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We consider scattering of neutrons by rotons in superfluid helium, at the energies and momentum transfers at 
which production of excitations is forbidden by the conservation laws. The cross section at large momentum 
transfers is estimated with the aid of the Feynman wave function. 

PACS numbers: 67.40. - w, 67.40.Db, 67.90. + z 

We consider in this  paper the scat ter ing of slow neu- tion, and n, i s  the distribution function of the elemen- 
t r o n s  in superfluid helium at  low energy t rans fe rs .  t a ry  excitations. Recognizing that c z A fo r  rotons. the 
More accurately speaking, we assume that the point change of the helium density on account of the p resence  
~ , q  ( t  and q a r e  the t rans fe r red  energy and momentum) of the roton i s  given by the relat ion 
l i e s  much lower than the helium-excitation spectrum 

dp aa 
curve (shaded region of Fig. 1). d3p Gp-=-m-N, ,  N , = J , ~ ~ -  

4 a p  (zniq3 ' 
We note f i r s t  that scat ter ing with such t r a n s f e r s  i s  

impossible a t  absolute z e r o  temperature.  Indeed, a t  
T = 0 a neutron can  t rans fe r  energy to helium only by 
producing in it excitations. T h i s  makes  possible values 
of c and q that l i e  on the spectral  curve (production of 
one excitation) o r  above it (production of severa l  ex- 
citations) .') 

At finite t empera tures  the situation changes, since 
the thermal  excitations that make up the normal  par t  of 
the liquid a r e  present .  The neutrons can  be  scat tered 
by these "ready-made" excitations, and t r a n s f e r  to 
them practically a r b i t r a r y  c and q without changing the 
number of excitations. The region of relatively low t 
is part icular ly convenient fo r  the observation of this  
p rocess ,  s ince it i s  not masked h e r e  by production pro- 
c e s s e s .  

Clf course ,  we  a r e  dealing in fact with scat ter ing by 
rotons. The scat ter ing by phonons is very  smal l .  We 
calculate the probability of neutron scat ter ing by a ro-  
ton. So long a s  the momentum t rans fe r  q is not too 
la rge ,  i.e., it sa t i s f ies  the inequality 

where N ,  is the number of rotons p e r  unit volume. In- 
tegrating over the volume and dividing by the total num- 
b e r  of rotons $N,dV, we obtain fo r  6N 

Recognizing that dp /dp  = (m /p)dP/clp= mzc2/p (u  i s  the 
speed of sound at  T = 0), we get ultimately 

It i s  easy  to  calculate with the aid of the potential (1) 
the differential c r o s s  sect ion for  scat ter ing of a neutron 
by a roton. The corresponding formula i s  

h e r e  m ,  is the neutron m a s s ,  y i s  the effective roton 
m a s s ,  p and p' a r e  respectively the initial and final 
momenta of the roton, p,  i s  the momentum at  the roton 
minimum, and P and P' a r e  the initial and final neutron 
momenta. In accord with the initial s ta tements ,  we 
a r e  interested in relatively smal l  energy t r a n s f e r s  c :  

where  R, is the character is t ic  "roton dimension," the 
roton can be regarded a s  pointlike, and i t s  interaction 
with a neutron can be described by the F e r m i  poten- 
tial*): 

U(r)=2nti26Na6 ( r )  /M. 

H e r e  a i s  the amplitude for  scat ter ing of a slow neutron 
by a helium atom and M is the reduced m a s s  of the neu- 
t r o n  and of the helium atom. 6N is the e x c e s s  number 
of helium a t o m s  located in the region occupied by the 
roton. T h i s  quantity can be calculated by purely ther-  
modynamic means.  Indeed, the condition that the su- 
perfluid par t  of the helium be  at  equilibrium requi res  
that the following quantity be constant3 

Since the initial and final rotons should be located in  
th i s  c a s e  near  the minimum of the spec t rum,  the only 
rotons that will take par t  in the scat ter ing a r e  those 
whose initial momentum p makes  with the momentum- 
t r a n s f e r  vector  q =  PI- P and angle cu such that 
q = 2p0 coscu. It is therefore advisable to  average  f i r s t  
the c r o s s  section (3) over  the direct ions of the initial 
roton momentum. The average  c r o s s  section with al- 
lowance for  the smal lness  of c i s  

m.' paa6P do 
da=--de- 

MZ 2P (2 ye )  'h sin (012) ' ( 5) 

where p(p) is the chemical  potential of liquid helium a t  v - - 
T = 0,  p is the helium density, m is the m a s s  of the PU P 

helium atom, c is the energy of the elementary excita- FIG. 1. 
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where 6 i s  the angle between P and PI, and q = 2P sin(6/ 
2). Equation (5) solves our problem. 

To estimate the order of magnitude of the effect, we 
integrate (5) with respect to c from zero  to a certain 
c,,<< A, and with respect  to the angles. The corre-  
sponding total c r o s s  section i s  

The corresponding neutron range i s  1 = (N,u)-'. The 
range, of course, decreases  with increasing number of 
rotons, i.e., with rising temperature, and the maximum 
effect can be estimated by assuming that T - T,; then 
N o =  0 . 1 6 8 0 ~  loz2 ~ m - ~  (Ref. 4). In this  case  1 - 2 . 9 ~  10' 
cm (at P-p,). LN course, Eq. (6) itself i s  not valid 
near the A point, but this estimate points to the correc t  
order of magnitude. We note for comparison that the 
range 1' for roton production by a neutron i s  according 
to the theory 11= 1.15 cm,  s o  that3) 

1/1'=250. 

Since roton production by neutrons can be easily ob- 
served, there i s  every reason for assuming that the 
scattering process considered by us i s  also observable. 
Some observations of neutron scattering in the region of 
interest to us a r e  described in Refs. 6 and 7. We, how- 
ever, cannot explain the results  obtained in these refer-  
ences. The effect calculated by us  should certainly de- 
c rease  rapidly with decreasing temperature, something 
apparently not observed in the cited experiments. 

As stated in the beginning of the art icle,  the equations 
obtained a r e  valid only under condition ( I ) ,  when the ro- 
ton can be regarded a s  pointlike. At Eq-'-R, deviations 
from (5) should be observed, s o  that a careful check of 
this formula ensures in principle the possibility of de- 
termining the spatial dimension of the roton. Of course, 
such deviations should certainly take place if Eq-' i s  of 
the order of the interatomic distances. There exist,  
however, indications that the roton can be noticeably 
la rger .  F i r s t ,  the roton density extrapolated to the A 
point i s  found to be smal ler  by a factor 13 than the 
density of the helium atoms, and it i s  natural to 9ssume 
that the rotons a r e  densely "packed" near the A point. 
Next, the experimental data on the c r o s s  section for  
roton-roton scattering indicate that orbital momenta of 
the relative roton motion up to 1 = 5 and 6 take part ef- 
fectively in their i n t e r a c t i ~ n , ~  and this  can also be in- 
terpreted a s  meaning that the roton i s  large. It i s  curi- 
ous that since the vectors q and p a r e  perpendicular at  
q<<p,, deviations from (5) should determine the s ize  of 
the roton in a direction perpendicular to p. 

For  a theoretical calculation of the scattering at large 
q that do not satisfy the condition ( I ) ,  we must specify 
some concrete model of the roton. We use for  this pur- 
pose the Feynman wave f u n ~ t i o n , ~  which describes the 
excitation spectrum perfectly satisfactorily. Normal- 
ized to unity, this function i s  of the form 

The summation i s  over all the atoms of the liquid. N i s  
the total number of helium atoms, and a, i s  the ground- 

FIG. 2. 

state wave function normalized to unity. Calculating 
the matrix element of the interaction potential 

we obtain in lieu of Eq. (5), which corresponds to a 
pointlike roton, the expression 

( i~1""" ) ] 
X exp 

' d o  
h 

dJr13dartl d e  - 
sin 0/2 ' 

where p, i s  the triple correlation function of the helium 
atoms in the ground state:  

A direct  experimental determination of the function p3 
i s  impossible and, a s  i s  customary in the theory of 
liquids, i t  becomes necessary to use some interpolation 
expression for  this  function in t e rm of pair correlation 
functions. The simplest of these interpolation i s  of the 
form1' 

J e x p ( W  pl(ris, ~ u ) + ~ i ~ ~ p o p i  (re#) j e x p ( F )  pi ('1~6111. 

The function p,(r,,) i s  connected here  with the pair cor- 
relation function p2(r13) by the relation 

The expression in the square brackets in (7) can then 
be written in the form 

A numerical calculation shows that allowance for  the 
roton structure in this manner leads to multiplication of 
the differential c r o s s  section by an additional factor 
F(q), a plot of which i s  shown in Fig. 2.  h he factor 
F ( g )  is normalized to unity at small  q . ]  It i s  seen from 
the figure that, in the approximation employed, F(q) 
differs  little from unity when tZg-' i s  large compared 
with the interatomic distances. It i s  not excluded, how- 
ever ,  that this  i s  due to the insufficient accuracy of the 
Feynman wave function o r  of the interpolation approx- 
imation (8).4) The question of the roton s ize  can ap- 
parently be answered only by experiment. 

One of us  (L.P.P.) thanks A .  Zawadowski for  a dis-- 
cussion that prompted the formulation of this problem. 
The authors thank a l so  V. A. Parfenov and Zh. A. Kozlov 
for a helpful discussion of the experimental situation. 

')we disregard here the small region below the initial part of 
the spectrum, which is  subject to excitation decay! 
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2 ) ~ t  sufficiently small  q the helium dynamic form factor that 
determines the scattering can be calculated by general fluc- 
tuation theory in the manner used by ~ i n e e g  for the case of 
phonons. The direct calculation method used here, however, 
i s  simpler and more  illustrative. 

3 ) ~ e  used in the calculation an  expression for the scattering 
dynamic form factor in the "single-pole" approximation: 
S(q. &)=S(q)6([& -&(q)l/ t i) ,  where S(q) i s  the helium static 
form factor (see, e. g., Ref. 5). 

"strictly speaking the roton should be characterized by the 
distributions of both the density and the velocity of the liquid. 
The latter distribution does not manifest itself in neutron 
scattering, but can do so  in the interaction. In this sense 
the roton can have no characteristic spatial dimensions. 
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