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Possible self-focusing regimes of wave beams in a weakly inhomogeneous plasma and the conditions of their
realization are investigated for case of static local nonlinearity. Collisional absorption of wave-beam energy is
considered and the possibility of its enhancement in an inhomogeneous plasma is studied. Simple equations
are derived for the beam width in qualitatively different cases, and the main properties of the solutions of the

equations are established.
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Much progress was made recently in the production
of high intensity radiation beams. It is clear that the
passage of such beams through 2 plasma is accompanied
by strong nonlinear interaction with the medium. One of
the central problems is that of the role of various
mechanisms whereby the energy of the intense wave
beam is dissipated. There are three competing proces-
ses responsible for the absorption of the wave-beam
energy in the plasma: Coulomb collisions, linear trans-
formation of an obliquely incident transverse wave into
a longitudinal wave, and parametric mechanisms (see,
e.g., Refs. 1 and 2). At present, the bulk of the experi-
mental data cannot always be uniquely interpreted, in-
asmuch as at the attained parameters (power, collision
frequency, characteristic plasma density gradient, and
others) these data lie in a region that borders on the
indicated three processes. An investigation of energy
absorption in the transition region is therefore of spec-
ial interest.

It was shown earlier®* that allowance for the trans-
verse dimensions of the wave beam and of the ensuing
self-focusing alters quantitatively the picture of energy
absorption in an inhomogeneous plasma, and also the
ratio between the competing processes. In particular,
it was indicated that at not too high wave-beam powers
an increasing role is assumed by the collision mechan-
ism of absorption. In the cited references, however,
the spatial structure of the field of the self-focusing
wave beam was investigated within the framework of a
certain parabolic-type equation. This restriction is
burdensome in the region where nonlinear perturbation
of the dielectric constant of the plasma is far from
small, since an estimate of the contributions of the dif-
ferent absorption mechanisms to the wave-beam energy
dissipation depends substantially on the self-focusing
regime. In the present paper, therefore, the features
of the self-focusing and energy-absorption regimes of
intense wave beams in an inhomogeneous plasma are
investigated on the basis of a more rigorous approach,
that includes the description of the spatial dynamics of
the wave field with the aid of equations of the elliptic
type. It is shown that three qualitatively different
regimes of propagation of self-focusing wave beams
exist in an inhomogeneous plasma, and the conditions
for their realization are investigated. It is proved that
the maximum efficiency of the absorption by collisions
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is reached in the case of broad beams with moderate
energy density, while in the greater part of their path
these beams propagate quasi-one-dimensionally. At
not too high energy densities of the wave beam, the
depth of its penetration into a transcritical plasma
with increasing density is restricted to a scale of the
order of the beam width. The main conclusion of Refs.
3 and 4, that the collisional absorption by self-focusing
wave beams can be increased, remains in force. Thus,
a complete analysis is presented'of the self-focusing
regimes of a wave beam in an inhomogeneous plasma
in the case of static local nonlinearity.

1. SELF-FOCUSING OF WAVE BEAMS IN AN
INHOMOGENEOUS PLASMA

We consider within the framework of the scalar prob-
lem an equation for the complex amplitude of the elec-
tric field of a wave beam

AE+kze(|E|*) E=0, (1.1)

where €(|E|)=¢, +ig; is the dielectric constant of the
plasma with allowance for nonlinear terms, k,=w/c for
transverse or k=(w/3'/2v,,) for longitudinal waves. The
applicability of the scalar model will be justified later.

Let b be the characteristic transverse dimension of
the wave beam and k, = k,€'/? the longitudinal wave num-
ber. Under the natural condition |k,b|> 1 the solution
of (1.1) has a large phase and can be investigated by the
methods of geometric optiecs, similar to those presented
in Maslov’s monograph.®

Separating in E(z,7,) the amplitude and the phase,
E = Aexp(-i¢p), we obtain from (1.1) for an axisymmet-
ric wave beam, discarding terms of the order of 1/#2#%,
equations for the eikonal and for the energy flux
F.] @ 1 9 ¢

— A —+ ——A%r,
ar,.

= ZAZ Al .
daz dz  r,. Or, v A% (4)

(Vo)i=ke.(47), (1.2)
Taking into account the self-similar character of the

contraction of the wave beam in the axial region, we put

A%(z,r ) =AF(z) exp (—T.Y/2b%(z)), (1.3)

¢(z,r )= J.k,(z)dz-i‘rf(p, () +rite.(z)+...,

where A, (2) is the field on the beam axis. We introduce
the effective refractive index N,(z) =k,(2)/k, and the ef-
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fective width of the wave beam I(z):

‘¥ d (N, dl
P (z)=b? & a4 (N dly
(6)=b*(z) 1+0),  U=5r dz(l dz)

From the condition that Eqs. (1.2) and (1.3) be compat-
ible follow equations for the beam width I(z), for the
refractive index N,, and for the field A (z) on the beam
axis:

d d

()
24®)N,— N, — I+ — N2 [2— )=
(2HQ)N, N, —— 1+ = N*[2—(dl/dz)*| =¥,

1.4
Nl —e (4% =e, (1.4

:—zln(Ac’lzN,)=x,.
Here ¥, and €, are diffraction corrections that deter-
mine the minimum transverse dimension of the beam;
%, =(ky/N,)€(A%); ® =(A,/N,)8¢€,/5(A%) characterizes the
nonlinear contribution to the dielectric constant. Equa-
tions (1.4) are the starting point for the study of self-
focusing of wave beams.

We consider the self-focusing regimes.

1) If the nonlinear part of the dielectric constant €,
is substantially smaller than the linear g,(z) and the
damping is small, the system (1.4) takes the simpler
form

d\* A.ode, 3% 22 E.2:N 1
N,—-) j4 e 28 A ey AR 2 BmbNo 1
( &z wod. o Nt Te Ad=mRT e

(1.5)

which was investigated in Ref. 6 for cubic nonlinearity
€, =€,(z) +(A,/E,)?, where E, is the characteristic non-
linearity field. Equations (1.5) correspond to a transi-
tion in (1.1) to the parabolic approximation®

E=E.F(NJ/N.(2))" exp( —i j k,(z)dz) ,

when, for example for a cubic nonlinearity the complex
function F satisfies the equation

2i—(2£= V2F+p(E) |FI°F,

3% (1.6)

here

kn’ koEm 1—g,
dg_",;‘_dzy kem = E, ) p—k,..ri, B(E)z O .
We can make a number of statements concerning
those solutions of (1.6) which describe wave beams of
finite diameter. First, we introduce the positive func-

tions
1
1={ dpl P, 1,(8)=[dplVoF 1%, L=~ [ dlFI, a*(8)=[ dop?IFI*

and, in analogy with the case of a homogeneous plasma,
we construct the function I,(£) =1,(£) — B(E)[,(£). It is
easily seen that I, is an integral, but in an inhomogen-
eous plasma I, is no longer conserved but obeys the
evolution equation dI,/d& =-I1dg/dt. Just as in a homo-
geneous plasma, the characteristic dimension of the
region of localization of the field upon development of
self-focusing instability is determined by the sign of

I,, i.e., d*(&)/d€* =2I,. 1t follows therefore that wave
beams with negative value of I, become self-focused,
and the characteristic self-focusing length corresponds
to At ~ay/(|I,|)*. Moreover, in an inhomogeneous
plasma, upon propagation in the direction of increasing
plasma density, the wave beams that spread but on
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FIG. 1.

account of diffraction can (owing to the decrease of I,
and to its becoming negative) start to become self-
focused at a certain distance from the injection plane
(see Fig. 1).

We note in addition that the Talanov transformation’
E=tR/(¢+R), p=pR/(¢+R), F=(1+y/R)Fexp [ip/ (E+R)]

establishes a connection between the solutions of equa-
tions of the type (1.6) with different coefficients (&)
and B=B(£(£)).

The main condition imposed on the parameters of the
self-focusing wave beams can be obtained more easily
by considering the stability of the plane wave

Fo(§)=Fn exp( ——;—Fm“f dgﬁ(g)) ,  F,.=const

in Eq. (1.6). Linearizing (1.6), we find the spatial
increment v (&) of the self-focusing instability:

ny=(%e/2) (2BF " —2,°) ",

where % ,=%,/k,, and », is the transverse wave num-
ber of the perturbation. Let L be the characteristic
scale of the inhomogeneity of the plasma, for example
€,(2) =1 =(z/L). Then the perturbations can become
accelerated in the beam over a distance L if the follow-
ing condition is satisfied for the amplitude of the beam
field:
E.\*_ X (b bo\*_ 4%

(#) (% 7)) >
Here by =(XL)"? is the beam thickness at which the
self-focusing length is a minimum. Since usually E,,
<E,, it follows therefore that the beam diameter should
be less than the characteristic inhomogeneity scale L.
In particular, for striction nonlinearity (£} =16mn,T,
n, =mw’?/4ne’) and b> b, we have for the vacuum energy
density in a beam of transverse waves the estimate
Wo>n,T(b/L)}, which agrees with Ref. 6. At sufficient-
ly small wave damping, the wave-beam energy loss
over the self-focusing length is small. Therefore,
after going to the first focus, the beam broadens to a
certain maximum size, and then starts to be focused
again, i.e., a pulsating waveguide is produced in the
plasma. To connect the parameters of such a waveguide
with the slowly varying plasma parameters, we note the
following. As seen from (1.5), the equation for the di-
mensionless-beam thickness f=1(z)/l, describes the mo-
tion of the nonlinear oscillator with a frequency that
varies slowly with time

&f o , Al e, X\
= — =2 = _3( ),
dt2+9 (f,)f=0, Q a4 (lofz)
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where dt=dz/I,N,. We introduce the potential T(, ¢)
defined by the equation 8T /8f =2Q%f. The condition for
the conservation of the adiabatic invariant of the oscilla-
tor

1=§> pdf, pP+U=8

connects the change of the energy of the oscillator &
with the slow changes of the plasma parameters and
determines by the same token the waveguide-parameter
dependences of interest to us, particularly of the
maximum and minimum radii on the plasma parameters.
We demonstrate the foregoing using a simple example
that simulates the allowance for diffraction and nonlin-
earity saturation. We choose the frequency § of the
nonlinear oscillator in the form

@*=Q.*(t) [1-(8/1)°) /',

where 6« 1 characterizes the size of the focal spot.
We note first of all that for self-focusing wave beams
the energy # of the nonlinear oscillator is negative. It
can be shown next that the inhomogeneity of the fre-
quency £,(¢) in time is equivalent to introducing into the
system friction that is positive when §, increases

with time and negative in the opposite case. Indeed,
with increasing , the oscillator energy decreases,
i.e., the level drops to the potential-well bottom cor-
responding to the waveguide. As a result, the amplitude
of the oscillations of the wave-beam width and the self-
focusing length decrease. With increasing Q, the pro-
cess is reversed, and after & becomes positive the
self-focusing stops and the beam spreads out. It is
important to note that at appreciable oscillations of the
beam width, when [ >/, the time dependence of &
takes the form of jumps in time intervals corresponding
to formation of the focal spot. Analogous jumps are
made simultaneously also by the function I,(£), as can
incidentally be readily seen from the evolution equation
for I,.

In the example presented above, the condition for the
conservation of the adiabatic invariant takes the form

Q[ (2—k*)"K (k) —2E (k)/(2—k*)") =const, k*=2(1—a)"/(1+(1—0)").

here 0 =-2(5/9,)* <1, while E(k) and K(k) are elliptic
functions. It follows therefore that in the case g« 1 the
energy & of the oscillator varies in proportion to

Q% exp(-1/Q,). Near the bottom of the potential well,
where (1 -0)<« 1, we have

Q,[1+2& (6/9Q,)*] ~const.

On the whole, the behavior of the dimensionless width
of the beam f(z) in the case of increasing ,, which
corresponds to propagation of the wave beam towards
the increasing plasma density, is shown schematically
in Fig. 1.

2) We consider now the self-focusing of a wave-beam
for a strong nonlinear perturbation of the plasma di-
electric constant, when the linear term £y(2) in the ex-
pression for €,(A%) can be neglected. Such conditions
arise automatically when the beam approaches the sur-
face of the critical plasma density »n,(w), but can be
realized in the transparency region also far from the
critical surface. It is reasonable to assume that out-
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side the narrow region directly adjacent to the focus
the nonlinearity saturation is negligible. Putting &,
=(A,/E,)?*® (where a >0, and for striction nonlinearity
a =1), and neglecting damping and diffraction, we ob-
tain from (1.4)

In N.=const— (2u/3) In l(z); O=q,
(d1/dz)*+& (1/1,) =1/,

(1.7)

where p =3a/(2 +a); & =(3) -tan?d, is the integration
constant, and tanf,=dl/dz at I=1, It is seen from (1.7)
that diverging beams become self-focused if the initial
divergence 8, does not exceed tan~*(3)/2. In the case
of zero initial divergence, the self-focusing length is

3n\ " 7 1 2 1
= () e (g rag) /15 +30) -

For a =1, in particular, we have z,=1.9]. The
described self-focusing regime is realized in the inho-
mogeneous-plasma region, where €,(42)> |g,(2)], i.e.,
at a sufficiently high nonlinearity level. Putting A2
=N,E%12/1%|N,| and stipulating also k,z;>1, we obtain
the condition for the nonlinearity, which takes at a =1
the form

No(EnlEp)*> (2h/L) "+ (%/1)°.

It follows therefore that the nonlinearity level is a
minimum at a beam thickness I, = (xX*L)"/® and is equal
to

Ent/E*~4%/LN,.

We present explicit formulas for the main functions
in the case a =1 and at zero initial beam divergence:

(NoEpEn®)" (NEn?/Ep?)" 1(z)
A= ) 1= me—
(sin)™ N (sing)® ' 5(2) (4+2sin?§)"
1(z) =l sin ¥, (1.8)

here §=(3)n(1 - 2/2z,). We note the qualitative distin-
guishing features of the self-focusing regime. First,
owing to the substantial increase of the group velocity
with decreasing beam width, the self-focusing length

is independent of the level of the “initial” nonlinearity.
This circumstance in the case of cubic nonlinearity was
pointed out by Moiseev.® Second, the limiting divergence
of self-focusing wave beams is large, 6,~ 39.2°, and is
likewise independent of the level of the initial nonlinear-
ity, this being the consequence of the increase of the
parameter ¢,/€,. We note also another important as-
pect. It is known® that in the linear Schridinger equa-
tion diffraction cannot stop the contraction of the beam
even for cubic nonlinearity, when @ =1. In our case,
however, because of the nonlinear increase of the group
velocity, the limiting degree of nonlinearity that sup-
presses the diffraction increases and corresponds to

a =2. Indeed, allowance for diffraction leads to the
appearance in the left-hand side of Eq. (1.7) for the
beam width I(z), of a “centrifugal” potential u(l/[,f?,
where

a—2 (X/1,)*
= =< = 2/E )M,
Y=o T RN Sl Ne(@)=(NELVES

It is seen therefore that the limiting degree of non-
linearity corresponding to the condition y =0 equals 5.
Thus, for o >2 the size of the focal region is deter-
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mined by the amplitude E, of the nonlinearity saturation
field and is of the order of I~ Iy(N,E%/NE3)®* *4 In
the opposite case @< 2, the minimum beam dimension
can be reached below the nonlinearity saturation thresh-
old, at the level I~ Ju'/2.

We now write down the geometric-optics parameter
k. (2)1(2) =LNa/Af.

Consequently, at y>0 (a>2) the conditions for the
applicability of the nonlinear WKB approximation im-
prove with increased contraction of the beam. For a<2,
when y< 0, the quasiclassical parameter decreases to
the minimum permissible value only in the focal spot.

At a linear plasma-density profile in the region of
interest to us, when €,(2) =-z/L, the investigated
self-focusing regime is realized in the region |z|<2LN?.
If this dimension 2 LN?, is large compared with the
characteristic self-focusing length 2, ~[,, the self-
focusing beam produces a pulsating waveguide against
the background of slow variation of €,(z). Let us in-
dicate now the result of taking €,(z) into account, all the
more since |g,(z)| increases with increasing distance
from the critical surface and becomes comparable with
the term € (A?) in the dielectric constant €, of the plas-
ma.

Confining ourselves for simplicity to the case o =1,
we write the equation for the width of the beam:

/AN 1y? X Ly* 2
(z) () ram=(3) -7

The effect of interest to us is due to inclusion in the
function & of a small correction €,/N%. This introduces
in the right-hand side of (1.9) small nonconservative
terms that produce small changes in &, which should
be positive for a self-focusing beam. When & becomes
negative, the beam becomes defocused and is reflected.

(L9)

Averaging the nonconservative increments in Eq. (1.9)
and using Egs. (1.8), we arrive at the following equation
for &2):

g1
dz” —  2LN.*

It follows therefore that with increasing penetration
of the wave beam into the plasma, & decreases like

& (z)=[C—(z/2LN.*)1*,

where C is a number of the order of unity. The de-
crease of & leads to an increase of the amplitude of the
oscillations of the beam width { and of the self-focus-
ing length z;:

Lnax®lo(2/3&) ",  z;=nl,/28",

which reaches values z;~ I, LN%, at the boundary of
the region z ~2LN%. In that region, however, a correct
description of the nonlinear evolution of the beam calls
for consideration of the complete system of equations
(1.4). We note only that the wave beam can penetrate
deeper into the plasma only to a distance of the order

of LN,

3) An interesting propagation regime sets in for a
sufficiently broad beam of moderate intensity as it
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approaches the region of reflection of small-amplitude
waves. Let €,(z) =—z/L near the cutoff surface. The
characteristic values of the dielectric constant and of
the size of the region where the reflected wave is for-
med are then, for small-amplitude waves,

en=18(2/L)", Az, =18(L?2)".

If the energy density in the beam ensures that the
nonlinear part €,(A%) of the dielectric constant exceeds
(not strongly) €,, a broad (I,> Az,) wave beam pene-
trates farther, into the denser plasma, in the quasi-
one-dimensional propagation regime, when the plasma
transparency is due in the case of slow beam narrowing
to the increase of the beam field as a result of the
strong group deceleration of the wave packet. The cri-
terion for the field amplitude follows from the condition

(A4/Ep)**2en~N 2

From this, taking into account the relation A2 =N,I;E%/
12|N,| we obtain

NEHEz23(R/L)'™

In particular, for a transverse wave incident from
vacuum we have a lower bound on the energy flux, S

z (2cx/8nL)E;. The diffraction spreading of the colli-
mated beam in the region where it is transported to the
cutoff surface is then negligible if I,> (LX)'/2.

Analytic formulas that describe the propagation of the
beam in the plasma under the indicated conditions are
simplest for a linear profile of the unperturbed plasma
density in the region of interest to us, when g,=-2z/L.
In this case the refractive index is obtained from the
equation

Nl2=—z/L+(NLE,} | N, |FE®)".

Now, in contrast to the regime 2), the beam in the
region where |g,|< €, is only barely narrower, and the
refractive index remains at the level N,=N,. The
passage of the wave beam into a denser plasma z> z,
= LN?, is due to balancing of the linear and nonlinear
parts of dielectric constant. In this case &> 1 and the
refractive index is determined by the formula

N,= (N I3 1) (zafz) "%,

while the beam width [(z) satisfies the equation

d?l dal\* 1 dl to— 2L%*
dz? (dz) az dz T ezl (1.10)

With the aid of the substitution
X(t)=[z/I(z)1% t=2In (z/l)

Equation (1.10) is transformed into the equation of a

nonlinear oscillator with negative friction

¢#X 1 1ydX 1 1 Lx* 3t

L s+t (3+—) x—X*+—Xexp(——) =0

ar 2(5+a)dt+2(3 oc) aly e"p( 2()111)

with initial data

Zm 2 dXo Y, dl(zm) Zm
(7)), 2 _x[1-x» 5] g=2 —).
X ( I ) dte X”[i Xt ° 1“( A

Leaving out the diffraction term, which is important
only near the focal spot, we investigate the phase plane
of the solutions of Eq. (1.11). It can be seen first of all
that the oscillator trajectories have two singular points,
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FIG. 2.

a node (0,0) and a saddle (0, s,), where s, =(1 +2)/2a.
For the trajectories out of the node we obtain at small
X

(dX/dt)y =X [1+C X+ (X*—X)/ (s:—1)],

where C, is the integration constant. The separatrix
dX/dt=f(X) that joins the singular point determines
the limiting initial divergence of the wave beam

Al(zm) /Azm=[1—(f.(X:)/Xs) 1% ".

We note in addition that the trajectory goes off to
infinity, and the representative point reaches infinity
within a finite time. On the whole, the phase portrait
of the solutions of Eq. (1.11) is shown in Fig. 2(a). The
region of initial data at which the beam becomes self-
focused is shaded.

In the regime considered, the self-focused length z,
is of the order of the initial beam width [, and depends
little on the small parameter z,/1,.

The refractive index N, has a distinctive dependence
on the distance. At first, so long as the beam narrow-
ing is negligible, the index decreases with increasing
distance in proportion to (1/z)"/°. Then, past the point
at which the condition d1/dz =~1/2az is satisfied, N,
increases rapidly as the focus is approached, owing to
the faster rate of the decrease of the beam width I(z).

We call attention to the following important peculiarit-
ies of this self-focusing regime. First, as can be
easily seen from Eq. (1.11), at any o >0 the diffraction
stops the contraction of the beam at a certain [ .
Second, an analysis of the solutions of Eq. (1.11) shows
that in this self-focusing regime the number of the
foci is finite. After one or several contractions, the
beam becomes defocused and its reflection must be
considered. Finally, the parameter

k. (2)1(z) = (l’Nw/7L) (2m/2)*'®

of the quasiclassical theory increases when the beam is
self-focused and decreases when it is defocused; it
also decreases monotonically in the direction of beam
motion because of the increase of |&g,].

The behavior of the dimensionless wave-beam width
f=Uz)/1, and of the plasma dielectric constant €,(A2)
are shown schematically in Fig. 2(b).

2. ABSORPTION OF THE ENERGY OF A SELF-
FOCUSING WAVE BEAM

We consider the absorption of the energy of a self-
focusing wave beam in an inhomogeneous plasma. Since
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the collisional absorption is most effective at small
group velocities of the waves, it suffices to investigate
the singularities of the energy dissipation in the second
and third self-focusing regimes. To simplify the for-
mulas, we confine ourselves here to cubic nonlinearity.

We write first, using (1.4), an expression for the
power P(z) carried by the wave beam along the propa-
gation path

P(z) =P, q(z)='[ I%.ldz. (2.1)

The energy-absorption efficiency will be characterized
by an absorption coefficient @, and it is natural to write
it in the form @ =1 - exp(-g). The absorption increases
thus with increasing ¢ and is appreciable at ¢ = 1; for
example, putting ¢ =1.5 we obtain @=0.777.

We consider the second self-focusing regime of the
wave beam. With the aid of (1.8) and (2.1) we calculate
the increment of the function g over the self-focusing
length z,:

s (7) (78) T3 e

Next, integrating (2.2) over the entire region where the
second regime is realized, with account taken of the
&(z) dependence, we obtain the total value of ¢ in the
self-focusing regime

Nu Emz ) h

q=—z~|ef|( E,z

(2.3)
Comparing (2.3) with the result g,=2L| €| /x of the
linear theory, we see that the contribution of the plasma
region |€,|<N?, in which the second regime of self-
focusing of the wave beam is realized is small in terms
of the parameter N,. It should be noted, however, that
for transverse waves the joint contribution of the beam-
propagation region g,(z)> —=N?, in which the first and
second self-focusing regimes are possible is barely
smaller than the linear contribution, i.e., ¢=g, This
curious fact is due to competition between two tenden-
cies. On the one hand, the nonlinearity, by increasing
the group velocity of the waves, decreases the spatial
damping decrement, and on the other it increases the
depth of penetration of the beam into the plasma that is
opaque to low-amplitude waves. On the whole, how-
ever, the result is found to be independent of the non-
linearity. Of course, at very high energy densities in
the wave beam, corresponding to E%z E3, the colli-
sional absorption is much lower than in the linear case.

A much larger increase of the collisional absorption
of the wave-beam energy is obtained in the third self-
focusing regime for broad beams. It was established
above that this regime is realized at a beam width [,
> Az, and at energy densities N E2,/E2 2 £{3/?*. In this
beam-propagation regime, the total collisional ab-
sorption contains two contributions. The first takes
place in the region £,(z)<0. It is determined from the
equations of the linear theory and corresponds to Ag,
= ¢, The additional contribution is made by the region
€,(2)<0, and can substantially exceed the linear con-
tribution, i.e., Ag,>gq,. Let us calculate it over the
self-focusing length z,. Substituting in (2.1) the refrac-
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tive index in the form corresponding to the third self-
focusing regime, we write the result in the form Ag,
=q.XJ, where

7]
E=2/l  [()=La)/k, = [dEF(6)E~.
[]

Since £ ~1, the factor J does not contain large
parameters and is of the order of unity. For example,
for l,~20z, and cubic nonlinearity we have £;~1.42 and
J=~0.3. Consequently, an appreciable excess of Ag,
over g, can be reached only on account of the factor x,
which is equal to

%~0.67 (K/L)" (lo/Az,) 4+*)/% (g/Nm?) **,
here N?, z €,. Stipulating Ag,> Ag,, where A is a certain

number that determines the desired value of the colli-
sional absorption

Q=1-exp[—g.(1+A) ],

we obtain the following condition for the width of the
wave beam:

b SBA f L\ "™ Ny?y "wqae/tita)
== ()]
In the case of cubic nonlinearity, taking A =9 from
(2.4), we have

(2.4)

(L/A2,)>3(3/2]) " (LX) (N w?em) ™,

which can be satisfied at [ ;< L.

3. CONCLUSION

We have thus investigated above, in the case of static
local nonlinearity, the features of stationary self-
focusing of intense wave beams and the collisional ab-
sorption of their energy in an inhomogeneous plasma.
Of course, the analysis presented does not cover all the
aspects of nonlinear dynamics of wave beams in an in-
homogeneous plasma. In particular, a self-consistent
allowance for the parametric and modulational instabil-
ities in the nonstationary problem calls for a special
treatment.

We discuss now the conditions for the realization of
a scalar model for the investigation of self-focusing of
wave beams. We consider first Langmuir oscillations.
We write down the known equation for the complex am-
plitude of the high-frequency potential of a wave packet

9
(21/0)- o AW +div [ ( on _ eg) v w] —3hoAAWY =0,

c

where 6n is the perturbation of the plasma density. It
is seen thus that in the stationary case the component

74 Sov. Phys. JETP 56(1), July 1982

E, of the electric field of the wave beam satisfies Eq.
(1.1).

For transverse waves, the beam field satisfies the
vector equation
2i 0 ( on

2
22 (e ———)E +5 (AE=V divE).
o at ne *

The problem becomes scalar if the interaction of the
polarizations can be neglected; this can be done if €,
« g, If the inverse condition ¢, = €, is satisfied, the
term with div E is generally speaking not small and the
vector problem must be solved. In the case of thick
beams of width 6> 1/k,, the coupling of the polariza-
tions is weak as before. In addition, an analysis of
the self-focusing instability at |g,|<« €, shows that
allowance for div E leads only to small corrections.
This allows us to state that the scalar problem des-
cribes correctly the character of the self-focusing of
beams of transverse waves in the region €, = €.

It should be noted that for intense wave beams with
electric-field amplitudes E = m,cw/e an important role
in the penetration beyond the cutoff surface n =n, is
played by the static nonlinearity due to the relativistic
dependence of the mass m, of the carriers (in this case,
electrons) on the beam field.
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