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An inequality is derived that demonstrates the growth of the differential scale of an isotropic two-dimensional 
turbulence. It is shown that the spectrum has a deltalike asymptote, which is not realized physically because 
of restrictions imposed by the law of angular momentum conservation. The consequence is either the 
destruction of the turbulence isotropic structure (phase transition) or a transition to stochastic motion, which 
does not possess correlation characteristics. The properties of inhomogeneous two-dimensional turbulence are 
discussed briefly. 

PACS numbers: 47.25.Cg 

Two-dimensional turbulent motion possesses a number 
of features that distinguish it essentially from the three- 
dimensional case and that allow a modeling of processes 
with so-called "negative viscosity"' (such processes de- 
termine to a large extent the dynamics of the atmos- 
phere and of the ocean). Chief among these features is 
the possibility of transfer of energy from fine-grained 
to course-grained components, f irst  demonstrated in 
Ref. 2 on the basis of dimensionality considerations. 
Such a behavior of the two-dimensional isotropic spec- 
trum has also been investigated numerically in Refs. 
3-5 (the corresponding equations were closed by use 
of Millionshchikov's hypothesis). Actually, the dif- 
ference between two- and three-dimensional turbulence 
also appears in the linear situation, at the final stage 
of degeneracy, when the nonlinear terms in the equa- 
tions of hydrodynamics can be neglected.= Anomalies 
in the behavior of two-dimensional turbulence motion 
(in comparison with three-dimensional) a r e  obviously 
connected with the change in the dimensionality of the 
space (it is easy to see ,  for example, that one-dimen- 
sional turbulence is completely impossible in an in- 
compressible fluid). In particular, in the case  of zero 
viscosity in the two-dimensional case,  there is an in- 
finite set  of the integrals of the motion [integrals of all 
positive integer powers of (curl v)]. As a consequence 
of the conservation of the integral of (curl  v)', several 
general spectral inequalities appear, a s  established in 
Ref. 7; these inequalities demonstrate the absence of a 
cascade transfer of the energy to higher wave numbers. 

Similar results a r e  also obtained in the modeling of 
two-dimensional turbulence by choosing point vortices 
with subsequent use  of the methods of statistical mech- 
anics-vortices of the same sign have a tendency toward 
merging; this approach dates back to Ref. 8 (see 
also Ref. 9 and the detailed review of this theme in Ref. 
10). 

carried out over repeated subscripts), it i s  easy to note 
that the two-dimensional situation differs from the three- 
dimensional in the absence of the f i rs t  te rm in the right- 
hand side of (2). Just this te rm corresponds to the in- 
c rease  in (w2) and the transfer of energy to smaller 
scales in three-dimensional turbulent motion, so that 
we should have (w,w,&,/ ax,) > 0. However, the proof 
of this inequality i s  a s  yet unknown, and in the final 
analysis it i s  a consequence of experimental facts. 
Thus, the absence of a cascade process in the two-di- 
mensional case  already follows from the very form of 
the equation for (w2). Geometrically, this i s  obviously 
also connected with the impossibility of producing on a 
plane a "figure eight" out of a closed non-self-intersect- 
ing smooth curve-the process which leads to the decay 
of large-scale vortices. 

The cascade process of energy transfer usually enters 
as a necessary factor in the determination of the tur- 
bulent motion. Therefore, i ts  absence in the two-di- 
mensional situation demonstrates in advance the "in- 
completeness" of two-dimensional turbulence in com- 
parison with three-dimensional (several other mathe- 
matical aspects of the difference between two- and 
three-dimensional hydrodynamic turbulence a r e  dis- 
cussed in Ref. 12). In this context, we can cast  doubts 
on the validity of the ordinary description of two-di- 
mensional turbulence, which i s  based on the use  of cor-  
relation functions and spectra. However, we shall in 
what follows s tar t  from the ordinary assumption of the 
validity of such a process,  at  any ra t e  up until such 
time a s  internal contradictions appear. 

It i s  easy to see  that the absence of transfer of energy 
to small  scales leads to the preservation of the scale 
of turbulence o r  to its growth. It i s  shown below that 
some mean scale of two-dimensional turbulence in- 
creases ,  and a possible asymptotic behavior of the 
spectrum i s  observed (Sec. I ) ,  while the asymptotic i s  Returning to the equation for the mean energy and the 
a delta function. It is shown next that an isotropic 6- mean square of the curl  (w = curl  v )  of isotropic turbul- 

ent motion" like spectrum cannot exist because of limitations im- 

1 
posed by the law of conservation of angular momentum, 

(1) so  that the motion should be reorganized in some fash- 
d t  2 

ion. Possible types of rearrangement a r e  discussed 
(2) in Sec. 2. In the conclusion (Sec. 3), the correspond- 

ing features of inhomogeneous two-dimensional tur- 
(the angular brackets indicate averaging, summation is bulence a r e  considered. 
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1. GROWTH OF THE SCALE OF TURBULENCE 

In t he  two-dimensional case,  the vortex has one non- 
vanishing component (perpendicular to the plane of the 
motion) and can be considered to be a scalar .  Tran- 
forming to the spectral  energy density E(k, t ) ,  
($= J: ~ ( k ,  t)dk and using the general relation of Ref. 11 

where +(k) i s  the spectrum (cp(x)cp(xl)), we reduce (1) 
and (2) to the form (for brevity, we omit the l imits  of 
integration) 

5~ E dk=-2v kzE dk, 
dt S 

d --I kaE dk=-2vj  k'E dk. 
dt (4) 

Dividing (3) and (4) by the nonzero Edk and Jk2Edk, 
respectively, we obtain (the pr ime denotes the  t ime 
derivative) 

J E ~ ~ ~ / J E ~ X = - ~ V J X ~ ~ X / J E ~ ~ ,  (5) 

J YE'  dk / k% dk=-2u J k4E d k /  k P  dk. (6) 

Now, dividing (5) by (61, we obtain 

~ ~ . d k ~ k ~ E d k / ~ ~ d k ~ k ~ ~ ' d k = { j k ' E d k ~ / ~ k % d k j ~ d k .  ( 7 )  

By virtue of the ~ a u c h y - ~ 6 l d e r  inequality, the right s ide 
of (7) does not exceed unity; consequently, 

El d k j  k2E d k /  J E ~ X J  k 2 ~ '  B C I .  (8) 

o r ,  with account of J ~ l d k , J k ~ ~ l d k <  0 [see  Eqs. (3) and 
(4)1 

.{I,&/ dt j k % d k } > 0 .  (9) 

The quantity in the curly brackets is equal, to within a 
constant factor, t o  the square of the so-called differen- 
t ial  scale of turbulence. (see Ref. 11, Sec. 12). Thus, 
this scale increases in the nonstationary situation. The 
indicated increase i s  slower the closer  the right s ide 
of (7) to unity, i . e . ,  the smaller  the range of values of 
k in which E(k) i s  significantly different from zero. 
The stationary situation i s  achieved, as is  seen from 
(7)-(91, in the case  of a 6-like spectrum. 

Of course, the inequalities obtained cannot be regard- 
ed in any way as a complete proof of the tendency of the 
two-dimensional isotropic spectrum towards the 6 shape. 
Such a proof could be based only on an equation that 
contains aE(k, t)/at and includes spectral  r ep r  esenta- 
tions of third-order moments. It i s  physically obvious, 
however, that the components with large k should be 
rapidly damped under the action of the viscosity, where- 
a s  P(k) a t  small  k evolves practically without account 
of the viscosity and in correspondence with the  stated 
inequalities. Since the law of conservation of momen- 
tum establishes E(0) = 0,  the spectrum can be contracted 
only a t  the point k # 0. 

It i s  easy to s e e  that the  indicated results  a r e  valid for  
an  arbitrari ly smal l  viscosity; however, the situation 
with v= 0 requires special consideration. There a r e  
indications that in the two-dimensional ca se  the solu- 

tions of the Navier-Stokes equation goes over into solu- 
tions with v = 0 a s  v - 0. l3 The spectral  inequalities 
that lead to the resul t s ,  that a r e  partially discernible 
in those reported in the present  work, a r e  obtained for  
t he  case  v=O inRef .  7. Here only the spec t rumE(k1 
i s  considered, but not i t s  t ime derivatives; a whole 
c lass  of functions (containing, in part icular ,  the 6 spec- 
t rum)  turn out to be possible. In this  analysis, the 6 
asymptote i s  realized almost uniquely. It appears that 
the indicated "collapse" of the spectrum i s  generally 
typical of the two-dimensional situation. At least it has 
been detected numerically in another connection in Ref. 
14 and also,  very recently, for two-dimensional tur -  
bulence (also numerically) in Ref. 15. 

2. CORRELATION FUNCTIONS AND THE PROPERTIES 
OF MOTION IN THE CASE E ( k )  =G(k - k" )  

For the calculation of the correlation functions 

it i s  necessary to transform to the spectrum, so  that - an 
Bij(r) = J J etk'Fij(k) k dk d q .  

0 0 

In the two-dimensional case ,  we have for the spectrum 

Substituting (11) in (10) and using the replacement k, 
--ia/ar,,  it is  easy to obtain the expression for  Bi,(r).  
Then, separating the longitudinal and transverse cor-  
relation scalars," and after simple calculations, it i s  
easy to verify that the f i r s t  of these, B,,, is  expressed 
in t e rms  of the Bessel function J ,  and i ts  derivatives; 
a t  large k*r ,  the result  i s  

BLL- (2Ink.r) cos(k'r-nlC) , (12) 

with a power-law fall-off. If at some initial instant 
of t ime the correlation functions decrease exponentially, 
the appearance of a 6 spectrum indicates a change in the 
character  of their decrease,  a picture that is  formally 
s imi lar  to a phase transition in a two-dimensional 
liquid. l6 

It turns out, however, that the law of conservation of 
angular momentum imposes such restr ict ions on the 
form of the correlation functions a t  no isotropic b 
spectrum exists. Actually, by vir tue of the law of con- 
servation of the angular momentum, there  i s  a definite 
value (usually called the ~ o i t s ~  anski: invariant ) " 9 1 7  

f BL. ( r )  r3 dr. 
0 

In the ca se  considered here,  the corresponding integral 
diverges, a s  i s  seen from (12), s o  that a s  E(k) approach- 
e s  6(k - k*) the turbulent motion seems  to change i ts  
s tructure;  in the opposite case ,  the angular momentum, 
having a certain finite value at  the initial instant of t ime 
(with subsequent conservation of this value), would take 
on an arbitrari ly la rge  value when the spectrum be- 
comes 6-like. The character  of the indicated change 
cannot be established unambiguously by the theory. We 
shall consider two examples. 
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a )  Violation of the isotropy and one-dimensionality of 
the motion in the case of a 6-like spectrum. A certain 
periodic s t ruc ture  can correspond to this case ,  a s  i s  
shown below. Following Ref. 18, we consider a system 
of plane vortices, given by the relations 

a 
ul=- -(COS kr'x,  cos k,'xz), 

ax,  
a 

uz = -(COS k;x,  cos kz 'xz) .  
dx, 

Such a system can be tentatively assigned a correlation 
function 

by averaging over x ,  i.e., 

After differentiation in (131, the product u,u, can be 
represented in the form of a sum in which one t e rm 
does not depend on x while the remaining t e rms  depend 
on x in periodic fashion. The averaging indicated above 
yields, correspondingly, 

Taking into account the known representation 

1 1 "  
-[6 ( x - a )  +6 ( x + a )  ]= - Jcos o x  cos oa d o ,  
2 

O 

we can easily show that the spectrum F12 contains 6-like 
components (and, i s  here  anisotropic, of course). Such 
a change in the structure of the turbulent motion is  
similar to a phase transition "liquid-crystal" in the 
sense of a violation of the symmetry of the correlation 
functions. Here it i s  especially necessary to empha- 
size the following circumstances. The correlation 
function Bl, written above cannot be obtained a s  a result  
of solution of the dynamic equation for isotropic quan- 
tities, since i t  i s  already anisotropic. This corresponds 
to the fact that when E(k) tends to 6(k -k*) a t  some  
instant of t ime,  even the dynamic equations for  the iso- 
tropic quantities cease  to be valid. If the statistical 
description remains valid in this ca se ,  then the in- 
dicated equations ought to be replaced by more  gen- 
e ra l  ones, in which the spectrum i s  anisotropic. Then, 
apparently, the solutions which lead to correlation 
functions of the type B12 should be regarded a s  the r e -  
sult of the instability of the motion with an isotropic 
spectrum that is  close to 6-like in relation to smal l  
perturbations of definite configuration. Actually, one 
can, it is  t rue ,  find solutions which lead to different 
[from (13)] but also periodic structures (the solution 
(13) corresponds to dividing the plane into identical 
rectangular cel ls ,  in each of which a vortex i s  placed; 
the neighboring vortices have opposite signs). 

b) Stochasticity in the absence of mean values. This 
possibility appears if the statistical description itself 
becomes invalid a s  E approaches 6(k - k*). While r e -  
maining random, the motion i s  deprived of its cor re la-  
tion characterist ics  in their usual sense.  The dynamic 
equation for the lat ter  can be replaced in this case  by 
Navier -Stokes equations. 

Obviously, a decrease of the interval over which E ( k )  
differs from zero ,  in a finite-dimensional approximation 
of the equations of hydrodynamics, would correspond 
to  a decrease  in the number of degrees of freedom of the 
motion (as is  easy to s ee ,  a 6 spectrum corresponds to 
only one degree of freedom). Thus an interesting pos- 
sibility of realization of the description of a continuous 
dynamical system with stochastic behavior a s  a system 
with a finite number of degrees of freedom and possess-  
ing a strange at tractor  appears in the present case  (in 
contrast with three-dimensional turbulence, which 
possesses  a la rge  number of degrees of freedom and 
which does not admit apparently of such a description19). 

To conclude this section, we must note the following 
circumstance.  Both types of motion considered above 
can eventually become unstable with subsequent t ransi-  
tion again to the stage of ordinary isotropic turbulence 
with further repetition of the described picture. Then 
the two-dimensional turbulence is  realized in the form 
of a certain periodic sequence of regimes,  one of which 
represents  isotropic turbulence with a collapsing spec- 
t rum,  while the other corresponds to one of the two 
possibilities described above. 

3. INHOMOGENEOUS TURBULENCE 

In conclusion, we touch upon the problem of inhomo- 
geneous two-dimensional turbulence. The resul t s  
above generally do not take place here,  s ince genera- 
tion of eddying on the boundary of the flow is  possible. 
A t e rm vAw enters  on the right in the equation for the 
vortex, where A is  the Laplacian. Multiplication by 
o with subsequent integration over the volume yields by 
vir tue of the Gauss theorem the quantity wVwdS (S is  
the boundary) which, generally speaking, does not van- 
ish. However, if we consider planar1) (%, z )  motion di- 
rected along the x axis between plane parallel boundar- 
ies (x,y) then, close to the boundary in the viscous sub- 
layer (v,) - 2:' in addition, v: (the pulsating component) 
i s  apparently also -2. 'O Therefore,  a l l  the second der-  
ivatives vanish and no vortex i s  generated on the boun- 
dary. The entire dynamics of the turbulence reduces 
then to vortex and the energy exchange between the 
averaged and the pulsating motions (and also to viscous 
damping). 

Experimental investigationsz1 show that the  energy i s  
t ransfer red  f rom the pulsating to the mean motion. 
These resul t s  cannot be connected with Prandtl  theory, 
in which (v:v:)- a(v,)/az, s ince in this ca se  it i s  neces- 
s a ry  to stipulate a negative sign for  the turbulence vis- 
cosity, which i s  physically meaningless. It appears 
that (v:v:) includes also other quantities which do not 
depend on the derivatives of the velocity with respect  to 
the  coordinates; however their  form cannot be estab- 
lished from only theoretical considerations. 

It must be kept in mind that the experiments just men- 
tioned'' were  ca r r i ed  out in a channel whose length was 
not too great. It i s  physically obvious that in the case  of 
a sufficiently long channel, the anomalous sign of (v:v:) 
leads eventually to a complete transfer  of the energy of 
the pulsating motion to the mean motion, so  that the lat- 
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t e r  will have the usually Poiseuille laminar profile. 
Then, by virtue of the instability, a transition again 
takes place to turbulent motion and so on. Thus, even 
in the given case  (cf. the previous section), an oscilla- 
tory regime is established in which the directions of the 
energy transfer and of the vortex (in k space) change 
periodically along the direction of the mean motion. The 
possibility of formation of a laminar profile i s  then 
limited by the fact that, as  in the case of isotropic tur-  
bulence, the stochastic motion can be transformed still 
earlier into some regular structure o r  that the meaning 
of statistical averaging is  lost when the stochasticity 
is  conserved (e. g. , the Reynolds rules can cease to be 
validz0). 

"Such motion can be achieved experimentally in a conducting 
liquid with the aid of a n  external magnetic field.21 

'v. Star r  (Physics of Negative Viscosity Phenomena, McGraw, 
1968. 

' G .  K. Batchelor, Phys. Fluids 12. 233 (1969). 
'Y. Ogura, Phys. Fluids 5, 395 (1962). 
4 ~ .  Ogura, J. Geophys. Res. 67, 3143 (1962). 
5 ~ .  Ogura, J. Fluid Mech. 16, 33 (1963). 
6 ~ .  S. Pleshanov and A. L. Tseskis,  Magnitnaya gidrodinarnika 

No. 1, 1237 (1973). 
'E. A. Novikov, Fiz. atmosfery i okeana 14, 668 (1978). 
'L. Onsager, Nuovo Cim. Suppl. 6, 279 (1949). 

s ~ .  A. Novikov, Zh. Eksp. Teor. Fiz. 68. 1868 (1975) [Sov. 
Phys. JETP  41, 937 (1975)l. 

'OR. H.  Kraichnan, Repts. Progr .  Phys. 43, 547 (1980). 
''A. S. Monin and A. M. Yaglom, Statisticheskaya gidrome* 

khanika (Statistical Fluid Mechanics), Vol. 11, Moscow, 
Nauka, 1967. [Engl. Tr., MIT P r e s s ,  Cambridge, Mass., 
19751. 

12v. I. Arnol'd Matematicheskie metody klassicheskoi me- 
khaniki (Mathematical Methods of Classical Mechanics), 
Moscow, Nauka, 1974. 

1 3 ~ .  Ebin and J. Marsden, Transl .  in: Matematika 17,  No. 
56-6 (1973), Mir ,  Moscow. 

14s. L. Musher and B. I. Sturman, P i s 'ma  Zh. Eksp. Teor. 
Fiz. 22, 537 (1975) [JETP Lett. 22, 265 (1975)). 

1 5 ~ .  Tatsumi and S. Yanase, J. Fluid Mech. 110, 475 (1981). 
16E. M. Lifshitz and L. P .  Kpitaevskii, Statistical Physics 

P a r t  2, Pergamon, 1980, Sec. 27. 
"L. D. Landau and E.  M. Lifshitz, Fluid Mechanics, Perga- 

mon, 1959. 
1 8 ~ .  A. Townshend, (Structure of Turbulent Shear Flow), Cam- 

bridge U. P r e s s ,  1957. 
"A. S. Monin, Usp. Fiz. Nauk 125, 97 (1978) [Sov. Phys. 

Uspekhi 21, 429 (1978) 1. 
2 0 ~ .  S. Monin and A. M. Yaglom, Statisticheskaya gidrome- 

khanika (Statistical Fluid Mechanics) Vol. 1, Moscow, Nauka, 
1964. [English tr., MIT P r e s s ,  Cambridge, Mass., 1971). 

2 1 ~ .  D. Votsish and Yu. B. Kolesnikov, Dokl. Akad. Nauk SSSR 
229, 572 (1976) [Sov. Phys. Doklady 21, 374 (1976)l. 

Translated by R. T. Beyer 

Sov. Phys. JETP 56(1), July 1982 A. L. Tseskis 




