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The stability of a fast longitudinal shock wave against weak perturbations of the discontinuity surface is 
investigated within the framework of ideal magnetohydrodynamics. It is shown that the region of 
spontaneous emission of waves by the discontinuity in a plasma with an arbitrary equation of state is 
determined by the magnetic field, and is broader than the corresponding region in ordinary hydrodynamics. 
In a sufficiently strong magnetic field, the spontaneous wave emission by the discontinuity can occur in an 
ideal gas with a constant specific heat. 

PACS numbers: 52.35.Tc, 52.30. + r, 47.65. + a 

The stability of shock waves in a medium with an a r -  t h e  magnetic-field intensity; o, the  specific entropy; 
b i t r a r y  equation of s ta te  against weak perturbations of and p ,  the p ressure .  The p r e s s u r e ,  density, and en- 
the  discontinuity sur face  was f i r s t  investigated within t ropy  a r e  connected by an a r b i t r a r y  equation of s ta te  
the framework of ordinary hydrodynamics by D'yakov,' p = p(0,P). 
K o n t o r o v i ~ h , ~  and ~ o r d a n s k i i . ~  D'yakov' showed that the 

All the  quantities character izing the p lasma in front 
shock waves a r e  absolutely unstable when the derivative of 

of the shock wave will be labeled below by the subscript  
the specific volume V with respect  t o  the p r e s s u r e  P along 

1. The l e t t e r s  without subscr ip t s  will denote the quan- 
the Hugoniot adiabat has the following values: 

t i t i e s  behind the shock wave. The connection between 
J ? ( r 1 l ' , d p ) ~ > 1 + 2 1 / ,  J 2 ( d V / a p ) , , < - 1 .  (1) t h e  values of the hydrodynamic quantities a t  the dis- 

continuity is given by the following boundary conditions7: 
where J is the m a s s  flux through the discontinuity and 
M is the Mach number in the medium behind the shock {p(\f)J=O, (4) 
wave. Spontaneous emission of acoustic waves begins 
in the region of neutral  

where v, is the compression in the shock wave. The ( [[vXB] X f l  ) =O. (8) 
c a s e  of relat ivis t ic  shock waves has been considered by 
K o n t o r ~ v i c h . ~  In magnetohydrodynamics, the stability 
of evolutional shock waves has been investigated by 
Gardner  and ~ r u s k a l . '  In part icular ,  it was  shown that 
the region of absolute instability of a fast  longitudinal 
shock wave is determined by the s e t  of inequalities 
(1). The spontaneous emission of waves by the discon- 
tinuity was not considered. 

In the present  paper we investigate the region of 
~ ~ ( a ~ / a p ) ,  values where the discontinuity spontaneously 
e m i t s  waves. In the p rocess  t h e  discontinuity sur face  
vibrates  with a constant amplitude (the imaginary par t  
of the frequency i s  equal to zero:  I m w  =O), and exci tes  
in the plasma magnetohydrodynamic waves propagating 
f r o m  the shock wave. 

Let us  describe the plasma on both s ides  of the dis- 
continuity by the equations of ideal magnetohydrody- 
namics6: 

a p  - + div ( p v )  =0, 5 = 0, 
at dt 

H e r e  f is the unit vector  along t h e  normal  t o  the dis- 
continuity; W is the heat function of a unit mass ;  and 
t h e  curly b racke ts  denote the discontinuities of the 
quant i t ies  a c r o s s  the discontinuity surface:  (A} = A  1, 
-A, I,, 6 being the radius vector  of an a r b i t r a r y  point 
of the discontinuity surface.  Equations (4)-(6) describe 
the  conservation of the m a s s  and energy fluxes and the 
component of the  momentum-flux t e n s o r  along the nor- 
m a l  t o  the discontinuity; Eqs.  (7) and (81, the discon- 
t inui t ies  of the normal  component of the magnetic-field 
intensi ty  and the tangential component of the electr ic-  
field intensity. Below we sha l l  replace Eq. (5) by the 
equation, which follows f r o m  the  above-given sys tem 
(4)- (8), of the Hugoniot adiabat: 

Let  u s  choose the s y s t e m  of coordinates  such  that  the 
unperturbed-discontinuity plane coincides with the x = O  
plane; then the unperturbed-flux-velocity and unper- 
turbed-magnetic-field vec tors  will coincide with the x 
axis .  

d v  1 
p - = - V p + - [ r o t B X B ] ,  (3) Let  us  represen t  the solution t o  the linearized mag- 

dt 47r 
netohydrodynamic equations (3) in the f o r m  of a s e t  of 

d B  
-= 

d  d 
a t  r o t I v X B ] ,  divB=O, - = - + ( v V ) .  plane waves with frequency w and tangential wave- 

d t  at  vector  component q = (0, q ,  0), leaving the discontin- 
H e r e  p is the plasma density; v, the flux velocity; B, uity . We sha l l  consider  t h e  direction of the group vel- 
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ocity v, to be the direction of propagation of the waves.' 
We also assume the shock wave to be evolutional; then 
the following inequalities a re  fulfilled3: 

where v,,, and v,, a r e  the components of the phase vel- 
ocities of the fast magneto-acoustic waves along the x 
axis in the regions in front of and behind the shock wave 
and v,, is the component of the ~ l f v i n  velocity along 
the x axis behind the shock wave. As a result of these 
inequalities, the discontinuity emits no waves into the 
x < 0 region, but emits six waves into the x > 0 region: 
one entropy wave, two Alfve'n waves, two slow mag- 
neto-acoustic waves, and one fast magneto-acoustic 
wave. Another fast magneto-acoustic wave exists, but 
it is an incident wave. Thus, the quantities bp, 6v, 6B, 
and 60 characterizing the perturbation of the plasma 
behind the shock wave can be written in the following 
form: 

Here 1 = 1 ,2 , .  . ., 6 numbers the waves leaving the dis- 
continuity and the quantities pertaining to  them; the 6.4, 
and k,, a re  the wave amplitudes and longitudinal wave 
vectors; and the p , ,  v,, B,, and o, a r e  the quantities de- 
termining the polarization of the waves in accordance 
with the linearized magnetohydrodynamic equations. 

Linearizing the boundary conditions (4)-(8), we rep- 
resent the perturbation of the discontinuity surface in 
the following form: 

Using the equations ( l l ) ,  and canceling out the factor 
exp{-i(ot - qy)},  we obtain in the res t  frame of the dis- 
continuity the following linearized boundary conditions: 

Here Ma is the Alfvdn Mach number in the x > 0 region 
and E,, = B,v,, - vB,, . 

Since the pressure, velocity, and magnetic-field-in- 
tensity perturbations a r e  equal to zero in the entropy 
wave, the amplitude M, of this  wave does not enter into 
the equations (1 3). Furthermore, the perturbations of 
the velocity and magnetic field of the magneto-acoustic 
waves a r e  perpendicular to the z axis; therefore, only 
the amplitudes, M,, and Maz,  of the two Alfv6n waves 
enter into the f irst  two equations in (13). It is easy to 
s e e  that Ma ,  = M a 2  =0, i.e., the Alfve'n waves a r e  not 

emitted by a longitudinal shock wave. The remaining 
equations of the system (13) relate the amplitudes €A1 
of the three magnetosonic waves with the amplitude p 
of the discontinuity-surface vibrations. 

Let us introduce the polarization vectors of the mag- 
netosonic waves: 

and write the last four equations in (13) in a matrix 
form: 

The forms of and 5 are  clear from the expressions 
(1 3): 

I Jp-1  
p=-i {;) ( o. o ( i t 2  

1+J2(3V/3p), ,  
) , I".. 0 )  , 

The subscript 1 assumes three values corresponding to 
the two slow and one fast magnetosonic waves leaving 
the discontinuity and the vectors z l  are determined 
from the linearized system of magnetohydrodynamic 
equations (3),  which has the form 

Here 5 i s  given by the expression (16) (in the general 
case  the k's in (16) and (17) do not necessarily coin- 
cide); A, = k,,ti, and i s  determined from the dispersion 
equation det 11 N - A , i l l  =0;  and the matrix fi i s  equal to 

The homogeneous equation (15) relates the amplitude 
q of the discontinuity-surface vibrations with the am- 
plitudes M, of the outgoing magnetosonic waves. In 
order for the discontinuity to emit waves, the determi- 
nant of Eq. (15) should vanish. The thus obtained char- 
acteristic equation has quite a complicated form. It 
connects three different roots A,  of the fourth-order 
polynomial det I/&'- A,klI =0,  and its analysis i s  diffi- 
cult. But in the cases when there are  no waves going 
out from the discontinuity into the region in front of 
the shock wave, the characteris c equation reduces to  
the form = 0, where A , ,  i s  the eigenvalue of the 
(~rpenbeck") wave incident on the discontinuity in the 
x >  0 region. Indeed, let the vector t be perpendicular to 
a l l  the z, in Eq. (15). Such a vector exists (the bi- 
orthogonal-basis vector), and is determined from the 
equation (8 is the unit matrix) 

Multiplying (15) by c ( ~ , , ) =  (i- ' )*t  (A,,), we obtain the 
characteristic equation in the following form: 

the vector c being given by the equation 
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Let us construct the matrix h, the first row of which 
i s  formed by the coefficients of Eq. (20); the remaining 
four rows, by the coefficients of the equations (21): 

The simultaneous solvability of Eqs. (20) and (21) is 
evidently equivalent to th_e linear dependence of any 
four rows of the matrix D. From the linear-depend- 
ence condition for the first four rows we obtain the 
characteristic equation (similar to the one obtained in 
Ref. 5): 

where v = (w - ~,,)/w. The characteristic equation in 
ordinary hydrodynamics can be reduced to the same 
form. The linear dependence of the last four rows of 
the matrix b clearly gives rise to a dispersion equation 
for the magnetosonic waves: 

where Q =q~- /w i s  the ratio of the flux velocity to the 
phase velocity of the discontinuity-surface perturbation 
(12). 

The satisfaction of the system of equations (23) and 
(24) constitutes the condition for the emission of waves 
by discontinuity. Furthermore, Im w = O  (neutral sta- 
bility), and the group velocity v, =dw/dk,,, of the fast 
magnetosonic wave incident on the discontinuity in the 
x 0 region should be less than zero, o r  Im k,,,-: 0. In 
terms of the variables Q~ and v, the negativeness of the 
x component of the group velocity and the vanishing of 
the imaginary part of the frequency lead to the following 
set  of relations: 

which must be satisfied by the roots of Eqs. (23) and 
(24). 

The relations (26) are  satisfied in the segments 2, 4, 
and 6 of the real axis (Fig. 1). The inequality (25) is 
reduced by the substitution Z = v2/(1 - u ) ~  to the form 

and, a s  can easily be verified, is  satisfied only in that 
part of the interval 6 (Fig. 1) where d ~ ~ / d v  < 0. The 
upper limit of this interval is equal to v, and the lower 
limit v, is  given by the equation 

(28) 

In the interval 6, Eq. (28) has a single root v,. Other- 

FIG. 1. Form of the dispersion dependence v i  = l / ( l  - M a ) ,  
V 2 =  [ I  - ( M : + M ~ ) ~ / ~ ] - ~ ,  v g =  [ I  + ( M : + M ~ ) ~ ~ ~ I - ~ ,  v 4 = ~ / ( l + ~ a ) .  
v s = l / ( l + M ) ,  v s = l / ( l  - M ) .  

wise, the fourth-order polynomial (24) in v would have 
more than four roots. Thus, the range of v values at 
which the relations (24)-(26) a re  satisfied is 

The derivative J2(av/ap), along the shock adiabat in 
(23) i s  a monotonically increasing function of v on the 
radial lines 

(see Fig. 2). This region wholly contains the interval 
(29), since 

The range of J2(av/ap), values at which spontaneous 
emission of waves by the discontinuity occurs is given 
by (23) and (29): 

The upper limit of the neutral-stability region (30) for 
a fast longitudinal shock wave coincides with the limit 
(2) in the case of ordinary hydrodynamics, and does not 
depend on the magnetic-field strength. The lower limit 
of the region (30) differs from that of the corresponding 
hydrodynamic region (2), and is  determined by the mag- 
netic-field strength. 

The root v, of Eq. (28) decreases monotonically with 
increasing magnetic-field strength. In fact, (28) is a 
biquadratic equation for the reciprocal magnetic Mach 
number M;': 

Ma-"1-Y,) ( V , ~ - M - ~ ( ~ - ~ ~ ) ~ ) + M ~ - ~ ~ ~ ~ ~ ( V ~ + M - ~ ( ~ - Y , ) )  
x ( v ,  2-2M-2(1-vC ) Z ) + M - ~ v e 4 ( v e  +M-'(l-vc ) )  =0, (31) 

whose determinant does not vanish in the interval Y,,, < v 

FIG. 2 .  Locus of the roo ts  of the charac te r i s t ic  equation (23): 
a c i r c l e  of rad ius  r -; [ ( I  - r-')/(I - M ~ ) ) ' / ~  and a pair of rad ia l  
l ines  v < - r  and v > r .  
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< 1/(1- M). In this case d ~ ; ~ / d v ,  does not become in- 
finite, and dv,/dMi2 does not vanish; the root v, as- 
sumes i t s  greatest value v,, = l/(l - M2) in zero  mag- 
netic field, since the derivative dQ2/dv IY,,,O < 0. Con- 
sequently, the function r(v,) decreases monotonically 
with increasing magnetic-field strength, i.e., the neu- 
tral-stability region broadens. The quantity Q2(v,) also 
decreases monotonically with increasing magnetic-field 
strength, for 

where ci =M;/M2. 

Let us consider the possibility of a neutral stability 
in the case of complex k,,,. The inequality (25) is then 
replaced by the following inequality: 

The domain of complex solutions of Eq. (23) is the 
circle I v I < Y, (Fig. 2). The curve (24) consists of the 
real-axis segments v, < v < v2, v3< v < v4, and v, : v 
< v, and the curve A passing through the point v, and 
extending to infinity. Assuming that v =r,ei', we obtain 
from (24) the equation 

Im QzI (M.-'+M-')V'-M.-~M-~ (4-v) I ' 
=2r, (r,-cos $) ~ i n ~ ~ ( l + r ~ ~ ( . M . ~ - l )  ) + ( (M."1)rmZ eos $ 

+arm-cos $ ) I +  MZ(Mol-1) (I+rmZ(M.Z-1)) =0, (34) 

which cannot be satisfied; consequently, the curve A 
does not intersect the boundary of the region I v 1 ,. Y,, 
i.e., a neutral stability does not occur in the case of 
complex k,,,, and we arrive at the expression (30). 

In ordinary hydrodynamics the boundary of the neu- 
tral-stability region and the derivative along the shock 
adiabat depend in the following manner on the compres- 
sion in the shock wave: 

The curve r ( ~ )  l ies above the J ~ ( ~ v / ~ P ) ,  curve ( ~ i g .  3), 
and spontaneous wave emission does not occur. In the 
magnetohydrodynamics of a fast longitudinal shock 

FIG. 3. Spontaneous emiss ion  in a n  ideal  g a s  with constant 
specific heat. The  continuous curve  i s  a plot of the derivat ive 
along the Hugoniot adiabat; the dashed curve ,  the  lower bound- 
a r y  of the region of spontaneous emission of waves by a dis- 
continuity in ordinary hydrodynamics (M;' = 0) ; t h e  dot-dash 
curve ,  the  lower boundary of the  region of spontaneous emis-  
sion of waves by the discontinuity in magnetohydrodynamics 
04:' i s  fixed)30; x,= ( y + l ) / ( y -  1). 

FIG. 4. Region of spontaneous emiss ion  of waves by a discon- 
tinuity in an ideal  g a s  with constant specific heat (the dashed 
region). In the  region I the shock wave i s  nonevolutionary; 
in the region 11 it i s  absolutely stable;  sl i s  the velocity of 
sound in the medium in front of the  shock wave. 

wave, the form of the derivative along the shock adiabat 
is given by the expression (36). In the limit of a strong 
shock wave, i.e., for K - (y + 1 )/(y - I ) ,  the expression 
for  the boundary r(v,) of the neutral-stability region 
assumes the form 

Since in the limit of a strong shock wave vCo = 2y/(l 
+ y ) ,  we have (for a fixed ,Ma) v, 2y/(y + 1) and r(v,) 
.- 0. The derivative along the Hugoniot adiabat then 
vanishes; thus, the inequality (30) i s  satisfied, i.e., a 
fast longitudinal shock wave of sufficiently high intensi- 
ty in an ideal gas with constant specific heat spontan- 
eously emits magnetosonic waves. 

Numerical estimates show that, in a monatomic gas, 
and for Mi' 2 1,  the discontinuity begins to spontaneous- 
ly emit waves when the Mach number M ;  in the medium 
in front of the shock wave is  of the order of 7. The 
qualitative behavior of the boundary of the neutral-sta- 
bility region for a fast shock wave in an ideal gas with 
constant specific heat i s  depicted in Fig. 4. 

The author i s  grateful to V. M.  Kontorovich for use- 
ful discussions. 
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