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We find by direct calculation the cubic collision term in the kinetic equation for Langmuir waves. The 
structure of this ("four-plasmon") term differs from the usually accepted one; this affects the Langmuir 
turbulence kinetics in an appreciable energy range. We study the heating of the plasma by a beam of 
relativistic electrons under conditions when the beam instability is eliminated by the four-plasmon process. 
Apart from estimates, we also obtain analytical expressions for the beam-eiectron distribution function and 
for the Langmuir wave spectrum. A result of this paper, which is of practical importance, consists in an 
important shift of the limit of applicability of relaxation theory into the region of large ratios n, /n ,  of the 
beam and plasma densities. 

PACS numbers: 52.40.Mj, 52.25.Dg, 52.35.M~ 

1. INTRODUCTION 

One of the most effective mechanisms for energy 
transfer from a beam of relativistic electrons to  a 
plasma is connected with the instability of this system 
against the excitation of Langmuir waves. The length 
over which the beam loses an appreciable fraction of its 
initial energy determines the dimensions of the appara- 
tus  necessary for reaching a high efficiency of plasma 
heating and therefore is an especially important param- 
e te r  in the study of beam heating. For the theoretical 
determination of this length and of the Langmuir tur- 
bulence spectrum the problem of the mechanism for the 
stabilization of the instability plays a decisive role. A 
large number of papers has been devoted to this prob- 
lem but so far a complete answer to it has not been 
found. The existing studies of the beam relaxation in 
the strong Langmuir turbulence regime (see, e.g., Ref. 
1) are  to a considerable extent phenomenological. The 
basis of the theory for the case of weak turbulence i s  
reliable, but the relaxation regimes studied in the 
framework of this theory are  feasible only for small 
ratios nb/no of the beam and plasma densities. In con- 

fluctuations is a third-order process in the Langmuir- 
wave energy. To solve the problem posed here it i s  
necessary to  know the collision term corresponding to 
this process. The terms of the first three orders in 
the wave energy in the kinetic equation that describes 
weak Langmuir turbulence have been evaluated in many 
papers (see, e.g., Ref. 5 and references given there). 
However, notwithstanding the fact that ultimately 
agreement was reached between the results of different 
authors, the cubic term for the case of a broad Lang- 
muir spectrum was never evaluated correctly. We call 
here a spectrum "broad" if the spread in the group ve- 
locities of the Langmuir waves A",, = h w / k o  is much 
larger than the quantity c ,  ( ~ / r n , ) l ' ~ ,  where T =T, 
+Ti is the sum of the electron and ion temperatures 
and mi the ion mass. For turbulence excited by a beam 
of relativistic electrons, -ko = w J c ,  the condition 

reduces to the inequality 

temporary beam-heating experiments the ratio nb/no and is satisfied in not too cold a plasma (T, > 0.2 keV in 
often exceeds by orders of magnitude the values de- an isothermal deuterium plasma). Before turning to a 
scribed by a consistent theory (see, e.g., Ref. 2). 

study of the relaxation we therefore fill this gap. 
Even in the case when the increase in the plasma den- 
sity in the experimental apparatus will occur for fixed 
beam densities" the indicated margin vanishes only for 2. LANGMUIR-TURBULENCE KINETICS 

the parameters of a hypothetical thermonuclear react- 
or.3 It i s  thus very desirable to extend the theory of the 
relaxation to larger values of ndno .  In the present pa- 
per we develop and in the simplest circumstances real- 
ize the possibility of appreciable progress in that di- 
rection on the basis of weak turbulence theory. This 
possibility is connnected with taking into account high- 
er-order nonlinear processes, primarily the scattering 
of Langmuir waves by induced density fluctuations. 

The "simplest conditions" which will be understood 
inwhat follows tobe satisfied consist in the following: the 
magnetic field is negligibly small, the excitation of 
electromagnetic waves is counteracted by their fast re- 
moval from the ~ l a s m a , ~ '  and the beam density is not 
too large-so that the scattering by induced density 

The cubic collision term of the kinetic equation 

for the Langmuir waves was generally looked for in the 
form 

It was assumed here that there is only one process of 
third order in the wave energy-the scattering of two 
waves into two others. The combination of spectral 
densities (or occupation numbers) of Langmuir waves 
Nt  in the right-hand side of (3) has been written down 
by analogy with quantum mechanics. The probability 
Pu12ks for the process (3) has been determined from 
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the spontaneous emission. In Refs. 6 to  8 formulae 
were found for it which agreed with one another. This 
result enables one to  admit that the probability for 
spontaneous emission was reliably established, but has 
no bearing on the problem of whether it is equal to  the 
probability for induced processes. Doubts about this 
equality arise for the following reason. The "semi- 
quantal" method of calculation used in deriving (3) is 
unsuitable to describe that part of the interaction be- 
tween weakly damped collective excitations (quasi- 
particles) which i s  caused by strongly damped collec- 
tive excitation. The assumption that this part is small  
and, hence, that the semi-quantal method is valid was 
explicitly formulated in Ref. 9, where it was stated that 
strongly damped modes do not affect the interaction be- 
tween quasi-particles if their number exceeds by far  
the thermodynamic-equilibrium value. Applied to 
Langmuir turbulence, this statement can be reformu- 
lated a s  follows: the presence of a strongly damped 
ion-sound branch does not affect the interaction of 
strongly epithermal Langmuir noise. At the same 
time, for a sufficiently broad Langmuir spectrum this 
branch is undoubtedly excited: low-frequency beats of 
the electric field generate ion-sound fluctuations with 
an amplitude which i s  quadratic in the field. The scat- 
tering of Langmuir waves by these density fluctuations 
i s  a process of third order in the wave energy and can 
compete with the process of (3) independently of the 
density. These two processes can not coincide since, 
in contrast to the second one, the first  does not con- 
serve the momentum of the Langmuir waves-part of 
the momentum is transferred to the induced density 
fluctuations and is  absorbed by the resonant ions and 
electrons (which cause the damping of the ion-sound 
oscillations). Thus there a r e  at least two four-plasmon 
processes and the result obtained by the semi-quantal 
method must be reconsidered. 

In the relaxation problem in which we are  interested, 
a s  also in many other cases which a re  of practical im- 
portance, electron nonlinearities a re  unimportant. 
Neglecting them we can start  the determination of the 
collision term from ~ a k h a r o v ' s  dynamic equations.10 
In the Fourier representation in the coordinates and in 
the time these equations have the following form: 

Here 

cpkw and nQo are  the Fourier transforms of the amplitude 
of the high-frequency electric potential (cp) and of the 
ion-density perturbation (n): 

0 9  kki 0. Vkk, = -- 
2n, kk ,  ' 

gk, = ( a - o h +  iso) -', o,=3/,o,r,,2kZ, 

f0(p) are  the unperturbed electron (o = e )  and ion (a=i) 

momentum distribution functions, normalized to the 
plasma density no; a;, and 0, a re  small random quan- 
t i t ies the introduction of which is justified in the way 
which is usual for the Wyld diagram We 
introduce the Green functions and pair-correlation func- 
tions averaged over the independent random quantities 
cut, and Fa,: 

Depicting the correlation functions by wavy lines, the 
exact Green functions by thick and the unperturbed ones 
by thin lines and crossing off, to distinguish them, 
lines corresponding to density fluctuations, we can rep- 
resent the basic equations of the Wyld technique in the 
form of the following graphs: 

A = z ; ~ ~ ~ ~  r 0 = glk9,,,,,,, 

The symbols EL,,,, and @Sw,,, have been introduced 
for the mass operator and the compact part of the Lang- 
muir wave correlation function. It i s  well known that 
these quantities are  given by infinite ser ies  of compact 
diagrams: 

Similar expansions a re  true for the compact part of the 
correlation function and the mass operator of the densi- 
ty fluctuations: 

==a+ . . . ,  -=a+ ... (8) 

When the energy of the Langmuir waves is not too 
large the reciprocal of the nonlinear interaction time is 
less  than the damping rate of the density fluctuations: 

the latter a re  purely induced and their correlation func- 
tion is quadratic in the wave energy. In that case, if we 
want to  evaluate +&,,,, up to and including third-order 
and c&,,,, up to and including second-order in the wave 
energy, the diagrams shown explicitly in (6) to (8) are  
sufficient. The required kinetic equation for the spec- 
t r a l  density of the waves 

Nk (r, t )  3 j dSxd~dfNr+x/r,r-x,a,r+~/z.w-t/~ e ~ ( x c - i t )  

can with sufficient accuracy be represented in the form 

dNr/dt-2~cDr+2Nr Im Xr, (1 0) 

where 

a) t= jd3~dfUh+x/z,x-x~z.r h+~/a..h-t/*ei(xr-f')* 

Br= j da~df l r+~n . r -vr . - I r+ t~ t t~ , - tn  ec(rr-tr). 
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A simple calculation gives: 

The terms 1:" and 1:'' are  generated by the first  of the 
graphs in (71, 1i3' by the first  from (6) and by the sec- 
ond from (7), and 1i4' by the second from (6) and by the 
last three from (7). The quantity 1;" describes the in- 
duced scattering of Langmuir waves by ions, 1:'' the 
correction to this process with allowance for the effect 
of the Langmuir turbulence on the density fluctuation 
Green function, 1i3' the scattering of Langmuir waves by 
induced density fluctuations, and 1i4' the scattering of 
two Langmuir waves into two other ones. 

In the case of a broad spectrum the quantities I:", 
1i2', and 1i4' can easily be estimated by appropriately 
shifting the integration path into the complex plane and 
using the expansion of the function G : ~  in the parameter 
qcs/1511<<1 in the region Im51>0: 

Doing this we find: 

Here W is the Langmuir wave energy density. By vir- 
tue of (I) ,  1i2' and 1i4' are  negligibly small compared 
with 1:" in the whole range of applicability of the weak- 
turbulence theory. On the other hand, in the equations 
for 1:" and 1i3' we can change to the so-called differen- 
t ia l  approximation which is well known for induced 
scattering by ions. This change is accomplished by the 
substitutions 

where t 2 1 is a dimensionless coefficient which can be 
estimated to be equal to the ratio of the frequency 51, 
= koc, of the ion-sound oscillations to their damping us: 

Q.lv. (T.BT,)  
= fi (T'BT.) ' 

After the substitutions (12) the collision t e rm (11) takes 
the form 

The reciprocal time of scattering by induced density 
fluctuations can be estimated to be equal to 

When 

this process is slower than the induced scattering by 
ions, but in the region 

the cubic t e rm becomes the main one. The second in- 
equality in (16) follows from the condition (9) that the 
density fluctuations be "static." When T i  ZT, (when v, 
- 51,) this inequality is the same a s  the condition for the 
applicability of weak-turbulence theory; when T, >>Ti 
there is a region 

where the turbulence is still weak, but the sound is no 
longer static. This region is described by the standard 
kinetic equations for the three-wave decay interaction 
of Langmuir and ion-sound waves. These equations are  
applicable also in the wider region 

v.; "lCQ.9 

which intersects (9). In the case of static sound they 
reduce to a single kinetic equation for Langmuir waves4 
with a collision term which agrees with (11) and dis- 
agrees with (3). 

We note that for a broad Langmuir spectrum the 
probability, evaluated in Refs. 6 to 8, i s  practically the 
same a s  the probability for scattering by induced densi- 
ty fluctuations (as the scattering by two waves into two 
others is weak). Nonetheless our conclusion that the 
cubic collision term may prevail over the quadratic one 
under conditions (1) and (9) contradicts the conclusions 
of these papers. The cause of the disagreement is 
Refs. 6 and 7 contain an e r r o r  the estimate of the cubic 
term,  while in Ref. 8 the region of applicability of the 
kinetic equation was established inaccurately (while 
the cubic t e rm and accordingly the width of the "jet" 
were correctly estimated). 

In concluding this section we show how the collision 
t e r m  (11) can be simplified for a narrow Langmuir 
spectrum (Aw<< kocs). In that case the ion-sound branch 
is practically not excited and the cubic t e rm must have 
the form (3). A direct calculation confirms this con- 
clusion: when Ao<< k , ~ ,  we can put G:, =  no/^ in the 
formulae for 1i2', 1i3', 1i4', after which the sum of all  
cubic t e rms  in (11) takes the form (3) with the well 
known probability 
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3. BASIC EQUATIONS 

We consider in what follows the problem of quasi- 
stationary heating of a plasma, which uniformly oc- 
cupies a half-space, by a concentrated beam of relativ- 
istic electrons injected along the normal to i ts  bound- 
ary. Under such conditions there remains in the left- 
hand side of the kinetic Eq. (2) only the term containing 
the derivative of the spectral function Nk in the injection 
direction z . At distances from the boundary of the 
plasma which appreciably exceed the length of the non- 
linear interaction of the waves, we can neglect also that 
term, for after the spectrum has been established the 
scale along which its parameters change becomes of the 
order of the beam-electron quasi-linear diffusion length, 
which is large when the elimination of the instability i s  
nonlinear. Therefore, for the determination of the wave 
spectrum we must set the collision t e rm equal to zero 
and solve the resulting equation. After that we can de- 
termine the spatial dependence of the beam parameters 
and of the spectrum from the diffusion equation. 

To state the problem more precisely we recall that the 
the instability of a low-density relativistic beam can be 
eliminated on account of the diffusion of its e l e ~ t r o n s ' ~ - ' ~  
o r  of the induced scattering of the Langmuir waves by 
the plasma particles-the ions'7-23 o r  the  electron^.'^ 
The reciprocal times for the processes listed here a re  
proportional to the wave energy and because of this it 
does not enter into the conditions that one of them will 
predominate over the others. Like the energy, the 
growth rate for the beam instability (to which the ener- 
gy is proportional when there i s  stabilization present) 
also does not enter into these conditions and hence 
neither does the beam density nb. Below, in view of 
what i s  of practical interest, we assume that the fastest 
process at small values of n$no is the induced scatter- 
ing of Langmuir waves by ions; the instability i s  as- 
sumed to be kinetic and the plasma to be not too cold 
[see (1')). 

The expressions for the probabilities of the various 
processes, for the beam relaxation length, and for the 
other quantities in dimensional variables turn out to  be 
very cumbersome. To simplify the formulae it is  con- 
venient to introduce natural units for scaling. We shall 
scale: the length by the characteristic length for the 
resonant Langmuir waves interacting with the beam; 
the frequency by the dispersive correction to the fre- 
quency of these waves; the energy of the Langmuir tur- 
bulence by an energy of the order of the threshold for 
the modulational instability; the plasma density pertur- 
bation n ,  and also the beam density nb, by the magni- 
tude of the perturbation necessary for the capture of 
resonant waves; and the velocity and momentum of the 
beam electrons by the initial values of these quantities. 
To make precise the numerical coefficients we give the 
appropriate formulae: 

Here is the ratio of the initial energy of the beam 
electrons to  the rest  energy mec2. 

In these units the diffusion equation for the beam 
electrons and the collision term (13) have the following 
form: 

- - 
- 6n k,k, ( r l m . ~ ~ ) ~  

= ~ - - J d " ~ ~ ~ 6 ( 1 - - k v ) ,  lo L,--. 
TT. ' 

We have included in the collision t e rm the Langmuir- 
wave damping v, caused by the Coulomb collisions of the 
plasma electrons with the ions3' and the beam-instabil- 
ity growth rate 

Here and in (17) f(p) is the momentum distribution func- 
tion for the beam electrons, normalized to unity. For 
a beam with an angular spread A8 the following esti- 
mate holds 

4. ESTIMATES 

As we have already noted above, we shall assume that 
the instability of a low density beam is eliminated by 
induced scattering of the Langmuir waves by the ions. 
The reciprocal time of this process can be estimated 
to equal 

For  comparison we give here the reciprocal time for 
the induced scattering by electrons: 

The scattering by electrons will be faster than by elec- 
trons if 

(Te < 20 keV for an isothermal deuterium plasma). 
Characteristic lengths for these two processes are  giv- 
en by the same estimates a s  the times since the group 
velocity of the Langmuir waves is of the order of unity. 

The Langmuir spectrum when there is induced scat- 
tering by ions is jet-like8 with one jet containing an ap- 
preciable fraction of the Langmuir waves close to the 
maximum growth rate. It therefore follows from the ener- 
gy-balance condition that 7- y and that 

W-y/g. (24) 

The idea of the jetlike spectrum i s  justified as  long a s  
the width of the jet (A$) is less  than the angular width 
(A81 of the excitation region. One can easily show (see 
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Ref. 8) that 

Here I' is the reciprocal time of the four-plasmon pro- 
cess  (in the case considered-scattering by induced 
density fluctuations). The condition that the jet be nar- 
row i s  equivalent to the inequality r < y, which is sat- 
isfied when y < b-'g3, i.e., when 

yo<s-'g3~oa. (26) 

In dimensional variables inequality (26) has the form 

(when ion sound is damped by electrons in a deuterium 
plasma with T, =10 keV we have n d n o <  3x10-' 7 ~ 0 ~ ) .  

The length 1, over which the angular spread doubles 
can be estimated using the diffusion equation (17): 1, - AO~ZQ/W. When the relatively weak condition 

is satisfied, this length is larger than the length for in- 
duced scattering by electrons and all the more for in- 
duced scattering by ions. 

The energy flux towards lower frequencies, caused by 
the induced scattering by ions, manages to  get absorbed 
thanks to Coulomb collisions and does not lead to  the 
formation of a Langmuir condensate only at a small ex- 
cess  above the critical value4': y - v,S v,. In practice 
this condition means that after the initial angular 
spread (A@& has been doubled the beam instability is  
stopped by the collisions. The beam manages to lose a 
fraction -A@, of its initial energy. This fraction is 
large only when Ago- 1. For a beam with an angular 
spread of order unity the condition (26) has the form yo 
< 1;-'g3. 

induced scattering by ions is a relatively slow process 
for a beam with any angular spread. The instability is 
eliminated by elastic scattering of the plasmons by den- 
sity  fluctuation^.^' The reciprocal time for this pro- 
c e s s  must satisfy the condition 

r a y .  (28) 

If inequality (28) were satisfied with an infinitely large 
margin the spectrum would be isotropic. For the case 
of an isotropic spectrum the beam would absorb Lang- 
muir waves over a time y;1.24 With increasing ratio y/I' 
a hump will develop on the spectral function of the plas- 
mons in the region where the growth rate is positive, 
and a dip in the region where it is negative. The mag- 
nitude of the hump (dip) is determined by the condition 
that there be a balance between the isotropic (N) and the 
anisotropic (A") parts of the spectrum: 

For  the steady-state spectrum this quantity is such that 
the additional excitation of waves connected with the 

hump and the dip exactly compensates for the damping 
of the isotropic part of the spectrum and also for the 
losses connected with the Coulomb collisions and with 
the induced scattering by the ions: 

yN'A0- (ro+v.+v) N .  (30) 

The relations (29) and (30) enable us to  find N and N'. 
Let 

yo>ve2y.  (31 

The first condition is necessary in order that the in- 
stability not stop when there is a small  angular spread 
and that the beam can transfer a considerable fraction 
of i ts  energy to the plasma; the second condition quar- 
antees the absence of a Langmuir ~ondensa te .~ '  Using 
(31) we can retain only the first  term in the right-hand 
side of (30). After that it follows from (30) and (29) 
that: 

Assuming that the spectrum is confined to the region k 
- 1 and has a width Aw- 1 the quantity I' is given a s  be- 
fore by the estimate (25) and 

N-W- (yo/SgA03)'". (33) 

The change in the angular spread in the beam is de- 
scribed by the diffusion equation dh@'/dz -D - w/lo and 
proceeds according to the relation 

where 

I- (Sg/yo) ":lo 

is the length for the angular relaxation of the beam. At 
distances -1 from the boundary of the plasma the in- 
stability is stopped by the isotropization of the beam. 
The fraction of energy lost by the beam i s  connected 
with its angular spread through the relation c- ~ ~ ' v , / y ~  
and c- v,/yo at the moment when the instability i s  stopped. 
The efficiency of the plasma heating is high when 
v, - yo. In that case the second of conditions (31) is the 
same as  the inequality given in footnote 5, and gives a 
lower bound for the angular spread of t h e  beam: 

By virtue of (27) this limitation is satisfied even when 
A@<<1. 

In the present section we have assumed the existence 
of a stable stationary spectrum confined to  the region 
k - 1 and with a width Aw - 1. It is not possible to veri- 
fy this assumption by estimates. We therefore turn to 
an exact solution of the problem. 

5. SELF-SIMILARITY 

It is possible to  advance appreciably towards an an- 
alytical solution of the beam relaxation problem at A0 
<< 1 when the anisotropic part Ni of the plasmon spec- 
t r a l  density is small  compared with the isotropic part 
Nt: 
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here dok indicates an element of solid angle in k-space. The calculation of the isotropic part of the square of 
the growth ra te  for an axially symmetric beam leads to 
the following formula: 

As the anisotropic correction is concentrated in a 
narrow (of the order of A0) region of angles close to 

OR=arccos (Ilk), 

a l l  possible integrals of Ni over angles contain an addi- 
tional small factor A0 and can be neglected with t e rms  
of order NUN, retained. Up t o  the largest anisotropic 
terms the equation St, = O  has the form Here K' and E' a re  complete elliptic integrals of the 

first  and second kind of the complementary modulus 

Quantities with a scalar index indicate, a s  in (37), the 
isotropic parts of the corresponding functions: 

Formula (46) is applicable everywhere except in a nar- 
row region that is unimportant for what follows, 

1 k-I (4(A€t+AE/qZAO)2. 

The distribution function for the beam electrons is 
determined from the diffusion equation. In the present 
case  it can be written in the form Equation (38) enables us to  express Ni in terms of N,: 

where Integrating the exact equation St, = O  over the angles 
gives us an equation for N,: 

Here Yh is  the isotropic part of &: 

If we use the fact that the energy spread AE is small we 
can obtain from (47) a closed equation for the function 
u ( ~ , E ) :  Equations (40) and (41) a re  the analogs of the estimates 

(29) and (30). Substituting (40) in (41) leads to  the rela- 
t ion 

y p f f ~  a-0, - 

eff - 1 
YR = ~ ~ R - Y ~ + Y R  + -j dokykZ. 

nrk 

Equation (49) has a self-similar solution 

Using the condition for the extrinsic stability of the 
spectrum7' we can write (43) in the form The factor in front of u, is chosen such that the normal- 

ization condition 

yhtff =0, when Nb>O, 

e ff 
ya GO, when NR=O. 

is satisfied. Substituting (50) into (49) and using (51) we 
prove easily that 

A general formula for the isotropic part yh of the 
growth rate was obtained in Ref. 24. For a relativistic 
beam with a small energy spread (LIE<< 1) this formula 
can be simplified considerably: 

ya=-k-'yo8(k-I). 

Here @(x)  is the unit step function: 

The distribution (53) is  established after the angular 
spread has increased by an appreciable factor for any 
initial distribution with Atlo<< 1. Together with u(tl,e), 
the growth rate of the beam instability also turns out to 
be a universal function. In particular, Eq. (46) takes 
the form 

I, when x>O ew- ( 0, when x<O' 

and YO is given by Eq. (22). 

Deviations from the simple relation (45) occur only in 
a narrow region 

I k-I 1 <AE/q2 
where 

and do not play any significant role in what follows. 
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The Langmuir spectrum also satisfies a universal 
equation; to find it, it is convenient to  introduce an 
auxiliary function N ( w ) :  

The general solution of Eq. ( 6 6 )  has the form 

Here 2(u) is a particular solution which i s  constructed 
in the standard way using solutions of the homogeneous 
equation; f f  =a(- 7  +in) i s  one of the roots of the char- 
acteristic equation f f 2  + 7 a  + 14 = O ;  C ,  and c,  a re  com- 
plex constants. The real  parameter q, could have been 
included in cl and c,,  but our form of ( 6 7 )  is more con- 
venient for what follows. 

normalized by the condition 

a 

Substitution of ( 5 6 )  in ( 3 9 )  gives 

In the general case the Langmuir spectrum consists 
of a set of spherical layers in each of which it has the 
form ( 6 7 )  with i ts  own constants c ,  and c, .  With a 
single layer a re  connected six real  constants: Re c , ,  
Im c , ,  Re c, ,  Im c,,  w,,, , and q, , where urn and q, a re  
the lower and upper boundaries of the layer. Substitu- 
tion of (67 )  in r(u) yields a function which differs from 
? ( w )  in each of the layers by a fifth degree polynomial 
(different in each layer). The conditions that the six 
coefficients of this polynomial must vanish in all layers 
enable us to determine all parameters of the spectrum 
uniquely. The function N ( w ) ,  being uniquely defined in- 
side the layers and zero outside them, undergoes in 
general a discontinuity on the boundary of each layer. 
The discontinuities vanish when one takes into account 
induced scattering by the ions. This scattering imparts 
to layer boundaries a finite width 60: 

The quantity a which s o  far has been arbitrary can be 
defined such that the relation 

holds. The equation for y:" then turns out to be 

When inequality (36 )  is satisfied with a large margin 
we a re  able to neglect in (60 )  the third term describing 
the induced scattering by ions. When that process is 
absent the Langmuir spectrum i s  obviously concentrat- 
ed in the region k >  1  and we can write Eqs. ( 4 4 )  in the 
form 

F(o)=f'(o), when N(o)>O; ( 6 1 )  
r (o)>r(o) ,  when N(IO)=O ( 6 2 )  

- 
In the case of interest to us the function r ( w )  is given 

by Eq. (63) and the spectrum consists of a single spher- 
ical layer. The particular solution of Eq. ( 6 6 )  can be 
written in the form 

where 

Here h, and i2 a re  linear operators whose action i s  
given by the formulae The function N ( W )  defined by Eqs. ( 6 1 )  and ( 6 2 )  does not 

change in the relaxation process. Knowing this function 
we can use Eq. ( 5 7 )  t o  evaluate the quantity a and sub- 
stituting it into (59 )  find the energy of the Langmuir 
waves a s  a function of the angular spread in the beam. 
The change of the angular spread is determined by Eq. 
( 5 2 )  with the diffusion coefficient 

Substitution of ( 6 7 )  with the particular solution (68 )  into 
( 6 1 )  leads to the following set of equations: 

Integration of this equation leads t o  Eq. (34) with a 
more exact expression for the beam relaxation length: 

Here 
r,=r?=o, ~ . = P ( ~ ~ ) I ~ ~ ~ ~ ,  6. CONSTRUCTION OF THE SPECTRUM 

Differentiating six t imes with respect to w reduces 
Eq. (61 )  to an ordinary fourth-order differential equa- 
tion: 

d" (o)  L'N' (o)  =- - 
do' ' 

d 
L-("$)= +7o-+i4. do 
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FIG. 1. Energy density of the Langmuir waves with respect 
to frequency as function of the dispersive correction when the 
beam instability is stabilized by the four-plasmon process. 
All variables are dimensionless. The damping of the Lang- 
muir waves is  small compared to the growth rate of the insta- 
bility of a spread-out beam: v, << yo. 

The constants c,, c2,  c f ,  cf occurring linearly in 
Eqs. (71 )  can easily be eliminated from these equations. 
The remaining set of two equations with two unknowns 
w,  and y, can be solved numerically. In the particular 
case v e / 2 y o  << 1 we have 

(0,,,=1.36, 01,=4.96. 

Figure 1 shows the graph of the function w ~ ' ~ N ( w )  (which 
is proportional to  the wave energy density a s  function of 
frequency) corresponding to this case. The constants a 
and b turn out to be 

(1=?,.23, b=I.61. 

Knowing a and b we easily find the energy of the Lang- 
muir waves and the beam relaxation length: 

In dimensional variables these formulae have the form 

When the parameter v , / yo  increases the result does not 
change qualitatively up to values v e / y o -  1. 

7. STABILITY 

It is convenient to calculate the function r ( w )  outside 
the region of the spectrum using the formulae 

Using these formulae one easily verifies the extrinsic 
stability of the solution found [inequality (6211. 

The problem of the stability can also be solved in a 
positive sense: it turns out that an extrinsically stable 
spectrum must be stable. For simplicity we consider 
this problem in the framework of the equation 

dN (kZ ,  t )  l d t = T t f f ~ ~ ( k a ,  t )  +E,. ( 7 2 )  

The t e rm E, describing a noise source is taken into ac- 
count in ( 7 2 )  to exclude the physically unrealistic pos- 
sibility that the function N ( k 2 )  vanishes. When we neg- 
lect induced scattering by ions, the effective growth 
ra te  y:" can be written in the form 

We have introduced here the notation r ( k 2 )  =FN2(k2)  un- 
derlining the linear depe?dence of the functional r (k2 )  
on N 2 ( k 2 ) .  The operator r is symmetric and positive- 
definite. One can easily check this using the represen- 
tation 

- 
G ( o ,  02) = d o ,  ( 0 - 2 0 , )  2(01-20i)28(o-oi)@(02-01). 

0 

Let N,(k2)  be a stationary solution of (721, and r o ( k 2 )  
the value of r ( k 2 )  corresponding to that solution. The 
function N0(k2)  is close to the spectrum found above by 
virtue of i ts  extrinsic stability and the fact that c, i s  
small. Expressing P ( k 2 )  in t e rms  of No(k2)  we can re- 
write Eq. ( 7 2 )  in the form 

After integration over k2 the stability of the stationary 
spectrum against perturbations with 

follows at once from Eq. ( 7 3 ) .  The time to establish the 
spectrum is of the order v i l .  

8. REGION OF APPLICABILITY 

As the maximum of the energy release usually occurs 
in the concluding stage of the relaxation, the losses of 
the beam a re  determined by the nonlinear mechanism 
which predominates when AB- 1 .  The four-plasmon in- 
teraction i s  such a mechanism when 

[the lower limit i s  connected with the condition that the 
induced scattering of Langmuir waves by ions be weak, 
and the upper one with the requirement (9) that the in- 
duced density fluctuations be static]. When one studies 
the four-plasmon interaction the range of values of nl, 
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described by the relaxation theory is broadened by a 
factor g-2 (by a factor 100 for an isothermal deuterium 
plasma with a temperature of 15 keV). 

We have assumed above that there is no magnetic 
field, but the results obtained a re  valid also in not too 
strong magnetic fields. As the whole spectrum is con- 
centrated in the resonance region of frequencies, the 
field does not affect the relaxation a s  long a s  the "mag- 
netic" correction to the frequency of the resonant plas- 
mons is small compared with the "thermal" one, i.e., 
when p>> 1 ,  where P = ~ T ~ ~ T , / H ~  is the ratio of the gas 
kinetic pressure of the electrons to the pressure of the 
magnetic field. This case is of interest in connection 
with planned experiments on beam plasma heating in 
systems with "wall" confinement (see, e.g., Refs. 26 
and 3). The case 1 which occurs in most. contem- 
porary experiments i s  not described by the estimates 
we obtained. It i s ,  however, clear that the study of the 
scattering by induced density fluctuations enables us to 
broaden considerably the region of applicability of the 
relaxation theory also in that case. Such a study can 
easily be performed at v, < yop3I2, when the Langmuir 
spectrum is nearly ergodic. At stronger damping of 
the Langmuir waves the constant-frequency surfaces 
a r e  not fully occupied; this complicates the analytical 
solution of the problem, but we can easily write down 
estimates also in this case. 

We also neglected above electromagnetic waves-we 
were dealing with a transparent plasma. When these 
waves a re  suppressed the spectral density of their en- 
ergy turns out, owing to scattering by induced plasma 
density fluctuations, to be a function of the frequency 
only, and furthermore the same function as  for Lang- 
muir waves. The ratio of the total energies i s  then 
equal to that of the phase volumes. Hence, the energy 
of the Langmuir waves i s  larger than that of the elec- 
tromagnetic waves by a factor ( ~ , c ~ / T , ) ~ ' ~  and the lat- 
t e r  have practically no effect on the relaxation. 

The author i s  grateful to L. S. Pekker and V. P. Na- 
gornyr for their help with the computer calculations. 

 he increase in the beam energy necessary for plasma heat- 
ing can then be guaranteed by increasing their  duration. 

').See Ref. 4 for details about the conditions for the unimpor- 
tance of the electromagnetic branches. 

3 ) ~ h e  nature and constancy of the Langmuir wave damping a r e  
not very important from the formal point of view. 

4)0ne should note that when there is a magnetic field present 
o r  when electromagnetic waves a r e  present the region of ap- 
plicability of the existing relaxation theory in t e r m s  of the 
parameters y/v, turns out to be much 

5 ) ~ h e  possibility of eliminating the beam instability by elastic 
scattering of Langmuir waves was f i rs t  noted in Ref. 24. 

6 ) ~ t  will become c lear  in what follows that no condensate ap- 
pears  under the weaker condition yo> which i s  automatically 
valid in the range (27) for a beam with not too smal l  an angu- 
l a r  spread. 
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