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The dynamics of the motion of ultrarelativistic electrons in axial channeling is investigated. The analysis is 
based on solution of the kinetic equation recently obtained by Beloshitskii and Kumakhov [Rad. Eff. Lett. 58, 
41 (1981) and Sov. Phys. JETP 55, 265 (1982)l. The particle-dechanneling function was studied as a function 
of the type of crystal, particle energy, and entry angle into the crystal. It was found that for the greater part of 
the beam the principal mechanism of diffusion is scattering by electrons. It is shown that there is an optimal 
range of depths at which the fraction of channeled particles increases rapidly at the expense of quasichanneled 
particles. Here in a number of cases the dechanneling length for crystals with high atomic number can turn 
out to be greater than for light elements. 

PACS numbers: 61.80.Mk 

INTRODUCTION this  potential we have discussed the possibility of t r a n -  

Recently there  has been a g r e a t  increase  in interest  in 
study of the channeling of light relat ivis t ic  par t i c les ,  
particularly electrons. This  is  due to  the observation of 
the intense character is t ic  spontaneous radiation in 
channeling which was  predicted by Kumakhov.' The  
spec t ra l  and angular  charac te r i s t i cs  of this radiation 
a r e  greatly influenced by multiple scat ter ing by elec-  
t rons  and by thermal  vibrat ions of the nuclei. The mul- 
tiple scat ter ing of positive channeled part ic les  has been 
studied in detail  ( s e e  f o r  example Refs. 3-6). 

However, the nature of channeling of positive par t i -  
c l e s  differs  substantially f r o m  that of negative par t i -  
c les .  This requ i res  a new approach f o r  discussion of 
the problem of multiple scat ter ing of channeled par t i -  
c les .  Such a n  approach was  recently proposed in a n  a r -  
t ic le  by Beloshitsky and ~ u m a k h o v , '  in which a kinetic 
equation of the Fokker-Planck type was  obtained f o r  
negative part ic les .  

sition of e lectrons f r o m  the quasichanneling mode into 
a n  axial  channel. The effect of a tomic planes was not 
taken into account here.  

1. THE POTENTIAL OF AN ATOMIC STRING FOR 
AXIAL CHANNELING OF ELECTRONS 

Most theories  of channeling a r e  based on introduction 
of continuous potentials of a tomic s t r i n g s  and planes.' 
F o r  a n  electron a t  a dis tance r f rom a n  atomic s t r ing ,  
with use of the Moliere screening function the following 
expression i s  obtained f o r  the potentialg: 

2Ze' 
U" ( r )  =- - exp - - 

d [ 2 ( ~ ) ' ] ~ a 8 ~ K o ( p t ! ~ s ) L d ( ~ s )  UL ) =1  u (1 I UL 

Here  Z e  is  the charge of the nucleus, d is the dis tance 
between a t o m s  in a s t r ing ,  and a, = 0.1, 0.55, and 0.35; 
(3,=6.0,1.2, and0.3; a,= 0.8853aB2'"3, a, i s t h e  Bohr ra- 

Axially channeled electrons move along t ra jec tor ies  dius ,  KO and I, a r e  modified Besse l  functions, and u, i s  
of a roset te  type.7 Here the electron moves around a n  the amplitude of the thermal  vibrat ions of the atoms.  
a tomic s t r ing  and is  in a bound state. If the potential of The potential a t  a point r i s  defined a s  the s u m  of the 
the s t r ing  is  considered to be axially symmetr ic ,  the potentials of a l l  s t r ings  forming the c rys ta l :  
motion in its field will  be character ized by two indepen- 
dent integrals of motion-the t ransverse  energy and the U ( r ) =  y Un(I*-GI). 

Li 
(1.2) 

angular  momentum of the part ic le  with respec t  t o  the 
Cer ta in  fea tures  of the axial  channeling of negative 

axis.  Therefore in this  c a s e  it becomes necessary  to  
part ic les  permi t  the above expression t o  be replaced by 

d i scuss  diffusion in two-dimensional phase s p a c e  in the 
a s impler  one. In con t ras t  to the channeling of positive 

t ransverse  energies  and the angular  momenta.' The  
part ic les ,  the potential well f o r  e lec t rons  is  signifi- 

kinetic equation obtained in this c a s e  has  been solved 
cantly narrower.  F o r  posi t rons the region of dis tance 

numerically by computer  with inclusion of the multiple 
t o  the s t r ing  r > a ,  is  mos t  important,  while the g rea t -  

scat ter ing of channeled part ic les  by electrons and nu- 
e s t  effect on the behavior of e lec t rons  in channeling i s  

c l e i  of the c r y s t a l  lattice. 
f r o m  the region r- a,. F o r  such dis tances f r o m  the 

F o r  the energy range 1-10 GeV considered,  a c lass i -  
c a l  discussion of the motion of the electrons in the 
channel i s  applicable, s ince the number of levels  of the 
t ransverse  energy i s  quite large:  v- y ( y  = 1/(1 - v2/ 
c2)'/ ' is  the Lorentz factor). A s  the potential of the 
atomic ax is  we took the model potential U(r) - r-', 
where  r i s  the dis tance to  the string. In view of i ts  
simplicity, such a potential permi t s  comparatively easy 
study of the main regular i t ies  and fea tures  of the ax ia l  
channeling of negative part ic les .  In the  f ramework  of 

s t r ing  Lindhard proposed a potential of the f o r m  U(r) 
= a/r. In our  calculations the potential of a n  atomic 
s t r ing  was  taken in the f o r m  

u ( r )  =-a/r+U~, (1.3) 

where  a= $2e2ap/d. Introduction of the quantity U, is  
due to  the necessity of cutting off the potential as a con- 
sequence of the  influence of neighboring s tr ings:  U, 
= a/r,, where  r, = l / ( n ~ d ) ' / ~  is  the dimension of a 
channel and N i s  the number of a t o m s  p e r  unit volume 
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the incident electron. 

FIG. 1. Potential of an atomic string for tungsten 011) (2=74). 
The solid curve is the potential calculated with Eq. ( 1 3 ,  
averaged over azimuthal angle. The dashed curve is the model 
potential (1.3). 

in the crystal. 

In Fig. 1  we have shown a comparison of the exact 
potential ( 1 . 2 )  averaged over the azimuthal angle, with 
expression ( 1 . 3 )  for the (111 )  directlon in tungsten a t  
temperature 20 "C. In the calculation with Eq. ( 1 . 2 )  it 
was assumed that the thermal vibrations of the atoms 
a r e  isotropic and the amplitudes of the thermal vibra- 
tions a r e  determined according to the Debye model. 

The region of greatest potential gradient lies within 
the limits r - 2 a , .  The potentiak ( 1 . 2 )  and ( 1 . 3 )  a r e  
closest in just this region. A s  the depth of the potential 
well for the expression ( 1 . 3 )  one can take the value 
~ , l , l , ,  = 

In the absence of multiple scattering, the transverse 
motion of the electrons in the potential ( 1 . 3 )  consists of 
ellipses whose foci coincide with the axis of the chan- 
nel. The minimum and maximum distances of the elec- 
tron orbit from the string r,,, and r,,, a r e  

r ,n6n-a(l-q) ,  rma=a(l+-q), a - a / z ( i E ~ l + u ~ ) ,  
(1.4) 

t1=(l-2(1E,1 +U,)M.l'c2/a'E)", M=r,lpl sincps 

where a is the large semiaxis of the ellipse, 7 is the 
eccentricity of the orbit, M Is the projection of the an- 
gular momentum on the channel axis  z ,  r,  and p i  a r e  
the initial polar coordinates of the particle in the trans- 
verse plane, and EL is  the transverse energy of the 
electron, 

which corresponds to an angle of entry of the electron 
into the crystal q,. 

The period of the transverse motion in the field ( 1 . 3 )  
is 

where c is the velocity of light and E  is  the energy of 

The longitudinal velocity v ,  can be assumed constant: 
v ,=  c .  In the preceding formulas we have taken into ac- 
count the fact that for the transverse motion of the elec- 
trons in a channel v L  << c and relativistic effects reduce 
to the increase of mass of the particle. 

2. THE KINETIC EQUATION 

For sufficiently thick crystals one can speak of sta- 
tistical equilibrium in the transverse plane.' Here the 
behavior of a beam of electrons under conditions of 
channeling is described by a distribution function which 
depends only on the integrals of the motion EL and M. 
This distribution function will satisfy a kinetic equation 
of the Fokker-Planck type. This equation was obtained 
by Beloshitsky and Kumakhov and has the form1 

where F ( E L ,  M , z )  is  the distribution function of particles 
in the channel a t  a depth z = ct, t is the time of motion 
of the particle in the channel, and T is the period of its 
transverse motion. In Eq. ( 2 . 1 )  we have omitted terms 
taking into account the change of the total energy of the 
particle, which is  completely justified for the beam en- 
ergies considered. 

The diffusion coefficients in Eq. ( 2 . 1 )  have the form 

12.21 
A l l  of these quantities a r e  expressed in terms of the 
mean square multiple scattering angle hez by the for- 
mulas 

In these formulas we have taken into account the rela- 
tivistic relation between the total energy and momentum 
of the electron, E = pc. The angle brackets (. . .) in Eq. 
( 2 . 2 )  denote averaging over the period of the transverse 
motion: 

where r, , , ,  r,, and T for the potential (1 .3 )  a r e  given 
by Eqs. ( 1 . 4 )  and (1 .6 ) .  

3. REGIONS OF CHANNELING AND 
QUASICHANNEL ING 

In order to solve the kinetic equation ( 2 . 1 )  it is  nec- 
essary to determine the region of possible variations of 
the transverse energies EL and the angular momenta M, 
and also to specify the boundary conditions for the dis- 
tribution function. 

We shall consider electrons to be channeled which a r e  
in a bound state in the field of an atomic string. The 
transverse energy of such particles is negative in the 
case of channeling and a s  the result of diffusion may 
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vary from -Urn,, to zero  (U,,, is  the depth of the poten- 
t ial  well for  the expression (1.3), U,,, - c y / ~ , ) .  Here for  
particles with a given value of t ransverse energy the 
diffusion in the angular momenta can change the magni- 
tude of the lat ter  also in a limited interval. If U,,, is 
the effective potential energy of an  electron with a given 
value of angular momentum M: 

then the region of variation of the angular momenta is 
determined by the condition E,  2 U r;:, where U r:: is 
the minimum of U,,, for  electrons with a given M. For  
the potential (1.3) the region of the solution of the Fok- 
ker-Planck equation is determined by the inequalities 

Multiple scattering by the electrons of the crystal  and 
by the thermal vibrations of the lattice lead to an in- 
c rease  of the t ransverse  energy of a particle up to zero  
and to its escape from a bound state (i.e., from the 
channel). Here the particles go over to the quasi-chan- 
neling mode. If we divert our attention from the effect 
of atomic planes on such electrons and the possibility of 
their capture into a planar channel, we can assume that 
in the quasichanneling region a n  electron is in the field 
of a disordered system of atomic strings. Then the be- 
havior of the particles in this case  can be described by 
a distribution function which depends only on the trans-  
verse  energy and which satisfies a one-dimensional dif- 
fusion equation of the Fokker-Planck type: 

Here the superscript  I1 indicates that the quantities 
considered a r e  associated with the quasichanneling r e -  
gion. 

The channeling region I and the quasichanneling r e -  
gion I1 for  tungsten (111) a t  E =  1 GeV for  the potential 
(1.3) a r e  shown below in Fig. 7 ,  where we have used the 
dimensionless variables 

e=dEL/Ze2 ,  p=cM/aTE@c, (3.3) 

and #C=(4Ze2/dE)112 is the Lindhard cri t ical  angle. The 
curved portion abc is  defined by the second inequality of 
(3.1). 

The boundary conditions for  Eq. (2.1) a r e  such that 
there is  no diffusion flux through the region bounded by 
the inequalities (3.1) (except the boundary & = 0 between 
regions I and 11). At the boundary c = 0 it is  necessary 
to join the solutions of Eqs. (2.1) and (3.2) in such a way 
a s  to provide continuity of the diffusion flow (details can 
be found in the Appendix). 

4. DIFFUSION COEFFICIENTS 

The solution of the kinetic eqq t ions  (2.1) and (3.2) is  
based primarily on a knowledge of the diffusion coeffi- 
cients, which a r e  expressed in t e rms  of the mean 
square multiple scattering angle. In a n  ideal c rys ta l  the 
increment of the transverse energy will be due to scat-  
tering by thermal vibrations of the nuclei and electrons 

of the crystal ,  i.e., 

The change of the transverse energy in multiple sca t -  
tering by the electrons of the crystal  can be expressed 
in t e rms  of the total ionization loss of the channeled 
particle. At high energies, assuming that in close col- 
lisions the energy loss is proportional t o  the electron 
density in the channel, we can use the expression 

where n ( r )  gives the behavior of the electron density in 
the channel a s  a function of the distance to the atomic 
str ing and L, is  the Coulomb logarithm. 

If U(r) is the potential of a n  atomic str ing,  then the 
electron density in the channel can be determined from 
the Poisson equation 

We used the electron density calculated on the basis of 
the standard Lindhard potential8: 

n ( r )  =3 ( r o / a F ) Z  ( 3 + i / ~ ~ ~ ) - ~ ,  (4.2) 

where r, is  the radius of the channel. 

The necessity of taking into account scattering by 
thermal vibrations of nuclei in channeling of negative 
particles is due to the fact  that they come close to the 
atomic string. Kitagawa and OhtsukiLo proposed a nu- 
c lear  diffusion coefficient for  nonrelativistic protons 
obtained f rom the corresponding expression for  a n  un- 
oriented target ,  multiplied by a Gaussian distribution of 
the nuclei in their thermal vibrations. In our case  it is 
necessary to take into account only the relativistic in- 
c rease  of the particle mass.  Then for  the increment of 
the t ransverse  energy of a channeled particle a s  a con- 
sequence of scattering by the thermal vibrations we 
have the formula 

where (=/AZ),, is  the increment of the transverse 
energy in multiple scattering in an  amorphous medium, 
L,,, is the radiation length, and P(r) is  the distribution 
of atoms in their  thermal vibrations in the transverse 
plane. 

In channeling of negative part icles,  the scattering of 
the grea ter  number of them occurs on the electrons of 
the crystal. The value of the corresponding diffusion 
coefficient, a s  can be seen  from Eq. (4.1), is deter-  
mined by the charge of the target  nuclei and by the be- 
havior of the electron density in the channel, and in a 
number of cases  the lat ter  factor  is  the more impor- 
tant. For  example, a s  a consequence of the more  rapid 
falloff of the electron density with increase of the dis-  
tance from the atomic axis ,  the electron diffusion coef- 
ficient in tungsten (111) is l e s s  in absolute value than in 
silicon (111) ( see  Fig. 2) in a large part  of the channel, 
in spite of the higher atomic weight. 
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FIG. 2 .  Electronic diffusion coefficient (AE,  / A r )  as a fuaction 
of the distance to the atomic axis. 1-W (111) (yo= 1.36 A) ,  
2- Si (111) (^/o =1.16 A)). The energy of the incident electrons 
is  1 GeV. 

At small  distances from the axis Y - u, the diffusion 
coefficient of scattering by thermal vibrations exceeds 
the electron diffusion coefficient by several  orders of 
magnitude. For most crystals they a r e  comparable a t  
distances from the axis Y -  0 . 1 5 ~ ~ .  

In the quas ichanneling region the diffusion coefficient 
can be taken approximately the same a s  in an amor- 
phous medium, although for positive values close to 
zero of the transverse energy, scattering by electrons 
will evidently be dominant. Then we have that the coef- 
ficient D,," increases linearly with increase of the 
transversz energy: 

Dtrl'= (E..+C ( l / ? A ; . i z ) a m  (4.4) 

5. INITIAL DISTRIBUTION 

If a unit electron flux 1 / ~ ,  hits the crystal (So is the 
area  per string), then the fraction of particles which 
pass through an a rea  element of the transverse plane is 

where Y,, and (a,, a r e  the initial polar coordinates of the 
electron. Converting this expression to the variables 
EL and M by means of the relations 

we have 

dN=Fo (E,, M )  dE,d.ll, 

where F,(E,, M) is the desired distribution normalized 
to the fraction of particles captured into the channeling 
mode for a given angle of entry into the crystal $,,: 

d U  
F. (E,, M )  -4r.. (p,9...M"i-Y /s .  1 ; 

'-'," 

here p, = p$,,, So = 1 / ~ d ,  and N is the number of atoms 
per unit volume of the crystal. 

As can be seen from Eq. (5.1), the initial distribution 
function is inversely proportional to the force acting on 
the particle a t  the point Y,, of the channel, and also is 
determined by the initial angle of entry into the crystal. 
For the potential (1.3) the region in which the initial 
distribution (5.1) is given is determined by the inequal- 
ity 

With normal incidence of the electron beam on the 
crystal, a l l  electrons hitting the crystal have zero an- 
gular momenta with respect to the atomic string, i.e., 
their trajectories pass along the axis. As the entry an- 
gle into the channel is  increased, states with higher an- 
gular momenta a r e  filled a s  a whole. 

For the potential (1.3) we have for the initial distribu- 
tion function the expression 

Fo(E,, M )  
= (4r,,3/S,a) (p,Zr,,z-MZ) -",. (5.3) 

Integration of this expression over a l l  possible values 
of the angular momenta and transverse energies corre-  
sponding to the channeling state gives the fraction of 
electrons captured into the channel for a given angle of 
entry into the crystal. We have 

All of these particles have parameters of the elliptical 
orbits of the transverse motion such that their maxi- 
mum departure from the axis does not exceed the di- 
mensions of the channel, i.e., rmaXc yo (rmaX is deter- 
mined from Eq. (1.4)). 

For normal incidence of the beam on the crystal a l l  
particles a r e  captured into the region of negative val- 
ues of the transverse energy (i.e., into a channel). 
However, they will undergo strong scattering by nuclei 
and rapidly leave the channel. For large $,, the f rac-  
tion of particles captured into a channel is very small. 
Therefore there is some optimal region of angles $,, 
fo r  which we should expect maximum capture of the 
electrons. Values of the optimal entry angles into the 
crystal can be found approximately by means of Eq. 
(5.3) if we assume that particles whose trajectories a r e  
such that r,,, -C u, a r e  not channeled (r,,, is deter- 
mined from Eq. (1.4)). In Fig. 3 we have shown the 
fraction of particles which enter a channel, calculated 
by this means (dashed line) and according to Eq. (5.4). 
It is evident that AN,- depends strongly on the entry 

I 
% L L 1, 

%/Yr 
FIG. 3 .  Fraction of particles captured into axial channeling 
ANch,, as a function of the entry angle into the crystal $,,. 1- 
W(111), 2-Si(ll1). The dashed curve is  the same for W(111) 
on the assumption that in the initial distribution of electrons 
in the channel we have excluded particles whose transverse 
energies intersect a zone of radius u, near the atomic axis. 
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angle into the crystal. I t  follows from Fig. 3 that for 
tungsten (111) the optimal entry angles are $::' = 0.15$'. 
For most crystals the values of $::' lie in the range 
$::'= (0.1-0.3)$'. With increase of $,, the relative 
fraction of particles which enter the region of action of 
the nuclei decreases, as also can be seen from Fig. 3. 

Obviously 1 -AN,,, particles fall into the one-dimen- 
sional region with positive values of the transverse en- 
ergy. The initial distribution in transverse energy for 
them is 

This region of transverse energies corresponds both to 
particles whose orbit parameters are such that r,,,>r, 
and to particles with hyperbolic trajectories (the latter 
occur for entry angles $,, > ( ~ U , / E ) ' ~ ' .  

Analysis of the initial distribution (5.3) shows that the 
greater part of the electrons enter the channeling mode 
with transverse energies close to zero. For example, 
approximately 8Wo of the particles captured into a chan- 
nel fall into the energy interval -0. lU,,, E, s 0 in 
tungsten (111) for an entry angle $,,,= 0.15$'. For 
electrons with a given transverse energy, states with 
higher angular momenta are populated more densely. 
Thus, we should expect that in axial channeling elec- 
trons will be dechanneled mainly as the result of scat- 
tering by electrons, since the transverse trajectories 
of electrons with large angular momenta are far re- 
moved from the axis. 

6. RESULTS OF NUMERICAL SOLUTION OF THE 
KINETIC EQUATION 

Equations (2.1) and (3.2) were solved simultaneously 
by a numerical method (see the Appendix). The diffu- 
sion coefficients were taken in the form (2.2), (4.1), 
and (4.3). The initial condition was the distribution 
function (5.1). In the quasichanneling region the diffu- 
sion coefficient was taken in the form (4.4) as in a dis- 

& 

FIG. 4. Evolution of the distribution function (6.1) with depth 
of penetration of electrons with energy 1 GeV in Si 011) for 
an initial entry anlge JIin=0.15p. The solid curve is  the initial 
distribution. The dot-dash and dashed curves correspond to 
depths a =5 and 50 &m. The calculations were carried out 
without taking into account the initial distribution in the region 
of quasichanneling, i.e., on the assumption that all particles of 
the initial beam are captured into the channel. 

ordered system. 

In Fig. 4 we have shown the evolution of the distribu- 
tion function with the depth of penetration of an electron 
beam with energy 1 GeV in a silicon crystal in the (111) 
direction. For convenience we have shown the distribu- 
tion function as a function of the transverse energy, 
i.e., averaged over all angular momenta. The initial 
distribution in the region of positive values of the 
transverse energy was assumed to be zero, while in the 
channeling region it was normalized to unity, which 
corresponds to the assumption of 100 percent capture 
into a bound state of the initial beam. 

The solution of the kinetic equation shows that elec- 
trons with transverse energies close to zero are de- 
channeled most rapidly (not considering, of course, 
electrons with I El 1 - U,,,, the fraction of which is very 
small). The number of particles 

A N =  j d e ~ ( c , z ) ,  F ( e , z )= -  2aElpl j dMF (E,, M ,  2)  , 
3c  

(6.1) 

with I E, 1 - 0.5Um,,, i.e., in the middle of the well, on 
the contrary, increases in comparison with their initial 
number by about a factor of five at a depth -7.5 pm (in 
the (111) direction in silicon at an energy 1 GeV), and 
then begins to drop slowly. For example, in silicon 
(Fig. 4)  the initial distribution of electrons is such that 
of all particles which enter the crystal ( for  an angle 
$,, = 0.15~' about 70°/0 of the initial beam is captured 
into the channeling mode) 10% are in the region of 
transverse energies -Urn,, s El -0.2Umin. At a depth 
5 pm already 14% of the initial beam is in this same 
energy interval, in spite of the fact that the total num- 
ber of particles in the channel has decreased. At 
greater depths, as the solution shows, the distribution 
function changes with depth approximately in such a 
way that the fraction of particles in the energy interval 
-Urn,, c EL s -0.2Umi, amounts to about a fourth of the 
total number of electrons remaining in the channel at 
this depth, and subsequently this ratio is almost un- 
changed with depth. 

7. CALCULATION OF THE DECHANNELING 
FUNCTION 

Practical interest is presented by a knowledge of the 
dechanneling function, i.e., the fraction of particles 
which remain in a given channel at a given depth. If 
F ( E ,  p, Z )  is the distribution function of the particles in 
the channel, we shall be interested in the quantity 

Here p(&) is the curve which limits the solution of the 
problem in the direction of large values of angular mo- 
mentum in accordance with Eq. (3.1). 

In Fig. 5 we show the results of calculation of F ( z )  
for various crystals and at various energies. As in the 
preceding section, in these calculations we assumed for 
convenience that in the quasichanneling region the ini- 
tial distribution is zero. However, in the region E < 0 
it has been normalized to unity. This choice of initial 
conditions corresponds to the assumption that all par- 
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FIG. 5. Fraction of particles F ( z )  [see Eq. (7.1)l remaining in 
a channel, as  a function of depth. Curves 1, 2, and 3 corre- 
spond to the crystals Ge(lll),  Si (I l l ) ,  and W (111) for an en- 
try angle into the channel $,,=0.15J.C and an initial beam en- 
ergy 1 GeV. The dashed curve corresponds to Si (111) for $,, 
=0.5d c for the same energy. Curves 4 ,  5 ,  and 6 correspond 
to energies 3 ,  5, and 7 GeV for Si (ill) at $,, =0.15$c. The 
calculations were carried out on the assumption that all parti- 
cles of the initial beam are captured into the channel. 

ticles of the initial beam a r e  captured into the channel- 
ing regime, and that the further evolution of the beam 
is  given by the solution of the kinetic equation. 

In the simultaneous computer solution of Eqs. (2.1) 
and (3.2) the quasichanneling region was limited to the 
interval 0 c s c&,,,= 3.5sC, where cC i s  the Lindhard cri-  
tical energy. The boundary condition a t  s = 3.5s' was 
chosen s o  that 

This boundary condition limits the depths to which it is  
possible to solve the problem numerically with the 
chosen value of c,,,. For  c,,,= 3.5cC this depth is  - 60 
pm. At grea ter  depths the influence of the limit begins 
to have a strong effect, and for  the condition (7.2) the 
solution approaches a stationary value, which is  c lear  - 
ly incorrect. The cri ter ion of correctness of the solu- 
tions F ( E ,  p ,  Z )  and F1'(s, z )  obtained for  a given value 
z is the inequality F "(0, z )  >> F"(E,,,, 2). 

In Fig. 5 we have shown the results  of calculation of 
F ( z )  in various crystals  (silicon ( I l l ) ,  tungsten ( I l l ) ,  
and germanium (111)) for  the same angle of entry into 
the channel $,, = 0.15~)'and for  the s ame  electron ener-  
gy E = 1 GeV. The value of F ( z )  decreases  to half a t  
depths of 10, 7.5, and 6 pm respectively in tungsten, 
silicon, and germanium. F ( z )  fal ls  to 30% in the same 
crystals  a t  respective depths 45, 23, and 18 pm. As 
can be seen, with increase of the depth the rate of de- 
channeling decreases.  

For  tungsten, a s  follows from the preceding discus- 
sion, the dechanneling depths were found to be grea ter  
than in silicon, in spite  of the higher atomic number. 
This,  generally speaking, is  not in any way a n  obvious 
result. As we mentioned above, the electronic diffusion 
coefficient near the atomic axis  in tungsten is  severa l  
times greater  in magnitude than in silicon. In addition, 
the initial distribution functions in these crystals  a r e  
such that in silicon the states with la rger  absolute val- 
ues of t ransverse energy a r e  more densely populated, 

whereas the depths of dechanneling for  such electrons 
a r e  grea ter  than fo r  electrons with transverse energies 
close t o  zero. However, the basic fact here  turned out 
to be that, a s  a consequence of the more  rapid drop of 
the electron density with increase of the distance from 
the axis ,  in the principal part  of the channel the aver-  
age value of the diffusion coefficient fo r  tungsten (111) 
is  l e s s  than in the corresponding channel of silicon. In 
addition, the depth of the well itself in tungsten is 
grea ter  than in silicon. 

The fact  that in heavy crystals  with a high atomic 
number Z the dechanneling length is large has a n  im- 
portant significance, since the intensity of spontaneous 
radiation in channeling predicted by Kumakhov2 i s  pro- 
portional t o  Z2~,/,, where x l Iz  is the dechanneling 
length. 

It is  of interest to investigate the dependence of the 
dechanneling function on the energy of the incident 
beam. In Fig. 5 we have shown values of the dechannel- 
ing function F ( z )  fo r  silicon (111) fo r  various energies 
of the incident electrons for  the s ame  angles of entry 
into the channel. As can be seen  f rom the figure the 
depth x,,, a t  which the number of particles in the chan- 
nel decreases  to 1/2 increases with increase of the en- 
ergy of the incident beam approximately according to a 
linear law, i.e., xl/  ,- y. We note that the diffusion co- 
efficient is inversely proportional to the energy. 

8. CALCULATIONS WITH THE INITIAL 
DISTRIBUTION IN THE QUASICHANNELING REGION 

In the preceding paragraphs we have given the r e -  
sul ts  of solution of the kinetic equation on the assump- 
tion that a l l  particles from the initial beam a r e  cap- 
tured into the channeling regime and have negative val- 
ues of the t ransverse  energy. Such calculations pro- 
vide the possibility of obtaining an  idea of the nature of 
the variation of the distribution of electrons in t rans-  
ve r se  energy and angular momentum in a channel, and 
a l so  of finding the dechanneling function. However, it 
is necessary to take into account a l so  the fact that only 
a par t  of the initial beam is captured into the channel. 
The remaining electrons enter  the region with positive 
t ransverse  energy. The fraction of such particles is  
1 - AN,,, where  AN^,, is determined by the expres-  
sion (5.4). 

Multiple scattering of particles by atomic str ings in 
the quasichanneling region can lead to the result  that 
par t  of them fall into the region with s < 0, i.e., a r e  
captured into the channel. On the assumption that the 
region s > 0 is  a system of randomly located atomic 
str ings,  we can consider that the initial distribution of 
electrons in angular momentum in this region is  uni- 
form,  and the distribution in t ransverse  energy is  given 
by Eq. (5.5). 

The results  of solution of the kinetic equation with a l -  
lowance fo r  the factors mentioned above a r e  shown in 
Fig. 6, where we have drawn the dependence of the 
fraction of particles in the channel F ( z )  on the depth for  
various angles of entry into the crystal. As the calcu- 
lations show, a quite significant number of electrons 
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FIG. 6 .  Dechanneling functions F ( z )  for Si(ll1) at energy 
1 GeV for various entry angles into the channel: l-li,,,=O.2Jlc; 
2-+,, =0.35+c. 

transfer from the quasichanneling region to a bound 
state a s  the result of multiple scattering, i.e., they go 
into the channel (see Fig. 6). For example, in silicon 
(111) for an entry angle @,,=0 .2@C the number of parti- 
cles in the channeling mode increases in comparison 
with the initial distribution by about 20%, and for an an- 
gle @,,= 0.35~)' it increases by 30%. As can be seen 
from Fig. 6, this redistribution of electrons occurs a t  
very small depths -1 pm. 

9. CONCLUSIONS 

The picture of the axial channeling of negative parti- 
cles is the following. On incidence of the electron beam 
onto the crystal a t  sufficiently small  angles to one of 
the crystallographic directions there is the possibility 
of capture of part of the electrons into a bound state in 
the field of the atomic strings. Such electrons have 
negative values of the transverse energy and a r e  con- 
sidered captured into the channeling regime. The inter- 
action of an individual electron with an atomic string 
can be considered a s  having axial symmetry and can be 
approximated by a Coulomb potential. The transverse 
motion of the particles in such a field is characterized 
by two independent integrals of motion-the transverse 
energy and the angular momentum with respect to the 
axis, and consists of ellipses with foci which coincide 
with the atomic string. 

The fraction of electrons captured into a channel is 
determined by the angle of entry into the channel. For 
various crystals the number of particles captured into 
a bound state is greater,  the smaller is the a rea  per 
string forming the channel and the more weakly it is 
screened by the electrons of the crystal (i.e., it de- 
pends on the ratio r,/a,). 

Particles which have entered a channel have a distri- 
bution in phase space such that states with transverse 
energies close to zero a r e  more densely populated. 
For a given transverse energy most particles come into 
the region of higher angular momenta (we note, how- 
ever, that the initial distribution function in angular 
momentum is 

i.e., on the whole the fraction of particles with higher 
angular momenta in the channel is smaller). With in- 
crease of the entry angle the number of particles cap- 
tured into a channel decreases rapidly, and in return 

the relative fraction of particles with larger absolute 
values of the transverse energy increases. If we com- 
pare the fraction of particles which have transverse en- 
ergies in the interval 0 s IE, I s 0 .  lU,,, in relation to 
the total number of particles which have entered the 
channel, then for example in germanium (111) for entry 
angles 0.1@' and 0.3qC it amounts to respectively 75  and 
60%. 

Particles captured into the channeling regime undergo 
multiple scattering by electrons of the crystal and the 
thermal vibrations of the nuclei of the lattice. The 
existence of two integrals of motion leads to the result 
that it is necessary to consider diffusion in the two-di- 
mensional space of transverse energy and angular mo- 
mentum. The particle distribution in the channel satis-  
f ies the Fokker-Planck kinetic equation. Analysis of 
the diffusion coefficients in this equation shows that 
near an atomic string, r s  u,, there is a strong domi- 
nance of scattering by nuclei, the contribution of which 
is comparable with scattering by electrons a t  distances 
from the axis r =  0 . 1 5 ~ ~ .  Thus, in the greater portion 
of the channel, electron scattering is dominant. The 
diffusion coefficients averaged over the period of oscil- 
lations in the channel a r e  such that diffusion in the 
transverse energy dominates over diffusion in angular 
momentum. For transverse energies of greater abso- 
lute value the influence of the latter factor is negligible, 
but in the principal region ( &  close to zero) the two 
factors a r e  comparable. 

At small  angles of entry into the channel $in 5 O.lGC 
for most crystals, scattering by nuclei will evidently 
dominate in view of the fact that most electrons cap- 
tured into a channel have small  impact parameters. 
This should lead to rapid dechanneling a t  small depths. 
The optimum entry angles lie in the range Gin- (0 .1 -  
0.3)~)'.  

The quasichanneling region can be represented in the 
first  approximation a s  a system of randomly located 
strings. The evolution of the electron distribution in 
transverse energy in this region is described by a one- 
dimensional kinetic equation. Multiple scattering of 
electrons by atomic strings in such a system leads to 
the result that a part of them a r e  captured into a bound 
state. Therefore a t  small depths -1 pm the total num- 
ber of particles in a channel increases appreciably in 
comparison with the initial number (see Fig. 6). Then 
the number of electrons with transverse energies close 
to zero ( 0  -( I El I O.lU,,,) begins to decrease rapidly, 
whereas in the center of the potential well, on the other 
hand, it continues to increase, up to depths of -2-3 
pm. 

Decrease of the dechanneling depth with increase of 
the entry angle into the crystal occurs f i rs t  of a l l  be- 
cause of the decrease of the fraction of particles ini- 
tially captured into the channel. It is an interesting 
fact, however, that calculations on the assumption of 
capture of a l l  electrons of the initial beam into a chan- 
nel also give a decrease of the dechanneling depth with 
increase of the entry angle (see Fig. 5 ,  dashed line). 
I f  we take into account that the increase of the entry 
angle leads to an increase of the fraction of electrons 
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with large absolute values of transverse energy (rela- 
tive to all  particles captured in the channel), then it 
would appear that the reverse situation should occur, 
since electrons with transverse energies close to zero 
a r e  dechanneled more rapidly. These results a r e  ex- 
plained by the already noted redistribution of the elec- 
trons in transverse energy space a t  small  depths (in- 
crease of the number of particles in the center of the 
potential well), when the total number of particles in 
the channel still does not change appreciably. 

The fact that for tungsten (111) ( 2 = 7 4 )  the dechannel- 
ing depths were found to be greater than, for example, 
in silicon (111) ( 2  = 14) also is not a t  al l  obvious and is 
apparently due to the more rapid drop in the electron 
density in the channel and to the significantly greater 
depth of the potential well (about nine times). Thus, in 
axial channeling of electrons a s  a whole electron scat- 
tering is dominant. A characteristic feature in the de- 
pendence of the number of particles remaining in the 
channel on the depth is initially a rapid drop a t  compar- 
atively small depths and a significantly slower drop a t  
greater depths. On increase of the energy of the inci- 
dent electrons the depth values a t  which the number of 
particles in the channel decreases by a factor of two 
grow approximately in proportion to the energy: x,,, - E. 

APPENDIX 

Numerical solution of the kinetic equation of particle 
balance 

The kinetic equations which describe the diffusion in 
the depth z of the particle distribution were solved in 
the region of variation of the generalized coordinates 
& and p with the curved part of the boundary abc shown 
in Fig. 7 .  Region I corresponds to the parameters of 
channeled particles. In this region the distribution 
functions satisfy the equation 

At the outer limit of this region, which is not common 
with region 11, the normal component r, of the diffusion 
flux is equal to zero: 

Region 11, which is bounded on the right by a sufficient- 

FIG. 7 .  Regions of solution of the difference equations and 
points of specification of the grid functions: +-F, T, DiZ, 
A3, F^; o-DI1, A-DZ2, o-intermediate points of calculation 
of A3F. 

ly large value c,,, corresponds to the parameters of 
quasichanneled particles. In region I1 the distribution 
function satisfies an equation with a one-dimensional 
coordinate operator 

in which Dl, does not depend on p. The problem which 
ar ises  here of matching the component of the diffusion 
flux normal to the boundary between the regions I and 
I1 was solved in the calculations in the following way. 

The solution of Eqs. (Al) and (A3) can be treated a s  
the limit of a sequence of solutions F'"' of a single 
equation (Al) continued into region 11, where in region 
I1 the diffusion coefficients Da;) and D:;'= Di;' a r e  small 
but nonzero and a s  n- they approach zero. For rea- 
sons of physical causality one can assume that for fixed 
n the coordinate operator is uniformly elliptical, and 
the continuation to the entire boundary of the condition 
(A2) assures  that it is self-adjoint. Then it is possible 
to write down formally a homogeneous conservative dif- 
ference scheme1' for Eq. (Al) over the entire region 
I and 11. With this approach, continuity of the flux 
through the boundary between the region I and I1 is as-  
sured, including the case of discontinuous coefficients. 
At the same time it is not difficult to program an a l -  
gorithm for calculation of the solution in which one ex- 
plicitly excludes all  operations which contain zero dif- 
fusion coefficients. For this purpose it is sufficient to 
organize the calculations individually in regions I and 
11. 

The cell of the coordinate grid and the points for de- 
termination of the grid functions a r e  shown arbitrarily 
in Fig. 7. In the calculations whose results we have 
discussed above, difference grids with 20 x 20 cells in 
region I and 140 x 20 in region I1 were used. We shall 
consider the difference operators 

where the superscripts * indicate right and left o r  re-  
spectively upper and lower difference derivatives. The 
mixed derivatives in Eq. (A4) were approximated by 
symmetric difference operators in a nine-point pat- 
tern." In region I for solution of Eq. (Al) we used a 
partially factorized difference scheme1': 

(I-hod\,) ( I -hoh , )  P=P+h( l -a )  AoF (A5) 
+0.5hAzF+O.ShA,P, 

where h is the step in the depth z and a is the weighting 
factor for the operator A, in the next layer in z.  The 
last t:rm contains the desired values of the grid func- 
tion F and therefore for solution of the difference equa- 
tions (A5) we carried out several  (usually three) itera- 
tions with the zeroth approximation of F in the preced- 
ing layer. Since in the problem considered the coeffi- 
cient Dl, is not small, it was desirable to decrease a s  
much a s  possible a l l  e r r o r s  in approximation of terms 
with mixed derivatives for increase of the step in depth. 

In region I1 A,= 0 and A,= 0, so  that the scheme (A5) 
takes the form of the one-dimensional equations 
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which approximate Eq. (A3) and which were solved 
along the lines of the points p=const. At the points 
near the boundary of the regions & = 0 ,  the equations 
(A5) were used for determination of the initial values 
of the adjustment coefficients for Eq. (A6) in terms of 
the coefficients calculated in region L 

The curved portion of the left boundary was fitted by a 
broken line with sections parallel to the & and p coor- 
dinate axes. The coordinates of the boundary cells were 
given by means of two arrays.  The boundary condition 
(A2) was placed a t  the approximate boundary, since 
this has no substantial effect on processes inside r e -  
gions I and 11. Use of the condition (A2) at  the right- 
hand boundary of region I1 permitted a check of the con- 
servation of the total number of particles up to the es-  
tablishment of the stationary distribution F =  const. In 
the systematic calculations we chose the value a =  0.65 
a t  which the grid function changes monotonically and, 
on the other hand, the total number of particles is sat-  
isfactorily preserved in the two regions. As a whole 
the difference scheme (A5) and (A6) has a second or- 
der of approximation in c and p and a f i rs t  order in z .  
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