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The problem of describing a collision-dominated plasma in a strong magnetic field in terms of the transport 
equations is investigated. It was pointed out earlier that the standard Braginskii-type equations are limited in 
scope, and various generalizations of these equations to make them applicable to a plasma in a magnetic field 
with straight force lines were proposed. In contrast, the present authors derive transport equations for an 
arbitrary magnetic-field geometry, using as a basis a drift kinetic equation with a collision term. The obtained 
system of transport equations reduces to equations for the density, longitudinal velocity, and temperature for 
each plasma component. These equations contain the so-called drift fluxes and forces, constituting certain 
combinations of higher moments. By way of example of the use of the drift transport equations, the problem 
of plasma rotation in a tokamak is considered. The authors propose that the new transport equations will be 
found useful also for an analysis of the role of viscosity and thermal conductivity in the instabilities and 
transport phenomena in a plasma confined by a curvilinear magnetic field. 

PACS numbers: 52.25.Fi, 52.25.Dg, 52.55.Gb 

$ 1. INTRODUCTION 

It i s  known that a collision-dominated plasma can be 
described with the aid of the equations fo r  a cer tain 
number of the f i r s t  moments  of the distribution function 
of the corresponding part ic le  spec ies  (trallsport equz- 
tions). In the presence of a s t rong  magnetic field the 
standard transport-equation sys tems1  have a narrow 
range of validity, s ince they take into account nei ther  
the influence of the heat flux on the viscosity nor  a 
number of other effects that play an important ro le  in 
the stability and p lasma t ranspor t  a c r o s s  a magnetic 
field.2e3 Several  methods of modifying the t ransport-  
type equations w e r e  therefore proposed in the past.' 
Some a r e  based on the use of a s e r i e s  expansion in r e -  
ciprocal powers  of the magnetic field,4-6 and o thers  on 
Grad's idea7 of a multimoment descript ion of the plas- 
ma.819 It must be noted that the a i m  in both mentioned 
groups of papers  w a s  application to a plasma in a mag- 
netic field with s t raight  force lines. In view of p r o g r e s s  
in the research  into magnetic t r a p s  (both toroidal and 
open), it s e e m s  important t o  obtain t ransport  equations 
for  an a r b i t r a r y  magnetic-field geometry.  This  i s  the 
purpose of the present  paper ,  in which we der ive  t rans -  
port equations corresponding to the so-called dr if t  ap- 
p r o ~ i m a t i o n . l ~ - ' ~  Qur approach,  a s  well a s  some 

i s  thus based on a n  expansion in rec iproca l  
powers of the magnetic field. Interest  a t taches a l s o  t o  
fur ther  refinement of the multimoment approaches of 
the type described in Refs. 7-9, with a n  a i m  at  taking 
into account e f fec t s  that a r e  outside the scope of the 
dr if t  approximation. 

The s tar t ing point in our equation i s  the collisional 
drift  kinetic equation. T h i s  equation i s  derived in 92. 
We take into account h e r e  two types of collision effects 
connected with the averaged and oscillating p a r t s  of the 
distribution functions. The collision effects  of the sec-  
ond type a r e  well known in the usual scheme' and a r e  of 
o rder  v/wB2 in the continuity and heat-balance equations, 
and of o rder  v in the t ransverse-motion equation (v is 
the collision frequency and w, is the cyclotron frequen- 
cy). This  is apparently the f i r s t  t ime  that account is 
taken of these effects in the dr if t  kinetic equation 
scheme.  

Another distinguishing feature of our dr if t  kinetic 
equation i s  that it includes effects  of a s t rong e lec t r ic  
field (s t rong in the s e n s e  defined by Morozov and 
S ~ l o v ' e v ' ~ ) .  In th i s  respec t  our  approach i s  c lose t o  
that of Hazeltine and Ware.I4 In par t i cu la r ,  we take in- 
to  account e lec t r ic  centrifugal dr i f t  effects.  

In 93 we use the frequent-collision approximation and 
rep lace  the kinetic equation by a sys tem of equations 
f o r  the density, longitudinal velocity, and temperature.  
We elucidate a l s o  the s t r u c t u r e s  of these equations 
(dr if t  t r anspor t  equations) and the so-called dr if t  fluxes 
and drif t  f o r c e s  they contain. Concrete  express ions  fo r  
these  fluxes and f o r c e s  a r e  given in $4.  

An example of the use of our  t ranspor t  equations i s  
given in 95, where  p lasma rotation in a tokamak is con- 
s idered.  The r e s u l t s  a r e  discussed in 96. 

$2. COLLISIONAL DRIFT KINETIC EQUATION 

T o  der ive  the collisional dr i f t  kinetic equation we used 
the  r e s u l t s  of the  dr if t  theory of charged part ic le  mo- 
tion, presented in Refs. 10-13. 

We represen t  the par t i c le  velocity v in the fo rm 

v,=u,(n cos 6+b sin 0)  

H e r e  v,, and v, a r e  the "smoothed" longitudinal velocity 
and t r a n s v e r s e  osci l la tory velocity of the part ic le;  8 i s  
the phase of the part ic le  cyclotron rotat ion;  V,= cE 
x h / ~  is the part ic le  dr if t  velocity in c rossed  magnetic 
and e lec t r ic  fields B and E; h =  B/B is a unit vector  
along the magnetic field; n and b a r e  mutually perpen- 
dicular  unit vec tors  t r a n s v e r s e  t o  the magnetic field, 
w,= e ~ / r n c  i s  the part ic le  cyclotron velocity, e  and rn 
a r e  the part ic le  charge  and m a s s ,  and c i s  the speed of 
light. 

We represen t  the distribution function of each parti- 
c le  spec ies  in the f o r m  

w h e r e 7  is independent of the angle 9, and j is l inear  in 
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the f i r s t  harmonics of 9. 

The f u n c t i o n j  i s  connected w i t h 7  by the relation 

Here C i s  the collision te rm,  and u,, u,', and u," a r e  
the velocities of the particle centrifugal dr i f t s  due re -  
spectively to  the curvature of the magnetic field, to  the 
electr ic  drift,  and to  the joint influence of both: 

Finally, 

The equation for 7 i s  

Here 

( ) denotes averaging over 8. 

The quantities dr/dt,  dv,,/dt, d(v?/2)/dt a r e  defined 
by the relations 

dull e -=- E,, + 2 div h - ~ U ~ V  I ~ B + U , , V , ( ~ V )  h+vE(vx~)h ,  
dt m 2 2v1, 

(2.10) 
d(vL2/2)/dt=- {v,, div h+div Vx+VE(hV) h-.uRV In B) v12/2. 

Here  El, = E x  h i s  the longitudinal component of E, u, 
= UR+ UB, 

u.-3vLz/2, oL=[hXV In B]/oo. (2.11) 

The appearance of the weighting factor  G  in (2.8) i s  
due to the use  of the smoothed variables u,, and v,. 
The volume element in the smoothed-velocity space i s  
defined a s  

dv=Gv,dv,avlldtl. (2.12) 

The quantity div(G[) in (2.8) contains t e r m s  that a r e  
quadratic in the spatial gradients. These t e r m s  cor re-  
spond to  well-known drift  effect^.^^'^ When account is 
taken of these effects we must retain, generally speak- 
ing, a l so  t e r m s  with u,vlnB in expressions (2.10) for 
dv,,/dt, d(v:/2)/dt. These t e r m s  can also be important 
in problems of high-pressure plasma in a curvilinear 
magnetic field. In that c a se  we must take into account 
the difference between G  and unity. At low plasma 

pressure  o r  if the magnetic-field curvature i s  neglect- 
ed, we can se t  G =  1 and neglect the t e r m s  with u,VlnB 
in dv,,/dt and d(u?/2)/dt. This  i s  the approximation 
most frequently employed. 

The t e r m  ~ ( 7 )  in the right-hand side of (2.8) i s  
standard in the collisional drift kinetic equation scheme 
(see,  e.g., Refs. 2 and 5). T e r m s  with the vector a in 
the functions f ,  q ,  and S [see (2.9)] describe collision 
processes  connected with the oscillating part  of the dis-  
tribution function. They a r e  responsible for the effects 
of order  v / w ;  noted in 51 (see  a l so  $4). 

g3. DRIFT TRANSPORT EQUATIONS 

In analogy with Ref. 1, we express  the longitudinal 
particle velocity in the form v,, = w,, + V,,, where w,,  and 
V,, a r e  respectively the random and directed velocities. 
In the variables ( t ,  r, w,,, v,) Eq. (2.8) means  that 

It i s  necessary accordingly to make in (2.4) the sub- 
stitution V- v - V V , , ~ / ~ W , , .  

We put 

f=F(I+Q)IG. 

Here 

F=n(m/ZnT)": exp (-mw2/2T) ; (3.3) 

w2 = wfI2+ vL2; n and T a r e  the density and temperature 
of the corresponding plasma component; iP i s  a certain 
small  increment satisfying the conditions 

Integrating (3.1) with respect  to  velocity with weights 
1, mw,,, mw2/2, we obtain 

da/dt+div nU=O, (3.5) 
mn(aV,,ldt+UV V,,) +div P=R,,, (3.6) 
V/,d(nT)/at+dir S+PV V,=Q. (3.7) 

Here n u ,  P ,  and S have the respective meanings of the 
drift fluxes of the density, longitudinal momentum, and 
thermal energy, while R,, and Q stand for  the longitudin- 
al  force acting on the considered plasma component and 
for the change of the thermal energy of this  component. 
By definition 

(nu, P, S)= J (1, mw,,, rnwV2)E dv, (3.8) 

where R,,,  and Q, a r e  the longitudinal force and the heat 
exchange connected with f, 

We can introduce a l so  the macroscopic fluxes of the 
part icles  (nV), of the longitudinal momentum (Pm) ,  and 
of the thermal energy (Sm):  

(nv, Pm, Sm) = j (1, mwll, mw2/2)vf dv. (3.11) 

We then have (cf. Refs. 10 and 12) 
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(nV, P", S'") = ( n u ,  P ,  S )  -rot {h (I,, I,, I , ) / U ~ ) ,  (3.12) 

( IY ,  I*, Is)  = j  ( I ,  mw,, mwZ/2) (vLZ/2)jr dv. (3.13) 

We can therefore replace n u ,  P ,  and S in (3 .5)- (3 .7)  by 
nV, Pm, and Sm. 

9 4. FLUXES AND FORCES 

We represen t  the quantities Y - (U,  V,, P, S, R, ,  , Q)  in 
the form 

Here  Y ( 0 )  is calculated a t  f = F with the collisions ne- 
glected; 3 corresponds to  the non-Maxwellian incre-  
ment 9 F  [see ( 3 . 2 ) ] ;  Y C  is connected with f ' ;  Y ,  
( R , , , , Q C ) ;  V, is the t r a n s v e r s e  par t  of the macroscopic 
velocity V [see ( 3 . 1 2 ) ] .  

4.1. Collisionless Maxwellian parts of the fluxes and forces 

With the aid of the equations of $ 8 2  and 3 we obtain 

U ' " = V ~ , ~ + V ~ +  u!'+ u,, 
v:"=v~+u~+~x [ V p + m n V I I ' ( h V ) h l l m n ~ ~ ,  

S'o'=3/2p (VI,h+V,+UE) +siO' ,  

Ria' =n{eEll+Tdiv ~ + ~ V , , V , ( ~ V ) ~ + ~ V , ( V ~ V ) ~ - T V ~ ~ Q ~ ~ V  l nB) ,  
Q'O'=-p ( I;,, dir h+d~v V K - V l ~ ~ i i V  1, B ) .  

Here p = nT,  

u ~ ' = T  ~ X [ V  In B+(hV)hI/moB+Vli2[h,  (hV)h] /oa ,  

s?= { ' / , T ~ X [ V  l n ~ + ( h ~ ) h ] + ~ / ~ m l ~ ~ ~ ~ [ h ~ ( h ~ ) ~ ~ l ] ,  (4 .3 )  
mo, 

t~E=vl,x,+ [hX (VEV) V,]/oe.  

Equations (4 .2 )  and (4 .3)  can be obtained f rom Ref. 1 .  

4.2. Non-Maxwellian parts of ionic fluxes and forces 

We express  P in t e r m s  n,,  and q , , ,  where 

(rill, q l l )  =n (lull2, ~ ~ ~ ~ ~ 1 2 )  F Q  dv. (4 .4)  

Here  n,, = n,, i s  the "longitudinally longitudinal" com- 
ponent of the viscosity t ensor  and q,, i s  the longitudinal 
component of the heat-flux vector. 

We obtain in analogy with (4 .2 )  

~=nllh+zl,q,l (30°+d) ,  S^=qllh, R,,=-z~~ div h/2, (4.5) 
3 

~ = - [ ~ ~ d i v h + d i v ~ ~ - - ~ ~ ( h ~ ) h  2 2 1 . 
The quantities n,, and q,,  a r e  obtained in analogy with 

Ref. 9 by expanding the  distribution function in Sonine- 
Laguer re  polynomials. In a n  approximation with two 
polynomials we obtain f o r  the ions 

Here  

T 2 r=-- m (2a"--a-L)xr 5 1.27hVqll, 

( x ~ , x , , x , , x , ) - - ( V I n T ,  V l n n ,  PInB, V l n V , , ) .  (4 .7)  

In ( 4 . 6 ) ,  v r l / ~ ~ ,  where  ri is the charac te r i s t i c  t ime  of 
the ion-ion collisions and is defined in Ref. 1 .  

Expression (4 .6)  f o r  q , ,  coincides with that in  Ref. 1 .  
The expression for  a,, contains contributions accounted 
for  in the scheme of Ref. 1 ,  a s  well a s  some additional 
t e r m s ,  including t e r m s  with the  gradient of the longi- 
tudinal heat flux. On the whole, therefore,  expression 
(4 .6 )  f o r  a,,  cannot be obtained by using the scheme of 
Ref. 1 .  

4.3. The ?-related parts of the ion fluxes and forces 

The ionic quantities a r e  of the f o r m  

UiC=V,I"= [R,,'X h]lm,noBs 
P,'=[K,i'X h] /oBi ,  S.'=-2vinT2V, In TlmioBi', 

(4 .8)  
R,,je=a,ll(K,.'+V,,RI~)+ {[R,,"Xh] (VEV)h-h([R,icXh] V)VE) /oB ,  

QiC=-RLic (Vjl2~i"+UEt) -KIIC { V l l ~ , l l + ~ K  
- [h,  (VEV) X h] 1 0 ~ ~ )  - ~ ~ i - ' h  ( [ K l i c X  h] V )  VE. 

Here  V, v - h(hV) , and 

The upper and lower indices p = 1 , 2 , 3  denote the co- 
variant  and contravariant  components of the correspond- 
ing vectors .  The  vector RLiC denotes  the t r a n s v e r s e  
fr ic t ion force  exerted by the e lec t rons  on the ions. An 
expression for  RLiC will be given in subsection 4.4. 

Express ions  ( 4 . 8 )  fo r  U i C  and Sic can be obtained us- 
ing the scheme of Ref. 1 .  T o  obtain express ions  fo r  
PiC ,  R l I cC ,  and QiC with the aid of the fo rmulas  of Ref. 1 
we must  make the fo rmal  substitution V,-V,. 

4.4. Flux and force components that depend on the 
electron-electron and electron-ion collisions 

Recognizing the smal lness  of the electron m a s s  com- 
pared with that of the ion, we neglect the electronic  
quantity n,, .  The electronic  q,, i s  assumed to be1 

where  nlle= 3.16n~, /m,v , ;  v ,= l / r , ,  re is the charac te r -  
is t ic  e lectron-electron collision t ime  defined in Ref. 1.  
We take th i s  q,,, into account only in the expression for  
S,. The formulas  of type (4.5) in the c a s e  of e lectrons 
mean  there fore  

We take the electronic  analog of Eqs.  (4 .8 )  and (4.9) 
t o  be (cf.  Ref. 1 )  

By the s a m e  token we neglect the t r a n s v e r s e  electronic 
viscosity, as well a s  the " transverse" electron heat r e -  
l ease .  
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The expression for the electronic t ransverse  friction 
force RQC= -R,,C i s  chosen to be1 

R,."=-v.[hX V  (p.+p,)l /~a.+'l,nv.[h X V T e ]  loB.+m.nv.(UE,+VIIiloP). 

(4.13) 

Finally ,' 
Rue.--Rll,,=-0,51m,nv,(VI,.-V,d-0,71nVIIT., 

(4.14) 
Q..--Q.i--3v.n(T.-Tt)m.lmi. 

Thus, al l  the quantities that depend on the electron 
collisions a r e  obtained in accord with the scheme of 
Ref. 1. This  is the consequence of neglecting the vis- 
cosity and the t ransverse  thermal conductivity of the 
electrons. 

55. PLASMA ROTATION VELOCITY IN A TOKAMAK 

The problem of rotation of a collision-dominated 
plasma in a tokamak was  discussed ea r l i e r  by Po; 
gutse,15 Kovrizhnykh,16 Hazeltine,17 and Rozhanskii and 
Tsendin.18 Of greatest  interest  i s  Hazeltine's paper. 
By solving the kinetic equation exactly (without the f i r s t  
few t e r m s  of an expansion in Sonine-Laguerre polynomi- 
als) ,  Hazeltine17 obtained the following expression for 
the plasma poloidal rotation velocity U,: 

Ue=kUr. (5.1) 

Here U, = cT;/eB, i s  the so-called ion drift velocity due 
t o  the gradient temperature,  the prime denotes the de- 
rivative with respect  to the minor radius of the torus,  
B, i s  the average toroidal magnetic field, 0 i s  the po- 
loidal angle (minor azimuth of the torus) ,  and k = -2.1 
i s  a numerical coefficient obtained in Ref. 17. 

In the derivation of (5.1) it was  assumed in Ref. 17 
that the rat io of the toroidal plasma velocity U, - V,, 
(cp is the toroidal angle) t o  the ion thermal  velocity i s  
small: V,,/vTi -0. We shall examine below a derivation 
of (5.1) from the drift t ransport  equations cited above, 
and generalize (5.1) to  include the case  of finite V,,/.L',~. 
This  generalization i s  of interest for a tokamak with 
longitudinal injection of fast neutral atoms. 

Assuming the plasma t o  be electrically quasineutral,  
we represent  the known continuity equation for  the elec- 
t r i c  charge density in the form 

div j=O, (5.2) 

where j i s  the electr ic  current  density. Averaging (5.2) 
over the magnetic surface, we obtain 

Here g i s  the determinant of the metr ic  tensor,  ja i s  the 
ath derivative of the component of the vector j ,  and the 
ze ro  subscript denotes averaging over 8. We use the 
coordinate system (a, 8, cp) described in Ref. 19, s o  that 
the coordinate a denotes the distance along the minor 
radius of the torus.  

We calculate ja using (3.12), (4.1), and (4.2). Equa- 
tion (5.3) reduces then to  

The contributions of U, and UC to (5.4) a r e  negligible. 

Taking into account (4.3), (4.5), and the expressions 

given in Ref. 19  for  the met r ic  coefficients, we obtain 
f rom (5.4) 

[ (2~+miVllzE+'/,it,,) sin 01 ,=0. (5.5) 

Here p = 5, + pi; the tilde designates that part  of the 
quantity which oscillates relative to 8. 

Summing the electron and ion equations of motion 
(3.6) we obtain 

j+il,=-emivI," cos 8, (5.6) 

where E = a/R, and R i s  the magnetic-axis curvature 
radius. We_ neglect the oscillations of the electron tem- 
perature,  Te - 0. Therefore 

According to (4.6) 

Here  q = ~B,/RB, i s  the tokamak margin coefficient and 
B e  i s  the poloidal magnetic fieid. In deriving (5.8) we 
used the fact that a 2 ~ i / a 0 2  = -T i ,  since the oscillating 
quantities a r e  linear functions of cosf? o r  sine. 

From the ion-heat balance equation (3.7) we obtain 

In deriving (5.9) we took it into account that 

where Ea i s  the radial  electr ic  field 

Finally, the quantities P and y defined in (4.7) take in 
the present case the form 

Using (4.6) and (5.6)-(5.11) we obtain from (5.4) the 
sought equation for  U,: 

Here a! = vIl2/c,2 and c,2 = (T,+ T,)/mi i s  the speed of 
sound squared. 

It follows from (5.12) that an equation such a s  (5.1) 
holds not only in the ca se  v,,/c, - 0 considered in Ref. 
17, but a l so  at a rb i t ra ry  v, , /c, .  Only the coefficient k 
depends on v,,/c,. It remains  therefore to consider only 
the k(a) dependence. 

At a!<< l / b  it follows from (5.12) that 

The smal l  quantitative difference between our numerical 
coefficient (5.13) and k = -2.10 obtained in Ref. 17 i s  due 
t o  the fact, noted above, that Hazeltine17 solved the kin- 
etic equation exactly, while we used an approximation 
with two Sonine-Laguerre polynomials. 

We note a l so  that according to Pogutse15 U,= 0 both 

78 Sov. Phys. JETP 56(1), July 1982 A. B. ~ikhaTlovskfand V. S. Tsypin 78 



a t  U,= 0 and UT#O. Pogutse 's  e r r o r  a t  UT#O is due t o  function [ ~ q s .  (4.8) and (4.9)]. Finally, the fourth par t  
h i s  use  of  ragi in ski's expression' f o r  the visco@y const i tutes  the longitudinal f r ic t ion force  and the heat 
tensor ,  which d o e s  not hold a t  VT# 0. Rozhanskii and exchange between the ions  and e lec t rons  I E ~ .  (4.14)). 
Tsendin," who followed Pogutse's approach,15 a r e  
wrong for  the s a m e  reason.  Kovrizhnykh" obtain f o r  
U, in place of (5.1) s o m e  e r roneous  expression that de-  
pends not only on the tempera ture  gradient  but a l so  on 
the density gradient and on the temperature.  H i s  e r r o r  
is due t o  an incorrect  t ransformation of the expression 
for  the viscosity tensor .  Were  h i s  calculations c o r r e c t ,  
Kovryzhnykh would obtain Eq. (5) with k = -1, s ince  h i s  
hydrodynamics w a s  of the  type used in Refs. 7 and 8; 
s e e  a l s o  Ref. 20. 

At a! - l / b  Eq. (5.13) is replaced by 

It  is seen that the  p lasma poloidal rotat ion r e v e r s e s  di- 
rection a t  a - l / b .  We note a l s o  that  b >> 1 ,  s ince  the 
hydrodynamic descript ion d o e s  not hold a t  b 2 1. 

At l / b s  a << 1 we have in place of (5.14) 

According to (5.15) the rotation velocity r e a c h e s  a 
maximum at  

In th i s  c a s e  

At a!b>> 1 we have in lieu of (5.15) 

s o  that k = 5/2 a s  a! -.o. 

$6. DISCUSSION OF RESULTS 

We have derived the collisional dr i f t  kinetic equation 
(2.8) that takes into account the many d i v e r s e  physical 
effects noted in 811 and 2. The equation can be used a t  
var ious d e g r e e s  of collision dominance over the plas- 
ma,  i .e. ,  in the Pfirsch-SchlLiter (frequent-collision), 
plateau, and "banana" r e g i m e s  ( s e e  Ref. 21 for  the r e -  
gime classification). With the aid of th i s  equation we 
obtained in the frequent-collision reg ime Eqs.  (3.5)- 
(3.7) fo r  the density, longitudinal velocity, and temper-  
a ture;  these equations depend on the so-called dr if t  
fluxes and f o r c e s  defined by Eqs .  (3.8)-(3.10). These 
forces  and fluxes compr i se  s u m s  of four  physically dif- 
ferent p a r t s  [see (4.1)]. One par t  cor responds  t o  the 
approximation of a col l is ionless  dr if t  kinetic equation 
with a Maxwellian distribution function [ ~ q s .  (4.2) and 
(4.3)]. The second is connected with a non-Maxwellian 
collision-dominated increment  t o  the middle par t  of the 
distribution function [ ~ q s .  (4.4)-(4.7), (4.10), (4.11), 
and (4.13)]. The third i s  determined by collision effects  
connected with the oscillating par t  of the distribution 

.. 

The  grea tes t  difference between our t ranspor t  equa- 
t ions and the ~ r a g i n s k ;  s tandard equations1 is that we 
take into account the dependence of the viscosity on the 
heat  flux. T h i s  w a s  pointed out a l s o  in  Refs. 4 and 5, in 
which, however, no prescr ipt ion w a s  given f o r  the cal- 
culation of the viscosity in the c a s e  of a curvi l inear  
magnetic field. 

The effectiveness of our  d r i f t  t r anspor t  equation is 
demonstrated f o r  p lasma rotat ion i n  a tokamak in 85, 
where we have confirmed in kinetic result17 and gener- 
alized it to  the c a s e  of finite v,,/v,,. 

We a s s u m e  that o u r  d r i f t  t r anspor t  equations will  be 
found useful a l so  f o r  the ana lys i s  of the r o l e  of viscosity 
and heat conduction in the  t rea tment  of instabi l i t ies  of 
drift-hydromagnetic type in complex magnetic configur- 
ations, as well for  t ranspor t  phenomena i n  these  con- 
figurations in  the Pfirsch-SchlUter regime.  
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