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A general Schrodinger equation is obtained, describing the waveguide propagation of whistlers in channels
(ducts) oriented along the magnetic field and having a density either higher (crests) or lower (troughs) than the
density of the surrounding plasma. The self-focusing of the whistlers is considered on the basis of this
equation and of the system of the plasma magnetohydrodynamic equations supplemented by taking into
account the ponderomotive force due to the high-frequency field. A one-parameter family of solutions of the
complete system of equations is obtained and describes the stationary self-focused beams. It is shown that the
beams accompanied by formation of ducts with plasma-density crests should be attenuated by the leakage of
the wave due to wave tunneling. This explains why only ducts with troughs are produced by self-focusing in
experiment, a result that agrees qualitatively with the solutions obtained.

PACS numbers: 52.35.Fp, 52.40.Fd, 52.40.Hf

1. INTRODUCTION

The existing theories, based on the Schridinger equa-
tion, of whistler self-focusing in a plasma lead to two
main conclusions: 1) formation of asymptotically sta-
tionary wave beams as a result of self-focusing is pos-
sible only at w<w_/2 (w, is the electron gyrofrequency);
2) these beams should propagate in waveguide ducts hav-
ing a density higher than the surrounding plasma (called
hereafter crests). Both conclusions contradict qualita-
tively the known experimental facts (see, e.g., Ref. 1),
since formation of self-focusing troughs was observed
both at w< w, /2 and w>w./2.

Whistler propagation studies, based on WKB solutions
of the complete system of Maxwell’s equations in both
planar? and axisymmetric® geometries, have shown
that, generally speaking, a number of effects are
missed when the Schrédinger equation is used. One of
them is the leakage of the wave from the crest as a re-
sult of its tunneling into another mode.?*®* This effect
becomes particularly strong when the duct width is of
the order of the longitudinal wavelength.*™® It turns out
as a result that the linearly self-compressed crest
should rapidly “leak out.” Another result of the WKB
solutions of Maxwell’s equations is the feasibility of
waveguide propagation in troughs not only at w< w,/2
but also at w>w_/2. Clearly, self-focusing theory must
take these circumstances into account. At the same
time it must be simple enoughto yieldanalytic solutions,

The present paper is devoted to the development of the
basics of such a theory. It consists of two parts. The
first (Secs. 2 and 3) is devoted to the derivation of sim-
plified electromagnetic-field equations on the basis of
Maxwell’s equations under the assumption that the rela-
tive change of the plasma density is small. We arrive
as a result to two different Schrodinger equations. The
first describes beams with wave vectors “almost paral-
lel” to the external magnetic field. This equation was
first derived in Refs. 7 and 8 and served so far as the
traditional one for the investigation of the self-focusing
of whistlers along a magnetic field. It leads to wave-
guide propagation in crests at w< w,/2 and in troughs at
w>w/2. The second Schridinger equation describes
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beams with wave vectors that are grouped along a cone
with apex angle 6 = arccos(2w/w,), where 9 is the angle
between the wave vector and the external magnetic field
B,. (The group velocity components, on the other hand,
are almost parallel to B, in both cases.) It is important
here that in the second case the Schriodinger equation
describes waveguide propagation in troughs at w<w_/2.
Both Schriédinger equations can be unified into one that
can describe whistler propagation in troughs at both
w<w,/2 and w>w,/2, as well as in crests at w> w,/2
(if tunneling is neglected).

In the second part of the paper (Sec. 4) we add to the
Schriddinger equations the plasma hydrodynamic equa-
tions supplemented by terms containing the ponderomo-
tive forces due to the pressure of the RF field of the
whistlers on the plasma. The system obtained permits
a self-consistent treatment of whistler propagation and
of slowplasma motion. We obtain next for this system
a family of solutions that depend on a single parameter
o which describes stationary finite-amplitude wave
beams propagating in the ducts produced by them. At
o= 0 this family leads to a previously obtained solu-
tion.®® This particular solution, however, holds only
in the frequency region w<w,/2 and describes station-
ary beams in crests. As already indicated, such beams
are transformed into a defocusing branch because of the
tunneling, which becomes quite intense when the chan-
nel width is small enough. Similar results are obtained
for all 0<1. The solutions at 0>1 describe stationary
beams in ducts with troughs. These were precisely the
beams observed in experiment.

Understandably, as in any self-focusing theory based
on the Schrédinger equation, our equations describe the
main processes only in the stage when the self-focusing
is still weak (the beam width greatly exceeds the longi-
tudinal wavelength). They can be regarded, however,
as the starting point for strong self-focusing theories
which should be based on the complete system of the
Maxwell equations and on the equations of nonlinear hy-
drodynamics (and possibly also kinetics). They should
also make extensive use of numerical methods. These
questions, however, are way outside the scope of the
present paper.
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2. FUNDAMENTAL EQUATIONS

We assume that the electromagnetic field is quasi-
monochromatic, i.e., can be represented in the form

o [& (v, ) et +c.c.], (2.1)

where Z varies slowly with the time ¢; the dependence
on r, however, is as yet arbitrary. Maxwell’s equa-

tions reduce then to the equation

i 0(0%) 0F
¢ do It

2 -
V(Vé)—Aé’=‘:T(é$)+ , (2.2)
where ¢ is the dielectric tensor, and its nonvanishing
components in a cold plasma take, in a coordinate
frame in which the magnetic field is directed along the
z axis, the form

=8y =€, En=—Ep=—If, E,=1. (2.3)

We denote by N the particle density, by N, the density
at infinity, and by w, the plasma frequency correspond-
ing to N,:

o, =4ae*N,/m,.
Neglecting the ion motion in the whistler frequency

range w< w,<< w,, we can write the components of the
tensor (2.3) in the form
_ (1+v)y*

() _ 4wy _
A Tu(—wy T w (2.9)

1

where v is the relative variation of the particle density
(2.9)

In the preceding papers?™® Eq. (2.2) was solved approx-
imately by the WKB method. Assuming that

v=(N=N)/Ne. y=0p/0., u=o/o.

N=N(z), w.=const, &=& (z,z), (2.6)
the WKB solutions of (2.2) are of the form
%=g’o(r)exp{i%[:|:j' q(r)drf—pz]}, (2.7
where ¢®=¢%,m =1,2,
In® (2) = (2u*) 7 {(1—20%) p*—29*[1+v (2) ]
+(—=1)"p(p—4y [1+v(2)])"}, (2.8)

and Z,(x) is the polarization vector and varies slowly
with x. Given the dimensionless longitudinal wave
number p, Eq. (2.8) determines two branches of the
dimensionless transverse wave number g. A detailed
investigation of the properties of the WKB solutions
(2.7) (particularly of the polarization vectors #y(x), of
the energy flux, and of others) can be found, e.g., in
Refs. 2, 5, and 6. We note here that relation (2.8) at
v=0 is the consequence of the known dispersion equa-
tion for whistlers in the quasi-longitudinal approxima-
tion:

kw.cos8

= o (2.9)
as can be verified by putting in (2.9)

K=k2+k?, k=(olc)q, k.=(olc)p.

3. THE SCHRODINGER EQUATIONS

We introduce as the main sought quantities the follow-
ing linear combinations of the Cartesian field compon-
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ents:

&\ =&.—i&, & =&.+i8, (3.1)

(when dealing with self-focusing of whistlers, these
quantities are more useful than the previously employed
ones®™). The component %, is easily expressed in
terms of #, and #, with the aid of the equation div(£%)
=0.

We assume for simplicity that assumptions (26) are
valid, with N varying slowly with x and with v(x) small.
More accurately speaking, we assume that v=1(x/a),
where g is the characteristic spatial density scale that
is large compared with the reciprocal wave number
k™ (k~w,/c for whistlers), with

v~rl, clwpa<h, (3.2)
where A is a small parameter.

We consider asymptotic solutions of (2.2) in the form

&,=E (Mx, \’z) exp [i(w/c) (Qz+Pz)],

&,=G(Az, A'z) exp [i(w/c) (Qz+Pz)],

(3.3)

where @ and P are parameters that will be determined
below.

We seek now E and G in the form

E=E+\E'+NE"+ ..., G=G"+AG'+\MG"+... . (3.4)

We substitute (3.3) and (3.4) in (2.2) and equate terms
of like order in A, confining ourselves to terms up to
A% inclusive. Leaving out, for lack of space, the cal-
culation details (they are described in Ref. 10), we
present here only the final results. In zeroth order,
the condition for solvability of the inhomogeneous sys-
tem of equations for E° and G° yield for @ an expres-
sion that coincides with (2.8), if we make in the latter
the substitutions ¢ =@ and p ~ P, and set v=0. Solv-
ing next the system for E° and G°, we obtain

G°=RE", (3.5)

where R a polarization factor for which the final ex-
pressions are given below. We next obtain for E’ and
G’, in first order in A, a system of equations which can
be solved if P, @, and R have the following values:

P*=y*lu(1—u), R=0, (3.6)
Q=0.=0 (u<’/2)1 Q=Qz=0 (u>‘/z) (3.7)

or
P*=4vt, R=(1+u) (1—2u)/(1—u) (1+2u), (3.8)
Q*=0:=0*=Q=y*(1—4u*)u"? (a<'f,). (3.9

We have thus two cases. In the first the polarization
in the zeroth approximation is circular (R = 0) and the
wave vector is directed along the magnetic field.

In the second case R #0, i.e., the wave is elliptically
polarized even in the zeroth approximation, and the two
branches merge and can propagate only at u< 3, as
seen from (3.9). As for the wave vector k, its direction
and magnitude in the zeroth approximations are given by

cos 0=P(Q*+P*)~"=2u, k=q,lc. (3.10)

We note that in both cases the group velocity v, corre-

V. I. Karpman and R. N. Kaufman 81



sponding to the wave vector k is directed along the mag-
netic field, as follows directly from the general
equation

0 ek, (0,/c—k)

T T Yo e L (3.1

Finally, comparing the terms with A%, we obtain for
E” and G” a system of equations, the solvability condi-
tions for which can lead in both cases to a certain dif-
ferential equation for E,, which takes the Schrddinger-
equation form:

OB 1, O a
i+ 5= S = (N=V,) ('Ewi) L E=0, (3.12)
dw 9w
ve= (a_k,,) -t S_( ak;)k-k, ’ (3.13)

where the wave vector k, is determined from the condi-
tion v, (ky) = 0. It is clear from the preceding that this
takes place either at §=0, i.e., under conditions (3.6)
and (3.7), or else if (3.10) is satisfied, i.e., under
conditions (3.8) and (3.9).

Thus, the Schrédinger equation (3.12) describes the
diffraction of the wave beams in all cases when they
propagate with a group velocity almost parallel to the
external magnetic field.!) For the two characteristic
directions of k, we have

(3.14)
(3.15)

ve=2u"(1—u)"c/y, S=(1—2u)(1—u)c*/y*0. (6=0),

vy=c/2y, S=—(1-4u*)uc’/y’0. (cosB=2u).

Thus, in both cases S~1 -2y as u — 3.

We have assumed so far that the medium is stationary
and homogeneous along the external magnetic field. We
can obtain similarly also a more general equation,
when the wave amplitude, the density, and the average
magnetic field have a weaker dependence on the coor-
dinates and on the time, and the derivative is of the or-
der of A with respect to x and of A* with respect to ¢
and z. In this case, generally speaking the plasma
must be assumed to move with velocity V. A detailed
analysis, which we omit here, shows that Eq. (3.12)
is replaced here by

i (3.16)

—+v,

(Gr+erse)

1 0 .
+—2—S—az—z—A0)E—0,
where we write E in lieu of E°; the quantities v, and S

in (3.16) are given as before by expressions (3.13), and

A(&)=VN0(';1;)‘:) e +bB, (':_;') _ +v (_g%) —

Here N, and B, are the constant values of the density
and of the magnetic field at |x| = = (the z axis is direct-
ed along By), b=(B-B,)/B,, and it is assumed that
b~y~V~2AZ

(3.17)

The derivatives 8w/8N, and 8w/8B, are determined
from (2.9). To calculate 8w/8V we must start from the
dispersion equation in a moving medium. In the ques-
tions considered here this term turns out to be inessen-
tial (see Sec. 4).

We shall call (3.16) the general nonstationary Schro-
dinger equation for whistlers propagating along the
magnetic field. For 6 = 0 it was considered earlier in
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many studies of the self-action and diffraction of
whistlers, beginning with Refs. 7 and 8.

To cast light on how informative the generalized
Schrédinger equation can be, we use it to consider sta-
tionary waveguide propagation of whistlers. We assume
for simplicity that 5= 0 and that the relative variation of
the density v(x) is an even function with one extremum
1(0) S 0. Assuming that E is proportional to
exp [i(w/c) Apz], we obtain from (3.12), (3.14), and (3.15)

’E

—a—zr+92($;AP)E=0, (3.18)

o*=x[v(z)—2Ap/P], (3.19)
_ 2088 ) e 0P -
”_(1——2;)—0—2 0=0); =« TETEr (cos 0=2u). (3.20)

A discrete spectrum of Ap, which determines the wave-
guide modes, exists obviously only at wA(0) >0. It fol-
lows therefore that in the waveguides with crests

0<2Ap/P<v(0), (3.21)
and in the waveguides with troughs
v(0) <2Ap/P<0. (3.22)

The first of these conditions is realized at 6 = 0 and
<%, and the second at § =0, »> 3 and 6 = arccos2u,

u< 3. Thus, the value = 3 is critical: it corresponds
to a transition to another waveguide propagation regime.

It follows from (3.18)—(3.20) that the general Schro-
dinger equation is valid only under the condition

]y (0) | < (1-20)2 (3.23)

Indeed, at (1 -2x)2~|1{0)] it follows from (3.18)—(3.20)
that 8E/8x ~ |v|Y/*, whereas in the derivation of the
Schradinger equation it was assumed that 8E/8x ~ | v |*/?
[see (3.3)].

We continue the analysis by comparing the WKB solu-
tions of Eq. (3.12)

E(z,z) =Cpf"(x)ex1){i[ :tj o(z)dz + m? .;\pz]} (3.24)

with the WKB solutions (2.7) of Maxwell’s equations. It
is easy to verify that if we put in (2.7) and (2.8) p=P

+ Ap, where P corresponds to 6 = 0 [see (3.6)], we find
in first order in the small parameter v/(1 - 2)? that

at =20

(o/c)gmp (u<<'ly);  (w/c)g=p  (>'). (3.25)

In the case 6 = arccos2x, putting P= 2y [see (3.8)], we
obtain in the same order of magnitude

(0/¢) ¢1.2~ (w/c) Qs Fop, (3.26)

where @, is defined in (3.9).

It follows therefore that the phase factors of the WKB
solutions (3.24) [with allowance for (3.3) and (2.7)] are
equal in first order of magnitude. It can also be shown
that, to the same accuracy, the polarization vectors
are equal in both solutions.

It must be noted that all the solutions of Maxwell’s
equations are contained in the generalized Schrddinger
equation. This is seen, for example, from Figs. 1 and
2, where g(x) is plotted for both values of 6 that follow
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FIG. 1. Plots of g;,,(x) at w<w,/2 for waveguides with
v(x)>0(0=0). The solid lines are described by solutions of
both the Schrédinger and the Maxwell equations; the dashed,
only by the latter.

from (2.8). The plots that agree approximately with
(3.25) and (3.26) are shown by solid lines, and the “ex-
tra” ones are dashed. Thus, at 6 = 0 and <3 the
Schrodinger equation contains no solution corresponding
to the branch ¢,, and at cosf = 2u (u <3) it contains no
solution corresponding to the “dumbbell” of Fig. 2. At
u > 3 the Schrodinger equations yield approximately the
same results as Maxwell’s equations: g,(x)= p(x)(c/w);
the g,(x) plot is an oval symmetric about the coordinate
axes, and ¢-<0.

The presence of the g, branch at v(x) >0 leads to the
possibility of the tunneling g1 —¢2 and to the ensuing
damping of the ¢, branch trapped in the waveguide.

The logarithmic damping decrement along the z axis is
determined in the WKB approximation by the formula?'*

n= '7;— ( ]: Ue: (2) dx )—‘exp [ -2 -(} Imj (q_,—-r/.)dz],
o

I+ (3.27)

where v,, and v,, are the group-velocity components,
x, is the “turning” point (g,(x,) = 0), and x, is the point
closest to the real axis in the upper hemisphere,
where ¢,(x,) = g,(x,)-

For the characteristic profile

v(z) =v,sech?(z/a)

FIG. 2. Plots of g;,,(x) at w <w,/2 for waveguides with

v(x) <0 (p =arccos(2w/w,)). The solid curves are realized at
(1-24)%> [v(0)|, and the dashed one at (1 —2x)2 < |v(0)|and is
obtained only from Maxwell’s equations.
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we have under condition (3.23)

n=r(32) 700,

5\ P (3.28)

where T(4p) is the exponential in (3.27), calculated for
the considered profile in Refs. 4 and 5. Equation (3.28)
will be used in the next section to estimate the damping
of a self-focused beam with (x) > 0.

We note furthermore that from the general conditions
of whistler waveguide propagation® it follows that at
v(x) <0 and | {x)] <1 a two-oval configuration is real-
ized at frequencies

(1=2u)*>|v(0) |,
and a “dumbbell” type configuration at
(1—2u)?<|v(0)|.

Comparing this with (3.23), we see that as u =~ 3 the
Schrodinger equation ceases to be valid before the
transition from the ovals to the dumbbell takes place.

We note finally that the Schrédinger equation does not
depend on the sign of @; we can therefore choose as the
complete solution any linear combination of expressions
(3.3) with @ and -Q. To obtain best agreement between
the results of the planar geometry considered here and
the axial one of Ref. 6, we must assume that the solu-
tion is of the form

& ,=FE(z,z, t)expli(w/c)Pz]{C, exp[i(w/c)Qz]
+C,exp[—i(w/c)Qz]}, &.=R&;
C.=C.='/, (()———0), ’Cx|=IC2|=2_Ih (Q=00)|

(3.29)

where E(x,z,t) is the solution of the generalized
Schrédinger equation (3.16).

4. STATIONARY SOLUTIONS OF THE
SELF-FOCUSING EQUATIONS

So far we have assumed that the plasma parameters
(density, magnetic field) are given. In this section we
consider the self-consistent problem, i.e., it is as-
sumed that the plasma state averaged over the RF os-
cillations is altered by the ponderomotive force. Ina
collisionless plasma with small 8= 87NT/B? the general
expression for this force per unit volume is'?

f— o {(e4—84) V (&+'E:) + MV By [BXrot M])

167
i (9 s = 9% 0& -
— 1 G- ot&” — “+cc. }. (4.1
16nm{0t [E=D)&Xrot & ]+e PP Xrot:?] cc} (4.1)

Here @ is connected with the total electric field
strength by Eq. (2.1). M is the density of the plasma
magnetic moment induced by the RF field!3;
1 des; .

M=t 78%%"
B is the averaged (over the RF oscillations) magnetic-
induction vector, £ is the dielectric tensor, and I is a
unit matrix.

We confine ourselves to self-focusing in the Schro-
dinger-equation approximation. We express &, and &,
in terms of &, and &,, assuming that the latter are giv-
en by (3.29), and obtain &, from the equation div(£¢@) = 0.
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Substituting now @ in (4.1) and taking (2.3) and (2.4) into
account, we obtain for the ponderomotive-force compo-
nents the expressions

f=—AG|E|*0z, [,=0,

3lEI*  kcos8 1 ¥R lEI*
—a LN YR U | L
=457 © {‘4* 2 ¥ 6[‘4‘ 16n(1—u2)] 5 (42)
where

1 1—u\2 ¥ Jl—u
(= {+ R —— y Ay = ————r—— | | — 1" —— .
4 16:n(1—u‘)’[1 R (1+u ) ] 4 16:m.1,(1—u).'(1 R1+u )’ (4.3)

and R is determined by (3.6) or (3.8).

We now write the plasma equations of motion in the
magnetohydrodynamic approximation with account taken
of the ponderomotive force. Since it is assumed
throughout that the relative deviation of the density »(x)
is small, we neglect terms of order v®. The equations
that describe the plasma motion and the magnetic-field
evolution take then the form!3

OV’_L 40\7 CAz(ab' 0bs) fx

et

“ot 9z 9z 0z [
—%+c.za—v=£, 0—V+ﬂl+ 0V‘=0,
ot 0z po it oz Jz (4.4)
0b,_ 0V,= 33'+.‘7l’=_= . :
9t 9z oot ax !
c,=(T/mi)™  ca=B/4np,, po=(mitm.)N,.

Here V is the plasma velocity, c is the ion-sound
speed, and p, is the plasma unperturbed mass density.
The system (4.4) does not contain the projections of the
basic equations on the y axis; the latter describe the
pure Alfven branch, which does not interact with the
magnetosonic motions described by the system (4.4),
since f, = 0.

We consider now the class of motions of the station-
ary-wave type, when |E|? and all the sought quantities
of the system (4.4) are functions of one independent
variable n:

N=nzt%.2—Ut, S tu=1, (4.9)

where », and U are arbitrary parameters. The solution
of the system (4.4) takes then the form

dav. D, dvV, D, % %z
Rl e S L G L R C
v=(uV +u,V.}/U, (4.7)
where D is the determinant of the corresponding
algebraic system:
D=U*~TP(cai+et) Fulete (4.8)
D, = —pli [fe(e %= U?) —ficnan.],
U
D, =— p— [fotanser H (UP—c P —ctn) ). (4 9)

The equation D= 0 is equivalent to the dispersion equa-
tion of the free magnetosonic oscillations. In the limit-
ing case 8= c2/c <« 1 we obtain from it the following
relations for the velocities U, and U, of the fast and
slow sound:

Uimca, Us=cons: (4.10)

We consider now those solutions of the system (4.4)

84 Sov. Phys. JETP 56(1), July 1982

which do not depend on ¢ and z (they correspond to ducts
oriented along the external magnetic field). To this end
it is necessary to put formally U ~0 and »,~ 0 in (4.6)-
(4.9). We encounter here, however, an ambiguity that
depends on the ratio U/«,. At different values of this
ratio we obtain, generally speaking, different limiting
solutions. It is important that this circumstance is
preserved also in the case when the left-hand sides of
the MHD equations are not linearized (as can be easily
verified). This phenomenon is caused by singularities
in the behavior of the characteristics of the MHD equa-
tions and will be discussed in detail elsewhere.

For the present, confining ourselves to the study of
solutions that depend only on n, we assume that
%, ~0 and

(4.11)

U=oc.x.,

where o is an arbitrary non-negative parameter, with
o+#1 [to avoid resonance with the slow magnetosonic
waves—see (4.10)].

Substituting (4.11) and (4.2) in (4.6)—(4.9) and then
letting »,~ 0, we obtain

o%c,’A,tc*A,
= —————— | E|? .
cﬁc.z(l—o“)pn] % (4.12)
A (1—0*)t+A4.

b, =— ————— E]zy
cat(1—0%) Oo !

 olcidteatAy)

b.=0, (4.13)

i =——————|El*, V.,=0. 4.1
v e, |Ef?, V.=0 (4.19)
From these expressions we get

A|EI* ¢’ Ca

=l b~ —v& =), .
v oy b A (0«:0:) (4.15)
E 2
vmbme B (53 2), (4.16
PoCa Cs

and it is seen from (4.3) that A, >0 and 4, >0. Equations
(4.15) and (4.16) are quite general, since c,/c,»>1. It
is useful to note in this connection that (4.16) can be
obtained by assuming that o=« but o« ~0, such that
U—0.

The expressions obtained allow us to express Aw of
(3.17) in terms of |E{2. An analysis of the dispersion
equation for a moving plasma'® shows that

(60/0V)V~E.V..

Using (4.14), we can easily verify that this term is
negligibly small compared with the remaining terms in
(3.17). As a result, using (2.9) and recognizing that
b,=0, we can write

(4.17)

Ao=—0 (0. cos B—n)v/o. cos 0+ wb..

Substituting (4.17) together with (4.15) and (4.16) in
(3.16), we obtain a closed equation for the field E. The
stationary solutions of this equation, which are propor-
tional to expfi{w/c)Apz], describe the homogeneous
whistlers that result from the self-focusing.

These solutions together with the corresponding ex-
pressions for the variation of the density are of the form

(4.18)
(4.19)

wherein v is connected with E by (4.15) or (4.16). We

E=E0Asech(1/a) expli(w/c)Apz],

a*=Sw.cos8/v,0 (0. cos 0—0),

v=v, sech?(z/a),
Ap=S/2va?,
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have thus obtained an entire family of stationary solu-

tion of a system that consists of the generalized Schri-
dinger equation and the hydrodynamics equations; this

solution depends on the parameter o. The requirement
a*>0 and Eqgs. (4.15) and (4.16) lead to the conditions

signS =sign vo=sign(1—0?). (4.20)
It is seen from (3.15) that
(1-2u)8>C  (0=0); (1—2u)S<0 (cos §=2u). (4.21)

We conclude from (4.20) and (4.21) that at w<w,/2 the
self-focusing can lead to formation of channels with both
crests (v >0) and troughs (¥<0). In the former case
6=0and o<1, and in the latter cosf = 2w/w,, o>1. At
w>w,/2 the second relation of (4.21) is not realized,
therefore self-focusing at w>w,/2 can lead only to
troughs; in this case 6=0 and o>1.

The solution obtained earlier in Refs. 8 and 9 is ob-
tained at o= 0, it describes the beam in the crest at
u<3. We see that it covers by far not all possibilities.

It must next be kept in mind that at v>0 (i.e., o<1)
the electromagnetic field should gradually “leak out”
of the waveguide because of the tunnel-transformation
effect. As a result, the amplitude should attenuate
along the z axis with a logarithmic decrement p, which
is determined in the WKB approximation by Eq. (3.28)
under the condition (3.23). For the soliton solutions
(4.18) and (4.19) the condition (3.23) takes the form

(4.22)

1-2u>c*/ 0, a’u,

and the condition for the applicability of the WKB ap-
proximation is not satisfied. Equation (3.28) can be
used in this case, however, for an order of magnitude
estimate, by substituting in it Ap from (4.19) and T
from Refs. 4-6 at p= P+ Ap. As shown in the cited
references,

(4.23)

r> exp{—— RWpa [ 1-2u

——] (+v0) } .

¢ u(i—u)

From (3.28), (4.19), and (4.23), with allowance for
(4.22) we obtain the following estimate for pu:

> n( c )ze\' {__ mn,,a[ 1-2u ]'/r
4a \naw, *P ¢ lu(i-u) }

If the condition (4.23) is not satisfied, the > symbol
must be replaced by =.

(4.24)

[

These results remain qualitatively valid also for
axisymmetric solutions. However, an additional in-
vestigation, which we omit here, shows that the axi-
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symmetric analogs of the solutions (4.18) and (4.19) are
unstable to self-compression (at least for channels with
v>0). The compression stops when the duct width be-
comes of the order of the longitudinal wavelength, i.e.,
a~c/w,. Itis seen from (4.24) that in this case the de-
crement u becomes large (p~a™), i.e., the waveguide
“leaks out,” so that at v >0 the self-focusing ceases be-
fore a stationary (or quasi-stationary) duct is produced,
in qualitative agreement with experiment.s

On the basis of the foregoing, it seems to us that the
solutions of principal interest are those with 0>1,
which describe wave beams in troughs. They exist both
at w<w,/2(cosf = 2w/w,) and at w>w,/2(6 = 0), in agree-
ment with experiment. It is possible that an investiga-
tion of the stability of these solutions will lead to fur-
ther restrictions on the values of the parameter o.

This question is under study at present.

D' The fact that the group velocity is parallel to the magnetic
field not only at 6 =0 but also at 6 =arccos 2« is clearly seen
from the geometric optics of whistlers (see, e.g., Ref. 11).
It is natural therefore that we arrive at this face when de-
riving the Schrédinger equation from first principles.
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