) ' . ~ )  

The relaxation of local drift can be secured through 
scattering of electrons by glancing phonons through 
small  angles 9- s / v  (we have s o  far  not considered 
them in Eq. (1 7 ) ,  considering a -s/u << 1). Although 
there a r e  only a few glancing phonons [of the 
order of (s/u)' t imes the total number], and on absorb- 
ing such a phonon an electron is shifted on the FS only 
by an amount s i n s -  qs/v,  this allows an  electron to 
"perceive" the whole FS a t  once. A given electron can 
exchange a glancing phonon with any other electron, 
which leads to destruction of the local drift. In view of 
al l  this, we write the functional F in the form (9 << 1): 

' > J  - t ' -PqY I 1 R acp - " - a c p \ ~  acp l  " J '  
P (19) 

Gpq=mq6(ep-~)6 (e,,n - 4) u bin ft ~ ~ ( e ) ~ .  

This expression for F enables us to estimate the r e s i s -  
tance: p- p,(s/u)3. By varying Eq. (19) with respect  to 
X, and 9, one easily obtains a fourth-order integrodif- 
ferential equation for  determining the function x,. 

Finally, there is  a possible mechanism associated 
with redistribution of momentum within the thermal lay - 
e r  of the FS, which leads to a resistance p- p , ( ~ / p ) 2 .  
In fact, keeping t e rms  linear in (E - p) in the expansion 
of the left-hand side of Eq. (15) and using Eq. (18), we 
get an insolvable system of equations 

The last  expression can be most simply derived in the 
case of an isotropic electronic spectrum. The equation 
of superdiffusion is  obtained from the condition for  min- 
imizing the functional (7), in which 

G:O,' =[n(~) -n(e+m)  lMp(e)6(qv)q, 

xD=x~' '  +xy' T/P, 

and the function x:) sat isf ies the relation (12). 

4. PHONON-PHONON AND ELECTRON-ELECTRON 
COLLISIONS 

Since in a two-dimensional metal electron-phonon col- 
lisions a r e  not a very effective mechanism of relaxation 
(much l e s s  effective than in the three-dimensional 
case) ,  other processes of interaction of quasi-particles 
can in principle compete with them. 

1. Phonon-phonon collisions 

At low temperatures the relatively r a r e  phonon-pho- 
non collisions destroy the mutual isolation of electron- 
phonon groups. This leads to a relaxation which is de- 
scribed by a diffusion equation of the form ( I ) ,  with the 
diffusion tensor proportional to the phonon interaction 
constant. The nonlocal nature of the diffusion is  due to 
the rescattering of phonons that "belong" to electron 
groups f a r  apart  in their  directions of n. 

The characterist ic  relaxation t ime is given by 

Here rpP - T -5 is the mean f r ee  time for  phonon-phonon 
collisions, n," T / ~  is  the number of electrons in the 
thermal layer,  and n,- T3 is  the number of phonons. It 
is c lear  that ~,,n,/n, is  the t ime during which an  elec- 
t ron is displaced by the distance q along the FS a s  the 
result  of one phonon-phonon collision, and ( ~ 1 ~ ) '  is the 
number of Brownian steps needed for  displacement 
across  the whole FS. Accordingly, p- T;:,- T9. 

We note that this last  result  holds if the frequency of 
collisions between phonons, 7;:- T5 is much smal ler  
than the frequency of their  collisions with electrons, 
7;;- T. In the opposite limit (T;;>> 7;:) the isolated 
groups a r e  completely .broken up and Bloch's law holds, 
p- p,. In this respect  the drag processes in two-di- 
merisional and in three-dimensional systems a r e  de- 
cidedly different; in the three-dimensional case  the 
frequent phonon-phonon collisions do not bring about 
any qualitative change in the result. 

2. Electron-electron collisions 

Fi r s t  of a l l  we shall show that in a two-dimensional 
metal with a convex FS normal collisions between elec- 
t rons a r e  not very effective. 

The variational integral analogous to Eq. (2) i s  

Here p,, p,, p,,p4 a r e  the four-momenta of the electrons 
before and af te r  a collision, and the positive function G 
= G(p,, p,, p3, p4) falls off rapidly when one of its argu- 
ments gets  beyond the thermal layer. 

If we neglect the thermal smearing of the FS, the 
quantity (x,, xz, x3, x4) vanishes for  any odd function X, 
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uations a r e  possible, depending on the shape of the FS 
and the relations between the characteristic parameters 
of the system. 

FIG. 4. The electronic states before and after collision in a 
metal with nonconvex FS may not be the same. 

(owing to the conservation laws either p, =p,, pz=p,, o r  
else p,+pz=p3+p,=O). Putting ( x , + x , + x ~ + x ~ ) - T / c L ,  
we have the estimate re,- T ~ ( ~ J / T ) '  where rO- T-' is the 
characteristic time for interelectronic relaxation in a 
three-dimensional metal. In the present case,  when the 
FS is rather small  and there a r e  no umklapp processes, 
complete relaxation is obviously impossible and the 
resistance is zero. Therefore re, has the meaning of 
the time for  attaining complete equilibrium, described 
by a drift distribution f ~ n c t i o n . ~ '  

In the case of a nonconvex (in particular, an open) FS, 
two-dimensionality does not result in weakening elec- 
tron-electron relaxation and ree-rO; only a drift dis- 
tribution function is in equilibrium for the collisions 
shown in Fig. 4 (the situation here is analogous to q/p 
superdiffusion, but i ts  s tepis  not small: q-p,). This also 
applies to convex FSs if they allow umklappprocesses for 
all  electronic states (see Fig. 5). 

In all  of these cases the interelectronic collisions 
either do not lead to a nonzero resistance, o r  else give 
the usual result pee- TZ- po. On the other hand, if elec- 
tron-electron U-processes intermix the momenta only 
on some part of a convex FS,6' then relaxation is 
checked on the parts where only normal collisions oc- 
cur ,  and pee- p o ( ~ I p ) 2 -  p. 

5. THE EFFECT OF IMPURITIES 

The results we have found of course apply only to very 
pure metals, in which the mechanisms in question a r e  
dominant in certain ranges of temperature. The low ef- 
fectiveness of these mechanisms (as compared with the 
case of three-dimensional metals) leads to stronger re-  
strictions on the concentration of impurities. Owing to 
this it is interesting to see how the two-dimensionality 
of the electron spectrum affects the temperature cor- 
rections to the impurity resistance pi under conditions 
in which they a r e  dominant. Here widely different s i t -  

FIG. 5. Electron-electron Umklapp processes. The electronic 
states ps and pd after collision a r e  located at the points of in- 
tersection of the FS with the surface obtained by shifting the 
FS by the total momentum pl + p2 of the colliding particles. 

Let us consider the transition from impurity resis- 
tance to the case of q/p superdiffusion in a metal with 
a convex FS. 

At the very lowest temperatures T << T , ,  at which ri 
<< rf(plq)' = rd(ri ,  7' a r e  the respective mean free times 
of an electron against collisions with impurities and 
with phonons, and r, is the diffusion time, during which 
collisions with phonons markedly change the electron 
momentum), electron-impurity scattering predominates 
and gives a form of the function X, which, generally 
speaking, does not satisfy Eq. (12). Therefore in this 
case the contribution of electron-phonon collisions is 
due not to q/p superdiffusion, but to ordinary diffusion 
on the FS, corresponding to the temperature-dependent 
correction to the residual resistance: ~ p -  p,. 

At higher temperatures T >> T, ( r i  >> 7,) the rapid dif- 
fusion of electrons imposes on the distribution function 
the structure (12), and is blocked. A stationary flux of 
electrons is  provided either by the impurity mechanism 
[T << T3, ri  << rsd= ~ ' ( p / q ) ~ ] ,  o r  else by the superdiffusion 
mechanism ( r i  >> rsd). In the former case the resistance 
is approximately constant and equal to the minimum 
value of the impurity functional F in the class of func- 
tions X, that satisfy Eqs. (3) and (12): p- p, >pi. In the 
second case p- ps,- TY. 

It can be shown (for example, by solving the kinetic 
equation with a perturbation method) that in the inter- 
mediate region T ,  << T << T ,  

where the temperature Tz is determined by the relation 
ri- rd(p/q)'. Accordingly, for temperatures larger than 
T, the resistance curves of two-dimensional and three- 
dimensional metals a r e  quite different in their shapes. 

As a second example let us consider a closed FS 
without points of inflection. In this case the electron- 
phonon correction to the resistance is much smaller 
than p, a t  a l l  temperatures. Indeed, a t  the lowest tem- 
peratures (TI>> r i )  collisions with impurities establish 
a distribution function of the electrons which in general 
does not satisfy the condition (18) for local drift, Eq. 
(18); therefore the electron-phonon contribution is of 
order of magnitude 6p-p,(s/u)z (see Sec. 2; in the 
present case qvx - a- ~ / p ) .  In the temperature range 
ri >> 7' collisions with phonons establish local drift, and 
a r e  blocked in the leading approximation in rr/ri;  the 
amount added to the resistance comes in the next ap- 
proximat ion: 

However, these corrections to the residual resistance 
a re  so  small  that the main correction is the weak tem- 
perature dependence of the residual resistance itself: 

p,(T) -pr+Ap<(T), Apc(T) - p i ( T / ~ ) "  

(only for 7' = 7, do we have ~ p , =  6p). Finally, a t  higher 
temperatures the s/v mechanisms described in Sec. 2 
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FIG. 6. Resistances of three-dimensional (1) and two-dimen- 
sional (2) metals with nonconvex FS in the approximation of 
elastic electron-phonon collisions. 

become important. The boundary of this region can be 
found from the condition ~ p ~ "  p,,,, where p,,, is the 
resistance owing to a dominant s /v  interaction mechan- 
ism. 

In conclusion we point out that the relaxation mechan- 
ism considered here  can affect not only the electr ic  
resistance but also other kinetic phenomena for  which 
displacements of electrons over the FS a r e  important. 
On the other hand, our treatment, based on the simp- 
lest  model of the phonon spectrum and the interaction 
of the phonons with the electrons cannot pretend to give 
a detailed description of the electr ic  conductivity of 
actual laminar systems,  with their  extremely varied 
and complicated properties. 

If, for  example, we suppose that the matrix element 
of the electron-phonon interaction goes to zero  for  
"glancing phonons",' ' M(e) - 9', then the relaxation of 
the local drift changes decidedly. In the case  of a FS 
with points of inflection a mechanism appears analogous 
to q / p  superdiffusion and producing a resistance p 
- p , ( s / ~ ) ~ .  Besides this, the nonlocal mechanism to 
glancing phonons obviously now gives p" p , ( ~ / v ) ~ .  

In any case,  however, the electric conductivity of a 
laminar conductor is much la rger  than that of an  ordi- 
nary three-dimensional metal (with the same density of 
states). This conclusion may also hold a t  high temper-  
atures,  if the phonons collide with electrons oftener 
than with each other. In this connection we point out the 
anomalously large conductivity of certain compounds of 
graphite, intercalated with various so r t s  of donors o r  
acceptors (KC,, KC,,, KC,,, LiC,, C,AsF5, C1,AsF5, e t ~ . ) . ~  
In this paper, Fischer indicates that there is  a definite 
connection between the magnitude of the conductivity and 
the character  of the electron spectrum: The more 
"two-dimensional" the electrons a r e ,  the grea ter  is  the 
electric conductivity along the layers. 

Note added in proof (25 May 1982). We note that the 
thermal conductivity of a two-dimensional metal, un- 
ljke the electr ic  conductivity, i s  governed by momen- 
tum relaxation, not energy relaxation. At temperature 
T < T o  = ~ ( s / v ) ~ ' ~  the transport  of heat is mainly by 
electrons, and for  T > T o ,  by phonons. The thermal 
conductivity coefficient H. i s  anomalously large and has 
an  unusual temperature dependence: 

Here C, i s  the electronic heat capacity and ~ , f f  i s  the 
relaxation t ime which determines the electr ic  conducti- 
vity of a two-dimensional metal, 

"~ualitative considerations on some relaxation processes in 
two-dimensional metals are  given in Ref. 4. 

2'~n simplified form a similar method was used earlier2 to 
derive the diffusion equation (1). 

3 ) ~ n  three-dimensional metals the electric conductivity is 
usually governed by processes of electron diffusion over the 
FS (umklapp processes occur relatively easily down to ex- 
tremely low temperatures, and therefore the "bottleneck" 
of the relaxation is  diffusion3). If certain conditions a re  
satisfied, the situationis similar in two-dimensional systems, 
in which diffusion occurs with much more difficulty than in 
the three-dimensional case. 

4 ' ~ e  remark that our previous4 estimate of the resistance, 
p - p, (s/v)', associated with the inelasticity of electron- 
phonon collisions, is erroneous. 

5 ) ~ n  the absence of umklapp processes, the contribution 
AoBBM T~ of electron-electron collisions can be regarded a s  
a small correction added to the impurity resistance. 

6 ) ~ n  the case of a circular FS this occurs for g/4<pF< 2112g/4. 
I ' ~ h i s  corresponds to the case of a system of rigid conducting 

layers imbedded in an easily deformed matrix. 
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