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It is shown that all the normal phonon modes in a disordered harmonic elastic chain are localized. Their 
localization length l(w ) is frequency dependent, and tends to infinity as w+O. Investigation of the evolution of 
the kinetic-energy fluctuation indicates the absence of diffusional behavior. Allowance for the anharmonicity 
leads to a finite lifetime for the localized vibrations. In the case of an anomalously large variance of the 
random parameters of the model, the localization of the eigenfunctions is the cause of the variation of the 
exponents of the frequency dependences of the wavelength, the density of states, and the localization length. 

PACS numbers: 63.20.Pw, 63.20.Dj 

1. INTRODUCTION is s h o r t e r  than the lifetime r A ( w ,  T) determined by the 

The phenomenon whereby the eigenfunctions in one- 
dimensional disordered s y s t e m s  a r e  localized has a p  - 
parently a general  charac te r .  At present  we already 
understand quite well the charac te r i s t i cs  of the Mott 
localization of a n  electron in a one-dimensional conduc- 
t o r  in the presence of s o m e  random potential due to  
impuri t ies ,  s l ruc tura l  defects,  etc.lq9 The  c o r r e c t  
mathematical description of the electron localization 
was  f i r s t  given by ~ e r e z i n s k i r  in Ref. 2 ,  where he a l so  
derived the frequency dependence of the conductivity 
a(w )a w2 ln2w. F u r t h e r  improvement of the method 
allowed a number of new resu l t s  to b e  ~ b t a i n e d . ~ - ~  At 
the s a m e  iime, it should b e  noted that the methods of 
Refs .  2-5 have thus f a r  been applied exclusively to the 
electron-localization problem. This  is pr imar i ly  ex-  
plained by the fact that one-dimensional conductors a r e  
a sys tem under intensive study a t  present and possess -  
e s  a number of unusual and interesting physical proper-  
t i e s ,  s o m e  of which a r e  direct ly  connected with elec-  
t ron localization. T h e r e  i s ,  however, a considerable 

phonon-phonon interaction. But this limitation turns 
out to be  fair ly  weak. 

Le t  us  note that no light i s  c a s t  on the important r o l e  
of eigenfunction localization in a number of recent  pa-  
pers'0-'3 in which a model essentially equivalent to the 
elastic-harmonic-chain model is intensively investi- 
gated. On the o ther  hand, although the asse r t ion  that 
the phonon modes in disordered chains a r e  localized 
h a s  been repeatedly made in the l i t e ra ture  (see,  f o r  
example, Refs. 14-16), a complete investigation of the 
behavior of the normal  modes,  a s  well a s  the anomal-  
i es  of the kinetic propert ies ,  has  apparently not ye1 
been c a r r i e d  out. We sha l l  show (see a l s o  Ref. 17) how 
this  problem reduces to the problem of electron local- 
i ~ a t i o n ; - ~  and find a s  a resul t  the frequency dependence 
of the localization length l ( u )  in those c a s e s  in which 
it exceeds the phonon wavelength ~ ( u ) .  

2. FORMULATION OF THE PROBLEM AND THE 
DERIVATION OF THE BASIC EQUATIONS 

general-physics interest  in the localization of the e i -  The Hamiltonian corresponding to a d i sordered  e l a s -  
genstates  in  s y s t e m s  such  as d isordered  spin and 

tic chain h a s ,  in the nearest-neighbor approximation, 
e last ic  chains. 

the form 
In the present  paper  we dwell on the problem of pho- 

non-mode localization in a disordered e las t i c  chain. 
I t  tu rns  out that,  in the harmonic approximation, i.e., 
when the phonon-phonon interaction is neglected, each 
of the modes is localized over  a distance of length Z(W) 
that depends on the  frequency w of the mode inquestion, 
and tends to infinity as w - 0. The  localization length 
l(w) tu rns  out in  th i s  c a s e  to b e  of the o r d e r  of the 
mean f ree  path of a phonon on the defects if the l a t t e r  
distance is computed with the a id  of the conventional 
kinetic theory. Thus, diffusive spreading of the ther-  
m a l  fluctuations along the en t i re  chain does not occur  
when the anharmonicity is neglected. Allowance f o r  
the three-phonon anharmonicity leads to the possibility 
of the decay of a localized phonon into two o ther  pho- 
nons with g r e a t  localization lengths, o r  of the absorp-  
tion of the phonon in question by a phonon with a s m a l l -  
e r  localization length. Consequently, the concept of 
localization has  meaning for  fair ly  "dirty" chains and 
only for  those modes for  which the mean f r e e  t ime on 
the defects ~ ( w )  =l(w)/u (here u is the speed of sound) 

where m ,  is the m a s s  of the nth a tom,  u,  is the d i s -  
placement of this a tom f rom the equilibrium position 
(the ends of the chain a r e  considered to be  fixed: uo 
- -u,+; = O), and W,,, ,z(x) is the potential energy c o r -  
responding to the coupling between the a toms  n and n 
+ 1. It is natural  to a s s u m e  that W,+llz(x) changes by 
a n  amount of the o r d e r  of the melting tempera ture  T, 
when x changes by an amount of the o r d e r  of Lhe lattice 
constant a .  Retaining in (1) a t  low tempera tures  T << T, 
a t  which u,<<a, only the t e r m s  quadrat ic  in the dis-  
placements, we obtain the  Hamiltonian of the e las t i c  
chain in the harmonic approximation: 

The next t e r m  of the expansion (1) in powers of the d i s -  
placements corresponds to  the three-phonon anharmon- 
icity: 
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Let  us  note the o r d e r s  of magnitude of the quantities 
y,+l/z and A,+, 12 used in (2) and (3): 

We shal l  investigate the phonon-mode-localization 
problem within the framework of the harmonic approxi 
mation (2) without allowance f o r  the phonon-phonon 
interactions. Next, using (3)  as a perturbation, we 
shal l  es t imate the lifetime @(w,T)  of the localized 
phonon a s  a function of i t s  frequency w and of the tem- 
perature T. 

F r o m  (2) we obtain the following sys tem of equations 
of motion: 

The  model descr ibed by the sys tem (5) has  been inves- 
tigated in the l i t e ra ture  fo r  quite a long t ime now, 
s tar t ing f r o m  Dyson's well-known paper.18 But  most  
of the investigations were  devoted to the elucidation of 
the spec t ra l  propert ies  of disordered chains (see Refs .  
1 6  and 18-21). As to the localization of the phonon 
modes,  it was inferred from the exponential inc rease  
of the displacements u, with distance from one edge in- 
to the inter ior  of the chain.14""n this  c a s e  no bound- 
a r y  condition was fixed a t  the o ther  edge of the chain. 
It should be  noted that a v e r y  important property of the 
normal  modes of the sys tem (5) i s  lost in such  a formu- 
lation. Indeed, the localization of the normal  modes 
indicates that the exponential inc rease  of the displace-  
ments  u, should give way somewhere in the in te r io r  of 
the chain to  a n  exponential decrease .  T h i s  subtle prob- 
lem has not yet been investigated within the framework 
of the model (5) fo r  the e las t i c  harmonic chain. 

Let us  perform the s tandard  expansion of the d i s -  
placements u,(t) in t e r m s  of the normal  modes of the 
sys tem:  

Here  the uY, and w, a r e  the eigenvectors  and eigenvalues 
corresponding to the sys tem of equations 

with the boundary conditions 

The relations (7) and (8) constitute a n  eigenvalue prob- 
lem for ,  generally speaking, a nonsymmetr ic  N x N  
matr ix.  Therefore ,  the eigenvectors uY, will not be  o r  - 
thogonal. We can,  following Dyson,18 go  o v e r  to the new 
variables  z,6, = m i ' 2 u ~ .  1 hen the sys tem of equations (7) 
a s s u m e s  the f o r m  

which now corresponds to a symmetr ic  mat r ix .  Thus,  

the s e t  I): is a complete sys tem of or thonormal  eigen- 
vec tors  : 

But it  will be  m o r e  convenient f o r  us to  deal with the 
old var iab les  uz and the equations (6)-(9), s ince in the 
low -frequency l imit  o - 0 t h e  var iab les  u:, in contrast  
to  the I);, a r e  slowly varying functions of the s i t e  num- 
b e r  n, which allows the passage to the continuous limit.  

A s  usual ,  in o r d e r  to quantize the vibrations of the 
harmonic chain (5), we mus t  regard  bi and b, from (6) 
a s  creat ion and annihilation opera tors  f o r  one vibration 
quantum with frequency w,. T h e  commutation relations 
[b, ,  b:] = 6,, corresponding to the Bose  part ic les  lead 
to the usual quantum-mechanical commutation ru les  
f o r  the displacement  opera tors  u,(t), which a r e  de te r -  
mined with the aid of ( 6 ) ,  and the momentum opera tors  
p,(t) =m,au,(t)/at : [p,,u,]=-i6,,. To  perform the a v e r -  
aging (( ),) of s o m e  opera tor  over  the thermodynamic 
ensemble a t  a given tempera ture  T ,  we must  f i r s t  ex-  
p r e s s  the opera tor  in t e r m s  of the B o s e  opera tors  bi 
and b,. A cer tain s e t  of the opera tors  b:b, can be a v e r -  
aged in s tandard  fashion, e.g., 

where N(w,) is the average  number of phonons in the 
normal  mode a t  t h e  t empera ture  T. Thus, the mean 
thermodynamic value of the kinetic-energy operator  

fo r  the nth atom of the lattice is given by the relation 

The  expression in square  b racke ts  in (10) is the den- 
s i ty  of s t a t e s  per  unit energy interval  a t  the nth lattice 
s i t e  fo r  a given distribution of the random parameters  
rn, and yW1 12 of the model (5). Averaging (( ),) over  
this distribution, we obtain the mean value of the den- 
s i ty  of s ta tes :  

H e r e  the second equality is eas i ly  obtained by summing 
(11) over  n with allowance for  the normalization (9). 
T h e  kinetic energy of the whole chain 

is, .-s it should, equal  to  one half the total energy. 

Let  u s  now introduce the s imples t  re tarded kinetic- 
energy-fluctuation cor re la to r :  

If the cor re la to r  (12) doesnot  tend to z e r o  as t -  w ,  this 
means  that the kinetic-energy fluctuation is not spread  
over  the whole length of the chain in a n  infinite time. 
In o ther  words,  we do not have the usual diffusional be- 
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havior in this case .  Performing the thermodynamic 
averaging in (12), we obtain the following expression at 
t = m: 

where the mean quantity 

describes the localization of the normal modes with 
frequency w. Indeed, the mean quantity (14) for  the 
nonlocalized states  will contain the factor 1/N (as a 
result of the normalization of the eigenfunctions to  the 
whole length of the chain), and will tend to ze ro  as N - m. On the other  hand, for the localized s ta tes  we 
should obtain 

F. (n-no) a I-' exp  (- I n-no I a l l ) ,  

since the localized normal modes a r e  normalized to the 
localization length I .  Thus,  the absence of diffusive 
spreading of the kinetic-energy fluctuation i s  connect- 
ed  with the localization of the phonon modes, the dis-  
tance l(w) over which they a r e  localized being deter-  
mined by the asymptotic form of the mean (14) for 
n -no - m. Let u s  note here  that the conclusion of 
Bernasconi e t  a1!0'13 that diffusion, which leads to (5), 
occurs in the system was drawn on the bas is  of an in- 
vestigation of cor re la tor  (u,(t)u,(O)) s impler  than (12) 
and corresponding to a single-particle Green function. 
But it i s  well known that the single-particle Green func- 
tion ca r r i e s  information about the spectrum and i t s  
damping, but i s  insensitive to the localization of the 
eigenfunctions. This  characteris t ic  manifests itself 
a l so  in the equality ( l l ) ,  from which it can be seen that 
the localization has no effect on the density of s tates .  

F o r  the computation of the asymptotic behavior of the 
correlator  (14), it is quite useful to go over from (7) to 
another system of equations into which the disorderings 
of the masses  m, and of the elast ic  constants Y , , ~  l 2  

enter  in a symmetric  fashion. This  will allow us to  find 
the solution when both types of disorder  a r e  present to- 
gehter. Thus f a r ,  the ca se s  in which the harmonic 
chain (5) contains only one of the two possible types of 
disorder ,  i.e., in which ei ther  the m, o r  the y,, a r e  
constant, have been investigated in detail.'O""'g"' In 
Dyson's paper'8 the density of s ta tes  

is obtained in another quite specific case ,  namely, 
when the only independent random quantity is some 
combination of the m, and yn+, 1 2 .  AS a result ,  the 
parameters  m, and y,' 12 turn out to be correlated in a 
complicated nonlocal fashion. In fact, this  Dyson case  
corresponds in the tight-binding approximation to a 
half -filled electronic band, when the  values of the over - 
lap integrals a r e  random quantities (cf. Refs. 22-24). 

Let us introduce additional variables defined a t  the 
half-integer points of the lattice: 

Now the system of equations (7) can be rewritten in the 
form 

where we have used the following dimensionless desig- 
nations : 

E=o<m)"'<l /y) '" ,  (1 6) 
U, ,= (m"-<m>) / (m) ,  (17) 

v,,+%= ( l / y n + % - ( l / y ) ) / ( i / y > .  (1 8) 

The boundary conditions a t  the points 0 and N + 1 a r e ,  
as before, the conditions (8). 

The system (15) i s  of the form of the Dirac equations 
on a lattice. If, as w - 0, we go over  in (15) to the con- 
tinuous l imit ,  then we obtain for the spinor d = [:] an 
equation of the Dirac type: 

where 6, and 6, a r e  Pauli mat r ices .  In (15'), U(x) and 
V(x) describe the random distributions of the masse s  
and elastic constants in accordance with (17) and (18): 

Let us  point out one important characteris t ic  of the 
Eqs.  (15) and (15'). ?he  functions I/ and V ,  which de- 
scr ibe  the disorder  in the elastic chain, enter  in (15) 
and (15') multiplied by the dimensionless frequency E 
from (16). Thus, in the low-frequency limit the dis-  
o rde r  (17), (18) becomes less  and l e s s  effective in 
t e r m s  of phonon scattering a s  ( ~ 1  tends to zero.  This  
observation bears  a direct  relation to the frequency de-  
pendence of the c ro s s  section for Rayleigh scat ter ing 
of a wave by a point defect. 

3. COMPUTATION OF THE DENSITY OF STATES 
AND THE LOCALIZATION LENGTH 

In this section we consider the density of s ta tes  (11) 
and the asymptotic behavior of the cor re la tor  (14) for  
the harmonic chain described by the system of equa- 
tions (15). We shall assume the magnitude of the dis-  
o rde r  to be  bounded from above, i.e., that 

and consider only those phonon modes for which the 
scattering by one defect of s trength 0 i s  characterized 
by some smallness parameter:  

The exact meaning of the last  limitation will be given 
a little later .  

Let  us now turn to the solution of the system of equa- 
tions (15), o r ,  in the long-wave limit E << l ,  to  Eq. 
(15'). Let us begin with the case  of a regular  elast ic  
chain (U, = Vml l z  = 0), when the solution to the system 
(15) is obvious: 

sin ( c p  + kn) 
cos (cp  + kn + k/2) 1 ' 

where the amplitude R and the phase cp a r e  constants, 

Sov. Phys. JETP 56(11, July 1982 0. N. Dorokhov 1 30 



determined respectively by the normalization (9) and 
one of the boundary conditions (8). The second bound- 
ary  condition in (8) fixes the quantization rule for  the 
wave vector k = a / ~ ,  which i s  connected with the f re-  
quency E by the relation 

To obtain the solution to Eq. (15') from (21) and (22), 
we need only go in (21) to the continuous limit and ex- 
pand (22) in powers of k << 1.  

We shall seek the solution to the sys tem (15) with a 
nonzero disorder in the s ame  form (21), (22) a s  for the 
regular chain. To  do this, we have to assume that cp 
and R undergo jumps a t  the points n and n + every 
time U ,  and V,+l 12 a r e  not equal to zero.  Let us, for 
definiteness, consider an isolated defect a t  the point 
no,  i.e., the case  in which U,, # 0,  while al l  the remain- 
ing U, and the V,,l 12 in the equations (15) a r e  equal to 
zero. To the left and right of the defect we have the 
solution (21) with the parameters RL,cpL, and RR,cpR. 
Let us introduce a t  the exact location of the defect the 
parameter values 

and let us a l so  define the magnitudes of the correspond- 
ing jumps a s  

Knowing the solution (21) to the left of the defect, we 
can easily express the values of R~ and cpR in t e rms  
of R ~ , ( P = ,  and U,, with the aid of the equations (15). 
Similarly, we can determine the R,,cp, and (AR),, 
(Acp), at  each point of the general disordered elastic 
chain. Below we shall  be concerned with those phonon 
modes for which the phase and amplitude jumps a r e  
smal l .  i.e., for which (Acp), << 1 and (AR),/R, << 1 ,  
which situation is  guaranteed by the inequality (20). 
Up to t e rms  of second order  in the parameter (20) we 
have 

( A ~ ) , , = ' / , E ( ~ - E ~ / ~ )  - " ' l ~ , [ l - c o s ( 2 ~ , + 2 k ~ ) l ,  (23) 

(~R),/R,=-~/,E(~-E~//~)-'~U, sin (2rpn- t2kn) ,  (24) 
( ~ r p ) ~ ~ l , = i / ~ ~ ( ~ - ~ ' / / 1 ) - ' ~ ~ ~ , . ~ ~ [ 1 + ~ ~ s ~ 2 q , + 2 k n + k ) l ,  (23') 
(~R).+.~./R,+f,,=1/zE(1-E2/4)-"~Vm+, sin(2rpn+2kn+k).  (24') 

The random phase jumps (23), (23') lead to a change in 
the quantization rules for the wave vector k,  and, gen- 
erally speaking, modify the behavior of the density of 
phonon states (11)- At the s ame  time, the amplitude 
jumps (24), (24') a l te r  the character  of the normaliza- 
tion of the normal modes, and cause the localization of 
these modes. 

It turned out that the relations (24) and (23) co r r e -  
spond totally to the analogous formulas obtained in the 
theory of electron localization in a one-dimensional 
disordered cocducting In this theory the phase 
and amplitude of the electron wave function $ = R s in  (cp 
+ k x )  undergo jumps a t  each point where there is  a 
short-range impurity potential. The characterist ics  of 
the impurity potential that a r e  responsible f o r  forward 
and backward scattering can be chosen s o  a s  to obtain 
(23) and (24), o r  (23') and (24'). In Ref. 5 it i s  shown 
how to find the probability distribution functions for  

the random values of the phase, the qpplitude, the 
normalization, etc., using the expressions for  the 
phase and amplitude jumps. In this case  the Markov 
process is constructed essentially under the assump- 
tion that the impurity-potential distribution has  a local- 
ized character .  With the aid of the indicated probabil- 
ity distribution functions it i s  possible to investigate 
the behavior of the averages corresponding to the den- 
sity of s ta tes ,  the localization, the frequency depen- 
dence of the conductivity, etc. Thus, the expressions 
(23) and (24) enable us  to compute the density of s ta tes  
( l l ) ,  and determine the asymptotic behavior of the cor- 
relator  (14). 

It should be  noted that the umklapp processes a r e  
quite important in the vicinity of the points of strong 
commensurability, where the wave vector k is close to 
0 ,  a ,  o r  n/2. This  manifests itself in the fact that it is  
no longer possible to separate in (23) and (24) the fast 
coordinate dependence due to the wave vector k and the 
slow dependence that results  from the phase and ampli- 
tude jumps. As a result ,  the density of s ta tes  and the 
localization of the eigenfunctions acquire characteris-  
t ic  properties.18'22-24 We, however, limit ourselves 
here  to the case  (the simplest one) of the incommensur- 
a te  wave vector 

k, n-k, (k-n/21>EZ(I-EZ/4)-'((UZ)+<VZ)), (25 

when the umklapp processes can be neglected. 

Taking all the foregoing into account, we obtain the 
following asymptotic expression in the region (20), (25) 
for  the correlator  (14) a t  In -no 1 >> ->/a (cf. Ref. 3): 

where the density of phonon s ta tes  v ( ~ )  has the form 

The specific form of the formula for  the localization 
length 2 ( ~ )  depends essentially on the character  of the 
correlation between the rn, and y , ~ , ~  distributions. 
Thus ,  in the case  of independent mass  and elastic-con- 
stant distributions we have 

Let u s  now consider one correlated-distribution case  
in which the elast ic  constant of the coupling of two 
atoms is  determined by the masses  of these atoms 
through the relation 

Then, a s  can be seen from Eq. (15'), there occurs in 
the long-wave limit a s trong cancellation in the te rm 
with o,, which is responsible for  the localization. Let 
us,  using (29), rewrite the relations (23), (23') and 
(24), (24') in the form of total phase and amplitude 
jumps: 

( A q ) , = E ( I - E Z 1 4 )  -'"[1-'IrEZ c o s ( 2 ( ~ , + 2 k n )  1, (23") 
( A R )  . /R, ,=-' / ,E~ (1-EZ/4)  -'" sin ( 2 ~ , + 2 k n ) .  (24") 

From this it follows that the case  (29) corresponds in 
the low-frequency limit to anomalously weak backward 
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scattering. Since only the backward scat ter ing leads to 
localization, the expression 

which follows from (23"), (243, exhibits a much strong- 
er low-frequency singularity [l(w - 0) o: ~ ' ~ 1  than the 
l(w - 0) o: w ' ~  singularity exhibited in the ca se  of the un- 
correlated distributions. Notice that as w - 0 the local- 
ization length in both (28) and (28') increases  more 
rapidly thanthe characteris t ic  wavelength ~ ( w  - 0) = a / E .  

Let us recal l  that the resu l t s  (26)-(28) were  obtained 
within the framework of the limitations (20) and (25). 
Under these conditions the density of s ta tes  (27) turns 
out to be the s ame  as for  a regular  elast ic  chain with 
parameters  mo = (m)  and yo  = (l/y)". Th i s  resul t  has 
been obtained in many papers21"0"3 in the low-frequen- 
cy limit w - 0 and under the condition y,+' 12 = const o r  
m, = const. On the other  hand, numerical calcula- 
t i o n ~ ' ~ ' ~ ~  show that v(w) begins to differ markedly from 
(27) near  the point E = 2 ,  which corresponds to  the up- 
per  limit of the spectrum of the regular  chain. At even 
higher frequencies, the shape of v(w) is characterized 
by a number of sharp  peaks and dips. Th i s  can be due 
to the fact that, according to  (23) and (24), as E - 2, 
scattering on any defect becomes anomalously strong,  
i.e., the inequality (20) is violated. As  a result ,  the 
localization length (28) o r  (28') assumes  a value of the 
o rde r  of the lattice constant, and the density of s ta tes  
is determined by c lus te rs  containing a smal l  number of 
atoms,  as is  assumed in Ref. 19. 

Let u s  a l so  note, in connection with the phonon-mode 
localization, the  result^'^"^ of the investigation of the 
ra te  of exponential growth of the solution u,(w) 
o: exp[cu(w)n] corresponding to Eq. (7) with boundary 
conditions at  one end of the chain. It has already been 
noted above that the distinguishing features of the eigen- 
functions a r e  lost in this  s implest  approach to the local- 
ization problem. We give the expression obtained in 
Ref. 15 (see a l so  Ref. 16) for o(w) for  an  elast ic  chain 
with random masses  m,(y ,,' ,z = const) in the limit of low 
frequencies: 

which agrees  with (28) if we leave out a factor of 4. 
The  relation between cu"(w) and l(w) naturally turns out 
he re  to be the s ame  as in the theory of electron local- 
ization (see,  for example, Ref. 25 for  a review). 

4. THE LIFETIME OF THE LOCALIZED VIBRATION 

Thus far, we have discussed the charac ter  of the lo- 
calization of the normal modes within the framework 
of the harmonic approximation (2), (5). It is c lear  that 
anharmonicity leads to the  possibility of decay o r  co- 
alescence of the localized phonons. With a view to find- 
ing the condition of applicability of the  above results ,  
we shal l  now est imate the lifetime of the localized vi- 
bration as a function of the frequency and the tempera-  
ture .  T o  begin with, let us note that, without allowance 
for  the anharmonicity, the cor re la tor  F(n  -no , t )  of the 
kinetic-energy fluctuations contains the time-indepen- 
dent contribution (13). This  is due to the fact that the 

mean square fluctuation 

of the occupation number for  the vth s ta te  [see the for -  
mula (13)] does not vanish in t ime,  s ince the phonon- 
phonon interaction is neglected. Now we shal l  seek  the 
lifetime of the fluctuation (30), using the three-pho- 
non anharmonicity (3) as the perturbation. In other 
words, i s  the time required for  the establishment 
of thermal equilibrium a t  the level v. On the other 
hand, this level v is characterized by i t s  localization 
length I, and mean free t ime ~ , = l , / u .  Thus,  to speak 
of localization as applied to the given level v makes 
sense  only when 7, < <. As the value characterizing 
7,. we can take the averaged t ime ~ ( w ) = l ( w ) / u ,  which 
we find in the case  of independent m, and y,+' 12 distribu 
tions from (28): 

where 3=2(m)'1'2(1/r)-'12 i s  the upper limit of the 
spectrum of a regular  chain with parameters  m o  = (m) 
and yo = (lly)- ' .  The inequality in (31) follows from 
(25 1. 

We now proceed to compute <. Using the expansion in 
t e rms  of the eigenfunctions z*: of the problem (7), (8), 
we represent  the Hamiltonian H =Ho + Hg in the form 

where 

Perturbation theory in t e r m s  of H,  allows us to  deter-  
mine the probability for decay of the phonon v into two 
other  phonons. Thus,  we find the t ime e': 

Another process that makes a contribution to the damp- 
ing of the occupation-number fluctuation (30) is the 
coalescence of the given phonon v with some phonon p ,  
as a result  of which a phonon p appears.  The cor-  
responding t ime,  which we denote by e", i s  given, 
s imilarly to (33), by the f i r s t  nonvanishing te rm of the 
perturbation theory in t e r m s  of H,: 

1 - = 2n (NZ-NP)  I (plH31vp) 1'6 (up-ov-0"). 
T - * I I  

(34) 
LO 

The sum of the expressions (33) and (34) gives the r e -  
ciprocal lifetime I /< of the fluctuation (30). 

Notice that, for a regular  chain, the expression (32) 
contains the law of quasimomentum conservation in the 
three-phonon interaction. This ,  together with the en-  
ergy conservation law in (33), (34), prohibits th ree-  
phonon processes in our ca se  of nondecaying spectrum 
(22). Phonon scat ter ing by the defects generally speak- 
ing removes this prohibition. We sha l l ,  for  simplicity, 
consider the acoustic -phonon ca se ,  in whichthe energy- 
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conservation law coincides, on account of the linearity 
of the spectrum, with the law of conservation of the 
wave vector k f rom (221. More precisely, we shall 
assume that the corrections f rom Ule nonlinearity of the 
spectrum a r e  sma l l e r  than the corrections due to the 
scattering on the defects: 

03/~"(l/r (o). (35) 

Let us, using (3'), rewrite (33) in the form 

(33 '1 
Let us  now estimate the expression standing in the 
square brackets in (33'). F i r s t ,  let us  point out that 
the localization of all the three phonons v ,  p ,  and p can 
be regarded a s  statistically independent. The point is  
that, a s  the theory of electron localization shows:" the 
averagings over the random-potential realizations of 
the quantities corresponding to the two s ta tes  v and p 
a r e  statistically independent if I E, - c ,  I >> 1/7,  where 
7 is  the mean f r ee  time in the localized state.  In our  
case,  as can be seen from (33'), the difference between 
the frequencies of any two of the phonons v ,  p, and p 
is, in order  of magnitude, equal to w ,  which, accord- 
ing to the inequality (31), i s  much higher than l / r(w).  
Further,  we can eliminate from the expression (32) the 
fast dependence on the lattice-site number, and go over 
from the sum to an integral a s  follows: 

where we have used under the cosine sign the energy- 
conservation law in (33) and the linearity of the acous- 
tic spectrum, i.e., the condition (35). To  estimate the 
quantity A Y U P ,  let us note that it i s  nonzero (i.e., not 
exponentially small)  only for those phonon triplets v ,  
p ,  and p whose localization regions overlap. Then the 
integration over the coordinate in AYUP i s  performed 
largely within the limits of the smallest  of the three 
localization lengths. Taking account of the foregoing, 
a s  well a s  the normalization (9) of the eigenfunctions 
and the orders  of magnitude of the quantities (4) and 
(4'), we obtain 

Thus, for  I/<' we obtain from (33') the estimate 

Similar arguments in the case  of 1/e" lead to the e s -  
timate 

Comparing (36) and (371, we a r r ive  at  the conclusion 
that + - < I .  

The condition of applicability of the localization con- 
cept to phonons of frequency w a t  a temperature T i s ,  
a s  has already been noted, the inequality ~ ( w )  < + ( w ,  T). 
Therefore, f i r s t ,  it is necessary that the chain be more  
disordered than anharmonic, i.e . , that 

Second, a f te r  (38) has  been met,  the localization con- 
cept has meaning a t  the given temperature T for not 
too low -lying vibrations, i.e . , for  those vibrations 
whose frequencies satisfy the condition 

The  inequalities (38) and (39) can,  naturally, be quite 
weak for sufficiently dirty elast ic  chains. 

5. SOME GENERALIZATIONS OF THE RESULTS FOR 
THE HARMONIC CHAIN 

In applications (see Refs. 10-13) it i s  sometimes 
necessary to investigate a model of the harmonic-chain 
type (2), (5), in which the random parameters fluctuate 
s o  strongly that some of the averages in the formulas 
(25)-(28) become infinite. Therefore,  the indicated 
resul t s  concerning the behavior of the density of s tates 
v(w), the wavelength ~ ( w ) ,  and the localization length 
l(w) a r e  inapplicable in this anomalous case. The  point 
is that such a large spread  in the values of the param- 
e t e r s  yn+, ,2 and m, indicates that there exist a t  some 
points of the chain arb i t ra r i ly  strong sca t te rers  for  
which the conditions (19) and (20) a r e  violated. It i s ,  
however, possible to avoid this difficulty by introducing 
in some way truncated random-parameter distribution 
functions. 

Let us  assume that the y,, /2  and m, distributions for  
the model (5) a r e  independent, and let us denote the 
corresponding probability distribution functions by 
Wl(y) and W2(m). If, moreover,  we assume that the 
averages (l/y) and (m) a r e  finite, then we can go over 
to the dimensionless variables (16)-(18), and derive 
for them probability distribution functions Pl(V) and 
P2(U). Since these functions allow the occurrence of 
scat  t e r e r s  with arb i t ra r i ly  great  strength, the inequal- 
ity (19) i s ,  generally speaking, violated for  any finite 
(?. But we can introduce the truncated distribution 
functions : 

w 

PIW(U, ~~)=PI(,,(U)~(U - U) + S(U - 0)s dUP,(*, (U), (40) 
d 

for  which the condition (19) is fulfilled. The  Vn+i/z and 
Un distributions given by the functions (40) differ  from 
the initial distributions in that a l l  the s ca t t e r e r s  with 
strength VWl ,, > 0 o r  Un > 6 a r e  replaced with sca t te r -  
e r s  with strength 0. It i s  easy to compute the mean 
distance between these adjusted sca t te rers :  

The  operational procedure in the present case  is now 
clear .  Let  us  f irst  fix the cutoff parameter  0. All the 
results  obtained by us a r e  applicable in the case  of the 
truncated functions (40), i.e., we can find the density 
of s ta tes  c(w, c), the wavelength g(u,O),  and the local- 
ization length I(w, 0)  for those phonon modes which 
sat isfy the co~d i t i on  (20). If pow the found character-  
is t ic  lengths ~ ( w ,  0) and [(w, U) turn out to be smal ler  
than the distance ~ ( 0 )  from (41), then the procedure is 
self-consistent. This  method was proposed by Alex- 
ander and ~ e r n a s c o n i . "  
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We can make further progress if we notice that the 
localization length I(w) is essentially a cutoff parameter 
for the distribution function W(y,m). Indeed, the pho- 
non mode, localized over the distance I (w), is insen- 
sitive to those details of the distribution function which 
manifest themselves at distances greater than l(w). 
In other words, a s  long a s  L (U ) >> 1 (w ) we have the r e  - 
lat ions 

etc., which a r e  valid to first order in the parameter 
l(w)/L(U ). Consequently, the characteristic cutoff 
parameter fi ( w )  i s  determined by the localization length 
a t  the given frequency: 

Using (40)-(42), we can easily find the frequency de- 
pendences v(w - 0), X(W - O), and I(w - 0) corresponding 
to the various types of distribution functions Pl(V) and 
P2(U). in the case in which the average (l/r) o r  (m) i s  
infinite, the described truncation procedure should be 
applied to the function WIG.) o r  Wz(m). 

In conclusion, let us consider as an example the case 
of the anomalous Y,,~ ,2 distribution described 
by the following distribution function: W(y-O)=ya. 
When a > 1, the averages (l/y) and (l lY2) are finite, 
and the results'(27) and (28) remain valid. In the range 
0 < LY < 1, we have (l/y) < 03, but (l/y2) =-. Using the 
truncation procedure (40)-(42), we find that the f re-  
quency dependence of the localization length changes in 
this region: l(w - 0) -a(w/S)"-, whereas the wave- 
length A =a(2w/;)" and the density of states (27) r e -  
main unchanged. Finally, for the even stronger anom- 
aly in the region -1 < a < 0, where (l/y) =m, we have 
z(w - o ) - - ~ ( ~  - 0 ) - ~ ( ~ / 3 ) - " + ~ ) ~ ( ~ + ~ / ~ )  and v(w - 0) 
ccwaI(2+a) , which agree with the results obtained in 
Ref. 11. Let us also note that exactly the same  ans- 
wers a r e  obtained in the case of the anomalous mass  
distribution: 
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