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The problem of describing a collision-dominated plasma in a strong magnetic field in terms of the transport
equations is investigated. It was pointed out earlier that the standard Braginskii-type equations are limited in
scope, and various generalizations of these equations to make them applicable to a plasma in a magnetic field
with straight force lines were proposed. In contrast, the present authors derive transport equations for an
arbitrary magnetic-field geometry, using as a basis a drift kinetic equation with a collision term. The obtained
system of transport equations reduces to equations for the density, longitudinal velocity, and temperature for
each plasma component. These equations contain the so-called drift fluxes and forces, constituting certain
combinations of higher moments. By way of example of the use of the drift transport equations, the problem
of plasma rotation in a tokamak is considered. The authors propose that the new transport equations will be
found useful also for an analysis of the role of viscosity and thermal conductivity in the instabilities and
transport phenomena in a plasma confined by a curvilinear magnetic field.

PACS numbers: 52.25.Fi, 52.25.Dg, 52.55.Gb

§1. INTRODUCTION

It is known that a collision-dominated plasma can be
described with the aid of the equations for a certain
aumber of the first moments of the distribution function
of the corresponding particle species (traiisport equa-
tions). In the presence of a strong magnetic field the
standard transport-equation systems' have a narrow
range of validity, since they take into account neither
the influence of the heat flux on the viscosity nor a
number of other effects that play an important role in
the stability and plasma transport across a magnetic
field.>** Several methods of modifying the transport-
type equations were therefore proposed in the past.}
Some are based on the use of a series expansion in re-
ciprocal powers of the magnetic field,*® and others on
Grad’s idea’ of a multimoment description of the plas-
ma.®? It must be noted that the aim in both mentioned
groups of papers was application to a plasma in a mag-
netic field with straight force lines. In view of progress
in the research into magnetic traps (both toroidal and
open), it seems important to obtain transport equations
for an arbitrary magnetic-field geometry. This is the
purpose of the present paper, in which we derive trans-
port equations corresponding to the so-called drift ap-
proximation.'®*? Qur approach, as well as some
others,*™® is thus based on an expansion in reciprocal
powers of the magnetic field. Interest attaches also to
further refinement of the multimoment approaches of
the type described in Refs. 7-9, with an aim at taking
into account effects that are outside the scope of the
drift approximation.

The starting point in our equation is the collisional
drift kinetic equation. This equation is derived in §2.
We take into account here two types of collision effects
connected with the averaged and oscillating parts of the
distribution functions. The collision effects of the sec-
ond type are well known in the usual scheme! and are of
order v/wB2 in the continuity and heat-balance equations,
and of order v in the transverse-motion equation (v is
the collision frequency and wy is the cyclotron frequen-
cy). This is apparently the first time that account is
taken of these effects in the drift kinetic equation
scheme.
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Another distinguishing feature of our drift kinetic
equation is that it includes effects of a strong electric
field (strong in the sense defined by Morozov and
Solov’ev!3). In this respect our approach is close to
that of Hazeltine and Ware.'* In particular, we take in-
to account electric centrifugal drift effects.

In §3 we use the frequent-collision approximation and
replace the kinetic equation by a system of equations
for the density, longitudinal velocity, and temperature.
We elucidate also the structures of these equations
(drift transport equations) and the so-called drift fluxes
and drift forces they contain. Concrete expressions for
these fluxes and forces are given in §4.

An example of the use of our transport equations is
given in §5, where plasma rotation in a tokamak is con-
sidered. The results are discussed in §6.

§2. COLLISIONAL DRIFT KINETIC EQUATION

To derive the collisional drift kinetic equation we used
the results of the drift theory of charged particle mo-
tion, presented in Refs. 10-13.

We represent the particle velocity v in the form

2
U, vy

hroth) h+vl(1—— 5

v=vg+vl,( 1+ hrot h) ,

@pYy ©g

(2.1)

v,=v, (ncos O+bsind).

Here v, and v, are the “smoothed” longitudinal velocity
and transverse oscillatory velocity of the particle; 9 is
the phase of the particle cyclotron rotation; Vy=cE

x h/B is the particle drift velocity in crossed magnetic
and electric fields B and E; h=B/B is a unit vector
along the magnetic field; n and b are mutually perpen-
dicular unit vectors transverse to the magnetic field,
wy = eB/mc is the particle cyclotron velocity, e and m
are the particle charge and mass, and c is the speed of
light.

We represent the distribution function of each parti-
cle species in the form

f=F+f,

where)7 is independent of the angle 9, andf is linear in

(2.2)
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the first harmonics of 3.

The functionf is connected withjT by the relation

f=fo+fc' (23)
a3 bi]
f"_v*{[‘xvf] +"“( do/2 00,72 ) f
— L ] f af
(ot +ugt) 2/2}+ oo (2.4)
fe —m—aﬁc(ﬂ) (2.5)

Here C is the collision term, and u,, u;*, and u;" are
the velocities of the particle centrifugal drifts due re-
spectively to the curvature of the magnetic field, to the
electric drift, and to the joint influence of both:

1
ugt =— [h X (VV) Vi),
©p

— = v
' i (2.6)
0"=E[hX(hV)h], u,=—m—ﬂ'hX[(VEV)h+(hV)VE].
Finally,
Ay= - ([ XB) VeV hh (v, XBID) V). (2.7)
The equation for f is
gl e e+t en |-, (2.9
Here
§=fd—r+1—[axh], §=fdl;*:/2—a(ug+ug),
n=F - ""+u,,a"a+—-{[a><h](v,V)h h([aXh]V)Vs),  (2.9)

a=<v,C(f0)>, ue=ugttug, G=1+2——hroth,

®p

( ) denotes averaging over 9.

The quantities dr/dt, dv,/dt, d(v,2/2)/dt are defined
by the relations

d
E’tl = vh+Vstuptug,

o _ Eu + 25 divh — 0,V 1n B,V (BV) h+ Ve (VaV)h,
at 2 20,
(2.10)
d(v,*/2) /dt=—{v, div h+div Vs+Ve (hV ) h—-uaV In B}v, /2.

Here E = Ex h is the longitudinal component of E, u,
=uy+ up,

uz=0v,%/2, ot=[hXV InB]/@s. (2.11)

The appearance of the weighting factor G in (2.8) is
due to the use of the smoothed variables v, and v .
The volume element in the smoothed-velocity space is
defined as

dv=Gv,dv,av,dd. (2.12)

The quantity div(G&£) in (2.8) contains terms that are
quadratic in the spatial gradients. These terms corre-
spond to well-known drift effects.?'® When account is
taken of these effects we must retain, generally speak-
ing, also terms with u,VInB in expressions (2.10) for
dv,/dt, d(v2/2)/dt. These terms can also be important
in problems of high-pressure plasma in a curvilinear
magnetic field. In that case we must take into account
the difference between G and unity. At low plasma
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pressure or if the magnetic-field curvature is neglect-
ed, we can set G=1 and neglect the terms with u,VInB
in dv,/dt and d(v2/2)/dt. This is the approximation
most frequently employed.

The term C(f) in the right-hand side of (2.8) is
standard in the collisional drift kinetic equation scheme
(see, e.g., Refs. 2 and 5). Terms with the vector a in
the functions £, 7, and ¢ [see (2.9)] describe collision
processes connected with the oscillating part of the dis-
tribution function. They are responsible for the effects
of order v/wg? noted in §1 (see also §4).

§3. DRIFT TRANSPORT EQUATIONS

In analogy with Ref. 1, we express the longitudinal
particle velocity in the form v,=w,+ V,, where w, and
V, are respectively the random and directed veloc1t1es
In the variables (¢,r,w,,v,) Eq. (2.8) means that

. a
:—Z+i{div(ag)+—-an +—a(v 3y 6

av,
- TaT”oZ;IGf’LVV“—_GE]} (3.1)

It is necessary accordingly to make in (2.4) the sub-
stitution V=V - vV,8/0w,.

We put
F=F(1+0)/G (3.2)
Here
F=n(m/2aT)" exp (—mw?/2T); (3.3)

w?=w,2+ v % n and T are the density and temperature
of the corresponding plasma component; & is a certain

small increment satisfying the conditions
j (1, wy, w*) FOV, dv, dw,=0. (3.4

Integrating (3.1) with respect to velocity with weights
1, mw,, mw?/2, we obtain

an/at+div nU=0, (3.5)
mn(dV,/at+UVV,)+div P=R,, (3.6)
3/,0(nT)[dt+div S+PVV,=Q. (3.7)

Here nU, P, and S have the respective meanings of the

drift fluxes of the density, longitudinal momentum, and

thermal energy, while R, and @ stand for the longitudin-
al force acting on the considered plasma component and
for the change of the thermal energy of this component.

By definition

(nU,P,8)= [ (1, mwy, mu?/2)§ dv, (3.8)

By Q)=m [ (n, wih+)dv+(Ric, Q0), (3.9)

where R, and @, are the longitudinal force and the heat
exchange connected with f,

(Rye, @) =m | (wy, w*/2)C () dv. (3.10)

We can introduce also the macroscopic fluxes of the
particles (nV), of the longitudinal momentum (P™), and
of the thermal energy (S™):

(nV, P, S™) = J' (1, mw,, mw*/2)vf dv. (3.11)
We then have (cf. Refs. 10 and 12)
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(»V, P, S™)=(nU, P, S)—rott{h(Iy, Is, Is)/ws}, (3.12)

Iy Io Is) = J (1, mwy, mw*/2) (v,2/2)F dv. (3.13)

We can therefore replace nU, P, and S in (3.5)=(3.7) by
nV, P™ and S™.
§4. FLUXES AND FORCES

We represent the quantities ¥=(U,V,P,S,R,,Q) in
the form

Y=Y O+9+Y+Y.. (4.1)

Here Y(0) is calculated at f= F with the collisions ne-
glected; ¥ corresponds to the non-Maxwellian incre-
ment &F [see (3.2)]; Y° is connected with f¢; Y,
=(R,.,Q.); V, is the transverse part of the macroscopic
velocity V [see (3.12)].

4.1. Collisionless Maxwellian parts of the fluxes and forces

With the aid of the equations of §§2 and 3 we obtain
UO=Vh+Vs+US+Us,
V.=V +Ug+hX [Vp+mnV?(hV)h]/mnos,
P =p{h+xz+2V,[hX (hV)h]/ws}, (4.2)
S©=%/,p(V;h+V+Ug)+S5",
R,” =n{eE,+T divh+mV,V;(hV)h+mV:(V:V)h—TV,6"V In B},
Q©@=—p(V, div h+div Vg—V,%¢'V In B).
Here p =nT,
US"=ThX[VInB+(hV)h]/mes+V2:[h, (hV)h]/ws
sS!‘=7n%{-"/zThxw1nB+(hV)h]+=/2mV.f[h><(hV)h]), (4.3)
B
UE=V”%5+[hX (vsv)vsl/(t)s.

Equations (4.2) and (4.3) can be obtained from Ref. 1.

4.2. Non-Maxwellian parts of ionic fluxes and forces

We express Y in terms 7, and ¢,, where
(auy, q")smj (w,*, ww*/2) FO dv. (4.4)

Here n, = m,, is the “longitudinally longitudinal” com-
ponent of the viscosity tensor and g, is the longitudinal
component of the heat-flux vector.

We obtain in analogy with (4.2)
O=(0'—0/2) ny/mn, V.=hX[37,(hV)h=V,]/2mnes,
P=nh+/sq,(30'+0%), S=gh, B,=—mdivh/2, (4.5)
=n—2"-[Vndivh+divVE—§—V,(hV)h].
The quantities 7, and ¢, are obtained in analogy with
Ref. 9 by expanding the distribution function in Sonine-

Laguerre polynomials. In an approximation with two
polynomials we obtain for the ions

T . (4.6)

n
mv

y=— %’;—T (0.968—0.59y), ¢,=—3.9

Here
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p=—div Ve—3Vz (hV ) h+V,h (2x, +25) +2Ver %z

T
+ — (20"—0") (%, +2%;) + V20" (4xy—x5) + 4—-th“,
m 5p

T 2
=— ';{' (20"—0"‘)5€r —'5—" . 1.27th“,
(%1, %, %5, %y)=(VInT, Vinn, VIinB, VInV,). (4.7)

In (4.6), v=1/7,, where 7, is the characteristic time of
the ion-ion collisions and is defined in Ref. 1.

Expression {(4.6) for g, coincides with that in Ref. 1.
The expression for 7, contains contributions accounted
for in the scheme of Ref. 1, as well as some additional
terms, including terms with the gradient of the longi-
tudinal heat flux. On the whole, therefore, expression
(4.6) for m, cannot be obtained by using the scheme of
Ref. 1.

4.3. The °-related parts of the ion fluxes and forces

The ionic quantities are of the form
Ue=V =[R < Xh]/minws,
Pe=[K *Xh]/ws, Sc=—2vinT?V InT/mws?, (4.8)

Rye=0" (K. +V\Ri)+{[RuXh] (VeV)h—h([R.Xh]1V) Ve}/0s,
Qic=—RL.‘° ( VNZUA"'*‘Un) _KJJ'C (V||0i"+“s
—[h, (V£V)Xh] /(ﬂm} — o5 h([K £ Xh] V) Ve,

Here V,=V-h(hv), and

K.¢ =—5i£”—‘ {hX[VV,+V,(hV)h+(hV) V. ]+R[hXV]Vs). (4.9)

The upper and lower indices p=1,2,3 denote the co-
variant and contravariant components of the correspond-
ing vectors. The vector R, denotes the transverse
friction force exerted by the electrons on the ions. An
expression for R, © will be given in subsection 4.4.

Expressions (4.8) for U, and S can be obtained us-
ing the scheme of Ref. 1. To obtain expressions for
PS, R, and Q f with the aid of the formulas of Ref. 1

we must make the formal substitution V, = V.

4.4. Flux and force components that depend on the
electron-electron and electron-ion collisions

Recognizing the smallness of the electron mass com-
pared with that of the ion, we neglect the electronic
quantity m,. The electronic g, is assumed to be!

que=—%hV T A+0.71nT. (V,.— V), (4.10)

where »,¢=3.16nT,/myv,; v,=1/7,, T, is the character-
istic electron-electron collision time defined in Ref. 1.
We take this ¢,, into account only in the expression for
S . The formulas of type (4.5) in the case of electrons

e
mean therefore
@, Vi, P, By Q)=0, S.=hg,. (4.11)

We take the electronic analog of Eqs. (4.8) and (4.9)

to be (cf. Ref. 1)
U, =V, =—Us, S, =—4,66v.nT.’V InT./m.os.,
(4.12)
(P, Ru-ey Q. K.L-C) =0.

By the same token we neglect the transverse electronic
viscosity, as well as the “transverse” electron heat re-
lease.
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The expression for the electronic transverse friction
force R, °= -R, is chosen to be'

R .f=—wv.[hXV (P.+Pf)] @t anve [hXVT,] @5, +m.nv, (UEi+an=oi“) .
(4.13)
Finally,!

Ryee=—Ry=—0,51m,nv,(V;,—V,) —0,71nV,T., (4.14)
Qee=—Qci=—3v,n(T,—T) m./m,.

Thus, all the quantities that depend on the electron
collisions are obtained in accord with the scheme of
Ref. 1. This is the consequence of neglecting the vis-
cosity and the transverse thermal conductivity of the
electrons.

§5. PLASMA ROTATION VELOCITY IN A TOKAMAK

The problem of rotation of a collision-dominated
plasma in a tokamak was discussed earlier by Po-
gutse,'® Kovrizhnykh,'® Hazeltine,!” and Rozhanskii and
Tsendin.'® Of greatest interest is Hazeltine’s paper.

By solving the kinetic equation exactly (without the first
few terms of an expansion in Sonine-Laguerre polynomi-
als), Hazeltine'” obtained the following expression for
the plasma poloidal rotation velocity U,:

Us=kU,. (5.1)

Here U, = cT!/eB, is the so-called ion drift velocity due
to the gradient temperature, the prime denotes the de-
rivative with respect to the minor radius of the torus,
B, is the average toroidal magnetic field, 6 is the po-
loidal angle (minor azimuth of the torus), and 2= -2.1
is a numerical coefficient obtained in Ref. 17.

In the derivation of (5.1) it was assumed in Ref. 17
that the ratio of the toroidal plasma velocity U, =V,
(¢ is the toroidal angle) to the ion thermal velocity is
small: V,/v,,~0. We shall examine below a derivation
of (5.1) from the drift transport equations cited above,
and generalize (5.1) to include the case of finite V,,/v“.
This generalization is of interest for a tokamak with
longitudinal injection of fast neutral atoms.

Assuming the plasma to be electrically quasineutral,
we represent the known continuity equation for the elec-

tric charge density in the form
div j=0, (5.2)

where j is the electric current density. Averaging (5.2)
over the magnetic surface, we obtain

(Vg i) 0=0. (5.3)

Here g is the determinant of the metric tensor, j®is the
ath derivative of the component of the vector j, and the
zero subscript denotes averaging over 6. We use the
coordinate system (a, 8, ¢) described in Ref. 19, so that
the coordinate g denotes the distance along the minor
radius of the torus.

We calculate j° using (3.12), (4.1), and (4.2). Equa-
tion (5.3) reduces then to
[Ygn (U U +0,)*1:=0. (5.4)
The contributions of U, and U° to (5.4) are negligible.

Taking into account (4.3), (4.5), and the expressions
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given in Ref. 19 for the metric coefficients, we obtain
from (5.4)

[ (2p+m.V,2+/,7,) sin 6] ,=0. (5.5)

Here2;= 5‘+ Z;i; the tilde designates that part of the
quantity which oscillates relative to 6.

Summing the electron and ion equations of motion
(3.6) we obtain

ptr,=—emV,? cos 6, (5.6)

where € = a/R, and R is the magnetic-axis curvature
radius. We neglect the oscillations of the electron tem-
perature, T,—~0. Therefore

p=a(T+T.)+nT. (5.7
According to (4.6)
_2 b 0g . .3 1 maigR
Ti=3 nvigR 90 ' =539 T, (5.8)

Here g = aB,/RB, is the tokamak margin coefficient and
B, is the poloidal magnetic field. In deriving (5.8) we
used the fact that BzTi/ae2 = -T,, since the oscillating
quantities are linear functions of cosf or siné.

From the ion-heat balance equation (3.7) we obtain

R 5
@ =2a—-r. [( U, ——2-U,) 7i+5¢ U cos o]‘ (5.9)
In deriving (5.9) we took it into account that
U=t _ B cp (5.10)

qR B enB,’
where E is the radial electric field.

Finally, the quantities g8 and y defined in (4.7) take in
the present case the form

3 12 (94 gR __ om
= Ayor, U __)_ Uo—Usi ]
PR [5p¢ ( 36 T2 Uosr) —(Ue=Un)sin®

(5.11)
L (1. 200
= qR(1'27 5p; 20 +U7)'
Using (4.6) and (5.6)—(5.11) we obtain from (5.4) the
sought equation for U,

0.96 (*/ot+a) [Us (1+0.192) +U 1 (1.83+0.57a) ]

+s0b[a(Us—*/,Ur) —5U] =0. (5.12)

Here a=V,*/c? and ¢ ?=(T,+ T )/m, is the speed of
sound squared.

It follows from (5.12) that an equation such as (5.1)
holds not only in the case V,/c,~0 considered in Ref.
17, but also at arbitrary V,/c,. Only the coefficient &
depends on V,/c,. It remains therefore to consider only
the k(a) dependence.

At a<«<1/b it follows from (5.12) that

k=Fk,=—1.83. (5.13)

The small quantitative difference between our numerical
coefficient (5.13) and £ = -2.10 obtained in Ref. 17 is due
to the fact, noted above, that Hazeltine!” solved the kin-
etic equation exactly, while we used an approximation
with two Sonine-Laguerre polynomials.

We note also that according to Pogutse'® U,= 0 both
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at Up=0and U, +0. Pogutse’s error at U,#0 is due to
his use of Braginskii’s expression® for the viscosity
tensor, which does not hold at VvI'#0. Rozhanskii and
Tsendin,'® who followed Pogutse’s approach,'® are
wrong for the same reason. Kovrizhnykh!® obtain for
U, in place of (5.1) some erroneous expression that de-
pends not only on the temperature gradient but also on
the density gradient and on the temperature. His error
is due to an incorrect transformation of the expression
for the viscosity tensor. Were his calculations correct,
Kovryzhnykh would obtain Eq. (5) with 2= -1, since his
hydrodynamics was of the type used in Refs. 7 and 8;
see also Ref. 20.

At a~1/b Eq. (5.13) is replaced by

=—1.83+(10/9-0.96) ab. (5.14)

It is seen that the plasma poloidal rotation reverses di-
rection at « ~1/b. We note also that 6> 1, since the
hydrodynamic description does not hold at b< 1.
At 1/b< a <« 1 we have in place of (5.14)
k=5ab/[2*b+9-0.96/2]. (5.15)

According to (5.15) the rotation velocity reaches a
maximum at

a=a.="/5(2/0.96b) . (5.16)
In this case
Knax="15(20/0.96) . (5.17)
At ab> 1 we have in lieu of (5.15)
k=>/,(142/a), (5.18)

so that k=5/2 as a@ ==,

§6. DISCUSSION OF RESULTS

We have derived the collisional drift kinetic equation
(2.8) that takes into account the many diverse physical
effects noted in §§1 and 2. The equation can be used at
various degrees of collision dominance over the plas-
ma, i.e., in the Pfirsch-Schliiter (frequent-collision),
plateau, and “banana” regimes (see Ref. 21 for the re-
gime classification). With the aid of this equation we
obtained in the frequent-collision regime Egs. (3.5)—
(3.7) for the density, longitudinal velocity, and temper-
ature; these equations depend on the so-called drift
fluxes and forces defined by Eqs. (3.8)—(3.10). These
forces and fluxes comprise sums of four physically dif-
ferent parts [see (4.1)]. One part corresponds to the
approximation of a collisionless drift kinetic equation
with a Maxwellian distribution function [Eqs. (4.2) and
(4.3)]. The second is connected with a non-Maxwellian
collision-dominated increment to the middle part of the
distribution function [Eqs. (4.4)-(4.7), (4.10), (4.11),
and (4.13)]. The third is determined by collision effects
connected with the oscillating part of the distribution
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function [Eqs. (4.8) and (4.9)]. Finally, the fourth part
constitutes the longitudinal friction force and the heat
exchange between the ions and electrons [Eq. (4.14)].

'The greatest difference between our transport equa-
tions and the Braginskﬁ standard equations' is that we
take into account the dependence of the viscosity on the
heat flux. This was pointed out also in Refs. 4 and 5, in
which, however, no prescription was given for the cal-
culation of the viscosity in the case of a curvilinear
magnetic field.

The effectiveness of our drift transport equation is
demonstrated for plasma rotation in a tokamak in §5,
where we have confirmed in kinetic result!” and gener-
alized it to the case of finite V,/v,.,.

We assume that our drift transport equations will be
found useful also for the analysis of the role of viscosity
and heat conduction in the treatment of instabilities of
drift-hydromagnetic type in complex magnetic configur-
ations, as well for transport phenomena in these con-
figurations in the Pfirsch-Schlliter regime.
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