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The response of a long two-level laser amplifier is obtained, i.e., the structure of the pulse at the amplifier 
output is determined as a function of the waveform of the firing pulse. It is shown that the output pulse is 
always quasi-self-similar, and that the parameters of the long-amplifier solution are determined exclusively by 
the rise time of the firing pulse. 
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1. INTRODUCTION an evolution equation, where the role of the "time" is 

The propagation of ultrashort optical pulses in a reso- played by x: In other words, the indicated boundary- 

nant medium are well described within the framework of problem is to the C a u c h ~  problem in 

the semiclassical Lamb model (see Ref. 1). This model t e rms  of x. 

deals with a classical electromagnetic field that inter- 
acts resonantly with quantum two-level objects-"two- 
level atoms. fl The model becomes even simpler if a 
pulse traveling in one direction i s  considered. In this 
case, neglecting all  the dissipative processes, the 
equations of the model a r e  written in the form1' 

which is equivalent to the known Maxwell-Bloch system. 
It is assumed that E = c  = 1; E ( x ,  t) in (1) and (2) is the 
complex envelope of the electric field, so that the field 
in the medium is 

u ( w )  and v(w) a re  the amplitudes of the probabilities of 
the sojourn of the two-level atom in the upper (lower) 
states. The transition has a frequency 0, and a dipole 
moment p. The function n(w), which characterizes the 
inhomogeneous broadening, is the difference between 
the initial populations of the upper and lower levels: 
n(w)=N+(w) - N_(w). The choice of the notation in (1) 
and (2) is  such that one should assume uemiwt - 1 and 
u -0 a s  t - - w .  Equation (1) is all  that is left of Max- 
well equations, while the right-hand side of (1) is pro- 
portional to the polarization of the medium at  the tran- 
sition frequency. Equations (2), on the other hand, a r e  
Schrainger  equations of two-level systems in an exter- 
nal field, written in the resonance approximation. The 
parameter w in (1) and (2) i s  the deviation of the transi- 
tion frequency of the given two-level atom from the 
mean frequency 0, of the ensemble; the physical cause 
of this difference between the transition frequencies 
can be, for example, the Doppler shift (for gas lasers).  

The pulse-propagation problem is formulated a s  fol- 
lows. Let a medium with a population difference n(w) 
occupy the half-space x >O and let the field in the me- 
dium be zero at t<O. A pulse of specified profile 
E(x, t)I,=,= ~ , ( t ) ,  with E,(t) = O  at  t <O, enters the 
medium through the boundary x = 0. Describe the 
field E(x, t )  in the medium. In this formulation, the 
boundary-value problem (I ) ,  (2) is transformed into 

It is clear that in principle the answer for a normal 
medium differ from those for a medium with inverted 
population. In the former case, when n(o) < 0, the 
linear modes attenuate exponentially in the interior of 
the medium and solely nontrivial effects (self-induced 
transparency) ar ise  only when the pulse entering the 
medium is strong enough and releases a finite (usually 
small) number of solitons (2n o r  On pulses) to which the 
medium i s  transparent. A self-induced-transparency 
theory based on the application of the inverse-problem 
method to the system (I) ,  (2) has been developed in 
great  detai11*3*4 and is in splendid agreement with ex- 
periment. The situation is entirely different for an 
amplifier, i. e .  , when n(w) >O for a t  least a few w. In 
this case the corresponding linear modes increase ex- 
ponentially with x and the problem soon becomes 
strongly nonlinear even for a weak entering pulse. Al- 
though the inverse-problem method is also applicable 
to the propagation of a pulse in an amplifier, no solu- 
tions that a re  to any degree complete have been de- 
scribed heretofore. The reason is that, in contrast to 
an attenuator, where the evolution of the solution is 
described mainly by the discrete spectrum of the as- 
sociated differential operator and the inverse-prob- 
lem equations reduce to a system of (easily solvable) 
linear equations, in the case of an amplifier we must 
deal with a continuous spectrum and investigate the in- 
verse problem to i t s  full extent, i. e. ,  solve a system 
of singular integral equations. Some exact solutions 
were obtained by Lamb5 in the limiting case of strong 
inhomogeneous broadening n(w) = const. l' 

In this article we describe the structure of the pulse 
at large x for the case when Jn(w)dw > 0 a s  a function 
of the waveform of the input signal E,(t), i. e . ,  we pre- 
sent the "responsew of a long laser  amplifier. We 
shall show that at large x the solution is a nonstationary 
n pulse whose velocity tends to that of light. With in- 
creasing x, the pulse contracts roughly speaking like 
l/x, and the field in the pulse increases like x. The 
inhomogeneous-broadening effects become insignificant 
at large x,  the pulse has a constant phase, and its 
shape is quasi-self-similar. The solution is then de- 
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termined exclusively by the behavior of Eo(t) in the 
vicinity of t = 0  and is insensitive to the subsequent 
course of this function-the system forgets the initial 
condition almost completely. The pulse absorbs 
practically a l l  the energy and can be drawn from an 
inversely populated medium only by a classical elec- 
tromagnetic wave. Namely, the energy removed per 
unit length is no Jn(w)do, so  that after the passage of 
the pulse the populations of the upper and lower levels 
become equal to N-(w) and N+(w) respectively. 

The fact that a t  large x the pulse structure is insen- 
sitive to the form of the inhomogeneous broadening 
means that E(x, t) coincides with the solution of the 
system (I), (2) in which the function n(w) can be re -  
placed by nl(w)  = N6(o),  where N = ln(w)dw. In this 
case, the Maxwell-Bloch equations have a family of 
self-similar solutions617 of the form E(x, t) =p-'aU/at, 
where U i s  a function of the self-similar variable 

U(z) satisfies the equation 

U,,+U,lz=sin U. 

Each solution of (3) that is regular a t  zero is uniquely 
determined by the value U(0) = Uo of U at  z =0, s o  that 
U= U(Uo, z). It turns out that the parameter Uo can be 
made an arbitrary slow function of the ratio z/x; the 
corresponding E(x, t) is then close, a s  before, to the 
true solution of Eqs. (1) and (2). We shall refer to 
such solutions, with "floating" parameter U, a s  quasi- 
self-similar. It is precisely in terms of these solu- 
tions that the asymptotic form of E(x, t) is expressed a t  
large x. 

The function Uo(z/x) can be explicitly expressed in 
terms of Eo(t), and furthermore quite simply, avoiding 
the inverse-problem technique, by matching the solu- 
tion obtained by the linear approximation to the quasi- 
self-similar solution, since the regions where both a re  
applicable overlap a t  large x .  This is a very impor- 
tant circumstance for the following region: The main 
shortcoming of the model (I) ,  (2) a s  applied to real  la- 
s e r  amplifier is the requirement that the amplifier op- 
erate on a transition between nondegenerate states, 
whereas in real  systems these states a re  degenerate. 
A system with degeneracy can no longer be integrated 
by using the inverse-problem method. However, so  
crude a property a s  quasi-self-similarity of the 
asymptotic form should obtain in this case, too: Since 
the integrable system forgets the initial condition, one 
need not expect the nonintegrable system to have a bet- 
t e r  memory. Therefore, accepting the self-similarity 
hypothesis, we can calculate also the characteristics 
of an amplifier with degeneracy (this will be done else- 
where). The model (I), (2), however, being integrable 
provides a unique opportunity of verifying the self- 
similarity hypothesis, and this can be done only by the 
inverse-problem method. 

The plan of the article is the following. In Sec. 2 
we present the needed inverse-problem information in 
a form convenient for our purpose. In Sec. 3 the in- 
verse-problem equations a r e  solved explicitly for very 
large x, In lnSlx > 1, when the pulse has a particularly 
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simple form-it consists of a sequence of 271 and -2n 
pulses. The technique used in this section shows that 
the solution is quasi-self-similar even a t  Inax< 1. In 
Sec. 4 the connection between the parameters of the 
quasi-self-similar solution and the initial condition 
E,(t) is obtained. 

The main statements proved in the present paper 
were published earl ier  in Ref. 8. The author con- 
siders i t  his pleasant duty to thank V. E. Zakharov, 
I. R. Gabitov, and A.V. ~ i k h a i l o v  for a helpful discus- 
sion of the problems considered below. 

2. NEEDED INVERSE-PROBLEM METHOD 
INFORMATION 

We describe here the general procedure for integrat- 
ing the system (I) ,  (2) within the framework of the in- 
verse-problem method. Since the formally analytic 
aspect of the problem is the same for an amplifier a s  
for an attenuator, our description will be a s  brief a s  
possible. The standard details of the method can be 
found in Refs. 3 and 9. 

The inverse-problem method can be applied to the 
Maxwell-Bloch system because Maxwell's equation (1) 
can be replaced by a supplementary integrodifferential 
equation for the amplitudes u(w, x, t )  and u(w, x, t), which 
a r e  the solutions of the system (2). Namely, we can 
write in lieu of (1) 

(3)  
where the matrix i, i s  given by 

In fact, the Schriidinger equations (2), which we re -  
write in the form 

and Eq. (3) constitute an overdefined system for u and 
u. The condition for the compatibility of this system 
at a l l  w (equality of the secondderivatives (a/at)/(a/ax) 
C) and (a/ax)/(a/at)(:) is 

By choosing l j  in the form (4), we satisfy the last of 
these equations [as soon a s  u and u solve (5)]; the first  
equation goes over in this case into (1). 

Once the representation (3), (5) is established for the 
system (I), (2), the standard technique of the inverse- 
problem method becomes applicable. We introduce a 
special solution of the system (5), fixed by the condition 

[we recall that E(x, t) in (5) is zero  in our problem at  
a l l  x >O and negative t, while the solution (6) is pre- 
cisely the one used when Eqs. (1) and (2) were written 
down. ] We designate hereafter the column u, v by cp: 
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where 

The condition (6) ,  however, i s  not the solution of (3) a t  
E = 0. Wishing t o  preserve the definition (6)  of cp for  a l l  
x ,  we add to the right-hand side of ( 3 )  the te rm 

which obviously does not change the conditions fo r  the 
compatibility of the systems (3 )  and (5);  in place of (3)  
we have then 

We shall indicate now how the integral in (7)  i s  to be  under- 
stood a t  rea l  w. The introduced solution cp is analytic 
in the lower w half-plane; we therefore define the inte- 
gra l  in (7) a t  lmw =O a s  the limit when w tends to the 
rea l  axis from below, i.  e . ,  we replace w by w - i O .  

At fixed x  and a s  t  - the quantity E(x,  t )  vanishes 
and the asymptotic form of the solution (6 )  is 

The dependence of the functions A and B on x  i s  ob- 
tained from (7)  explicitly. We note f i r s t  that by virtue 
of (4) the asymptotic form of j (w)  i s  

Using next the known formula 

we find that 

Substituting this expression in (7 ) ,  we obtain after  
simple calculations 

n ( o ' )  dm' B I (0,-,-io I 
In other words, putting B / z  =R(w,  x ) ,  we have 

The function R(w,  x )  has the meaning of the reflection 
coefficient for  the system ( 5 )  and i s  one of the principal 
objects in the inverse-problem method. The transfor-  
mation E(x,  t )  - R(w, x )  is uniquely reversible subject 
to certain limitations. 3, Formula (8)  solves therefore 
in principle the Cauchy problem with respect  to x for  
the system ( I ) ,  (2): R(w,O) i s  calculated given Eo(t)  
= E(x,  t )  I,=,; E(x,  t )  is reconstructed then from the 
known R(W-, x)  (8) .  The problem of reconstructing E 
from R i s  the subject of the inverse scattering prob- 
lem. I ts  solution reduces to a solution of a system of 
singular integral equations for  the function ~ ( w ,  x ,  t )  
= c;)= ~ ( w ,  x ,  t)emiwt (see Ref. 9, Chap. 1, Secs. 9  and 
10): 

Solution of this system yields the functions u(w) and 
v(w),  knowledge of which allows u s  obviously to deter- 
mine E(x ,  t )  from Eqs. (5).  There exists ,  however, a 
very convenient linear expression for  E in t e rms  of cp .  
It follows from a comparison of the f i r s t  t e rms  of the 
asymptotic expansion of in powers of l / w ,  calculated by 
start ing directly from the problem (5 ) ,  and on the other 
hand from Eqs. (9). Putting 

We shall investigate the system (9)  in the next sec-  
tion. We note now only that even (8)  leads directly to 
nontrivial physical consequences. The solution intro- 
duced for  the system (5)  with the aid of the condition (6) 
yields the amplitudes u  and v  for  finding an initially 
excited atom in the upper andlower states,  respectively. 
Fo r  an  atom initially in the lower state, the solutions of 
the Schradinger Eq. ( 5 )  a r e  respectively -iJ and E. 
Therefore the average number of atoms on the upper 
level a t  the instant of time t  is 

and on the lower level 

where N+ and N _  a r e  the initial populations of the upper 
and lower levels. It follows from these equations that 
the population difference a t  the point x af ter  the passage 
of the pulse ( t  - .e) is 

I - IR(o ,x)  l Z  
N +  ( o ,  rn, x )  -N- ( o ,  m, x )  = n ( o )  

I+IR(o,x) l 2  

(since I u l2 -I- ( v)2 = 1 A 1' + 1 B l2 = I ) .  ~ u t  i t  follows from 
(8)  that the dependence of the modulus of the reflection 
coefficient on x  i s  of the form 

(R (m ,  x) J=IR(o ,  0 )  (exp (nzQopZn(o)x)  

T ~ U S ,  if n(w) >O, we have a t  large x  

with exponential accuracy. Thus, af ter  passage of the 
pulse, a l l  the excited atoms go over to the ground state 
and conversely. This means that the pulse energy in- 
c r eases  linearly with x ,  meaning that the pulse draws 
an energy no Jn(w)dw per  unit length. 

As  already mentioned, R(w, 0 )  is calculated from the 
input pulse Eo(t). To  this end, generally speaking, u e  
must  solve the system (5)  fo r  a l l  w. This can be done 
in the general case,  of course,  only for  very special 
forms of the function Eo(t). If, however, the firing 
pulse is weak enough, an  expression for  R can be ob- 
tained in explicit form. Namely, if E(x.  t )  is small, 
the solution of (5) is given by the f i r s t  Born approxi- 
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mation. In this case 
ce 

R ( o , x ) = i p  5 E(x ,  t )eZ'mldt ,  
- - 

i. e . ,  the reflection coefficient for weak pulses is sim- 
ply the Fourier transform of E .   o or just this reason, 
and also because the function R(x) (8) is the result of 
the linear approximation of the system (I), (21, the 
transform E -R is frequently called the nonlinear 
Fourier transform also in the general case. ] In our 
problem, E,(t) is concentrated near t 0,  therefore 

This expression is analytic in the upper half-plane. We 
shall need hereafter the asymptotic form of R(w, 0) a s  
I w I - m, Imw >O. This asymptotic form is determined 
by the behavior of E,(t) a t  zero  t. We confine ourselves 
to  the following two cases: 1) E,(t) has a 6-function 
singularity a t  zero, and 2) Eo(t) has a power-law be- 
havior a t  zero. In the former case, when Eo(t) = E,,G(t) 
+ terms that a r e  regular a t  zero, we have 

In the latter case, when 

we have 

where 

Without loss of generality, the quantities E,, and E, 
can be regarded a s  real. We have introduced the nota- 
tion E ,  in the f i rs t  case, since formally (12) is ob- 
tained from (13) a t  v =  -1. 

To conclude this section, we call attention to the 
following circumstance. As already noted, R(w, 0) (11) 
is analytic in the upper w half-plane. This holds true 
also in the general case of (not small) E, concentrated 
about t 2 0. This circumstance together with the 
analytic properties of the function ~ ( w )  guarantees 
causality of the solutions of our problem. Indeed, 
analyticity of ~ ( w )  in the lower w half-plane implies 
analyticity of the function i ( w )  in the upper half-plane. 
It can then be easily seen from (8) and (9) that the in- 
tegrand in (9) is analytic in the upper w half-plane and 
vanishes a s  1 w 1 - m at  x >t. For  this reason, the inte- 
gral  in the right-hand side of (9) vanishes a t  x > t  and 
x(w)= (i) in this region. The latter  means in turn that 
E(x, t) = O  a t  x >t, meaning that the solution does not 
"set outr9 behind the light cone and is causal (in con- 
t ras t ,  e. g . ,  t o  the spontaneous solutions discussed in 
Ref. 7). 

3. ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS AT 
LARGE x 

It is obviously impossible to obtain a solution of the 
inverse-problem Eqs. (9) in the general case. It 
is possible, however, to describe these solutions in 
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sufficient detail a t  large x, i. e. , in the case of "long" 
lasers.  A similar situation obtains also for other 
equations that a r e  integrable by the inverse-problem 
method-the asymptotics of the solutions at long times 
has been explicitly described for such problems a s  the 
nonlinear SchrMinger equation, the Korteweg-de Vries 
and sine-Gordon equations,1° a s  well a s  for some non- 
one-dimensional systems. llsl"ur problem, however, 
differs from those previously studied. The main differ- 
ence is that in all  the mentioned systems the temporal 
asymptotics a r e  "quasi-linear,'? i. e., they coincide, 
roughly speaking, with the solutions of the correspond- 
ing linearized equations. The latter  circumstance is 
certainly excluded in our problem, since the corre- 
sponding linear modes grow exponentially with the 
"time" x. The long-time solution becomes therefore 
essentially (and in a certain sense, extremely) nonli- 
near. Accordingly the formally mathematical aspect 
of the problem has likewise nothing in common with the 
technique developed in Refs. 10- 12. 

We shall study the solution of the system (9) at large 
x in a narrow region (that becomes narrower with in- 
creasing x) near the light cone t=x .  It i s  precisely 
in this region, of approximate size lnnx/x, where the 
bulk of the solution is localized (all the energy drawn 
by the pulse from the medium is concentrated here). 
Recalling that the reflection coefficient R(w, x) has a l l  
the qualitative properties of a Fourier transform, we 
can state that the behavior in a narrow region of size 
- l / x  is governed by R(w, x) with w ~ x .  At large w the 
function R(w, x )  (8) is greatly simplified: 

R  ( o ,  x) =R ( a .  0 )  exp[ 2ix ( o  + o+iO , "' 11 
where 

Equation (9) takes then the form 

1 1 ' R ( o ' , O )  
x ( ~ ) =  ( 0  1 -g J ------ exp 2i (5-1) W' + - ~ ( o ' )  d o 1 .  

- = 
a'-a+iO ( I o "'" - t r O  11- 

(17) 

We a re  interested in solutions of this equation a t  t > x  
(causality leads to zero E(x, t) a t  t <x).  

We introduce the variable 

and make the substitution w - A, where 

In the new variables, Eq. (17) takes, with allowance 
with the asymptotic form (13) of R(w, O), the form 

where 

The integration contour C in (20) goes from -a to +.e 

and circles around the singularity of the integrand 
(A'= A, A' = 0) from above. 
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We note that even a t  this  stage the inhomogeneous 
broadening has dropped out of the problem. I t  is easy 
to verify that the transition from the system (9) t o  (20) 
is legitimate if the following inequality i s  satisfied: 

where Ao is the characterist ic  width of thefunctionn(o). 
This condition has  a c lear  meaning: In the vicinity of the 
light cone the field is determined by the high-frequency 
harmonics of E,(t), whose dispersion law (15) i s  insen- 
sitive to the form of the inhomogeneous broadening. 

Equation (20) is the main object of the investigation 
that follows. It is convenient a t  the same time to have 
the equation obtained from (20) by applying to the lat ter  
the operation designated by the tilde symbol: 

The integration contour in (22) passes from -.o to 
+-J in the lower half-plane. 

We consider f i r s t  the solution of the system (20)-(22) 
when f,,(z/x) i s  smal l  and z is not too large,  s o  that the 
solution of this system can be obtained by simple i te ra-  
tion: 

The asymptotic expression for  the second component 
of x(A) is here  

Substitution of this expression in (19), with (19) taken 
into account, yields 

The integral in the right-hand side of this equation is a 
Bessel function of imaginary argument (the integration 
contour C can be deformed into the unit circle) ,  there- 
fore 

At small  z ,  when J ,  can be replaced by the f i r s t  te rm of 
i t s  expansion, Eq. (23), with allowance for  (21), (14), 
and (18), leads to 

i. e . ,  the pulse preserves i t s  initial shape in the vicinity 
of the front. However, the region of applicability of 
(23a), a s  seen from (23), becomes rapidly narrower 
with increasing x. 

Equation (23) remains valid a lso  a t  large z iff,, is a t  
the same time smal l  enough (larger than x). In this 
case J,(-iz) can be replaced by the f i r s t  t e rm of 
asymptotic expansion, so  that 

inequalities 

The solution in this  region is still given by the linear 
theory. 

Expression (23b) shows that a t  sma l l  f,, the main in- 
t e r e s t  attaches t o  the region of large z. It is just in 
this  region that the "entire" solution is concentrated. 
We shall  therefore assume hereafter ,  a s  before, that 
z >> 1 and will gradually relax the second inequality of 
(24). 

The integration contours C and I: in Eqs. (20) and (22) 
can be arbitrari ly deformed in the upper o r  lower A 
half-planes, respectively. The exponentials in the in- 
tegrands, however, have saddle points, namely A' = i 
in (20) and A' = -i in (22). The vicinities of the saddle 
points give the main (exponentially large) contributions 
t o  the integrals (20) and (22) a t  large z. It i s  therefore 
natural  to use the saddle-point method when calculating 
these integrals a t  z >> 1. Drawing in suitable manner 
the contours C and 2 through the saddle points and for- 
mally calculating the f i r s t  t e rm of the asymptotic ex- 
pansion of the integrals (20) and (22), we obtain 

Equations (20) and (22) take thus the form 

where 

The solution of the system (26) is trivial: Putting 
A=- i  and A =  i in the f i r s t  and second of these equa- 
tions, respectively, we obtain a closed system of li- 
near  algebraic equations for  x(-i) and f(i); the solution 
of this system i s  

This determines a lso  x(A) (26). The asymptotic form of 
x(A), which determines E(x, t )  in accord with ( lo) ,  is 

Thus, 

The region of validity of the obtained expression will 
be discussed somewhat later. At present we consider 
(28) in detail. We reca l l  the explicit expression for  
Pv(z, x): 

The region of validity of this expression is given by the 
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We introduce the notation 

2 
a(z,x)--ln-. 

I Pv(z, z )  l 
(29) 

Assuming E, to be real  and positive, we rewrite (28) in 
the form 

At large x the maximum of this expression l ies a t  the 
point z,, where the argument of the hyperbolic cosine 
vanishes, 

The solution of this equation is 
1 

z , ( x ) - ~ ( d -  ( v + - Z ) l n ~ ( z ) + ~  (31) 

where 

We assume that X,(x) >> 1. (We note that X, can be in- 
creased either by increasing x o r  by decreasing E,, 
i. e.  , by weakening the entering pulse. ) 

In the vicinity of i t s  maximum, Eq. (30) expressed in 
terms of the initial variables x and t takes the form 

8 P 4  8Qzx 
pE (x, t )  = - ch-' 

2, (z) 

Equation (33) is none other than a soliton (2n pulse) 
with increasing amplitude and decreasing width. The 
soliton velocity barely exceeds that of light, s o  that the 
soliton overtakes the front t = x  of the pulse, and the 
distance from the front is 5,. 

We consider now the region where the solution ob- 
tained is applicable. In the calculation of the integrals 
in (25) we have confined ourselves to the principal term 
of the asymptotic expansion in powers of l/z. This ap- 
proximation is valid if the function is not small  com- 
pared with i ts  derivatives a t  the saddle point. From the 
obtained solution, however, i t  follows that, say at 
large z, the quantity x,(-i) decreases exponentially: 

On the other hand ax/aAIA.-i calculated from the first  
formula of (26) is of the order of unity (more accurately, 
equal to i / 2 )  at  large z. The solution obtained is there- 
fore valid s o  long a s  the inequality 

x, ( - i )  > -2 ax l z an .--, 
is satisfied, i. e. , if z is such that 

] p,l ez<z", (34) 

It is useful to compare (34) with the region of appli- 
cability of the linear approximation (24); expressed in 
terms of p,, this region is given by the inequality 

Solving (34) with respect to z ,  we obtain 

zcz,+'l, In l ( z ) ,  (35) 

where z,  is the coordinate of the center of the soliton. 

The soliton (30) is wholly located in the applicability re- 
gion of the approximation employed if 

Thus, if this condition i s  satisfied, a clearly pro- 
nounced 2n pulse is present in the region (35). In the 
region supplementary to (35), however, the approxima- 
tion employed yields no information whatever on the 
true solution. It is clear, however, how our approxi- 
mation should be improved: It is necessary to take 
into account in the expansions of the integrals (25) the 
terms of next order in l /z .  Thus, formal calculation 
of these integrals by the saddle-point method accurate 
to l/zN+lt2 inclusive yields an expression for the func- 
tion x(A) in terms of R(A) and i t s  f i rs t  2N derivatives 
taken a t  A = i; ?(A) i s  expressed in terms of 
x(A), x'(A). . .x("N'(A)lA=-l. Jus t  a s  above, these expres- 
sions allow us  to write a closed system of linear alge- 
braic equations for f , . . . , '('2N ) and X ,  . . . , x (2N' 

and the solution of these equations gives an expression 
for E(x, t). The calculations, however, become very 
cumbersome even a t  N =  1. We therefore do not pre- 
sent them here, and confine ourselves to a statement of 
the answer, al l  the more since this answer requires 
much less  labor when obtained on the basis of the re-  
sults of the next section. 

The procedure indicated yields an expression fo r  the 
solution E(x, t) in the region 

If lnX,(x) >> 1, the solution in this region i s  represented 
by a superposition of N + 1 2n pulses (more accurately, 
a sequence of 2n and -2n pulses): 

where z,, = z,(x) + k lnX,(x), and the coordinate of the 
center of the (k + 1)st soliton is t,, =~2,+,/16i2~x. The 
soliton amplitudes decrease with increasing k,  and 
their widths increase. The ratio of the pulse width to 
their spacing is [lnk,(x)]-', i. e . ,  the solitons a r e  well 
separated. Thus, a t  lnX,>>l the soliton front consists 
of a sequence of solitons; expression (36) is applicable 
a t  N CN,,, - X JlnX,, s o  that a different approach is 
necessary to obtain the solution a t  z 2 z,  + N,,,,lnh,. 

4. QUASI-SELF-SIMILAR SOLUTIONS 

As already noted, the dependence of the reflection 
coefficient on x is significantly simplified in the vici- 
nity of the light cone: Equation (8) i s  replaced by (15). 
The equations of the inverse-problem a r e  correspond- 
ingly simpler: i f  the inequality x/z >> AW/@ holds, the 
solutions of the system (5) satisfy Eq. (17). It i s  
k n o ~ n ~ ~ ~  that in this case 

U = p  S E  (z, tr)dt '  (37) 
-- 

is the solution of the sine -Gordon equation4) 

U, ,+U, ,=~Q~ sin U. (38) 

Since ~ ( w ,  x) I,,, = CQ [see (15)], the boundary conditions 
for U(x,  t) take here the form7 
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U(X, t )  =n at t<x ,  U(x, m) =O (mod 2n). 

Equation (38) has self-similar solutions that depend only 
on z = 451[x(t - x)]"~, such that 

Those solutions of this equation which a r e  regular a t  
zero make up a one-parameter family; i t  is convenient 
to choose the parameter that numbers these solutions 
to be the value of U(z) a t  z =0, 

U(U0,z) l.=o=Uo 

The field E(x,  t) corresponding to the self-similar solu- 
tion is  given by 

From among the solutions described in the preceding 
section, a s  seen from (20), only those for which (21) is 
independent of x a r e  self-similar. In this case the X(A) 
depend only on z and the corresponding expression fo r  
E(x, t), a s  follows from (19) and (lo),  coincides in form 
with (40). Butj,, [ ~ q .  (21)] i s  independent of x only at 
v = -1, i. e.  , the self-similar solutions correspond to a 
6-like firing pulse Eo(t) = E-,6(t). It can be easily seen 
that the complete expression for E(x, t )  i s  

where 6 i s  the usual step function, O(5) = 0  at 5 < 0  and 
O(() = 1 at 5 >0. The parameter U, i s  then a function of 
E,. The function Uo(E-,) is particularly simple at 
small E-,, when the solution of Eq. (20) a t  small z is 
obtained by simple iteration [see (23)]. In this case, 
comparing (12), (23). and (40), we obtain U0=pE_,. 

As for the remaining solutions of the system (I), (2), 
they a re  also functions that depend mainly on z a t  large 
x and a t  sufficiently large z.  This follows directly from 
the system (20), (22), inasmuch a s  a t  large x and suffi- 
ciently large z they a r e  also functions that depend 
mainly on z. This follows directly from the system 
(20), (22), inasmuch a s  a t  large z the main contribu- 
tions to the integrals in the right-hand sides of (20) and 
(22) a re  made by the vicinities of the saddle points. 
These contributions a re  proportional to e', and the de- 
pendence of ~(12) on x via f,(z/x) i s  thus merely loga- 
rithmic [see, e.g., (29) and (30)]. Accordingly, the ex- 
pressions for E(x, t) will likewise have the structure 
of (40), but U must now be regarded a s  a slow function 
of x. It is important to note that such solutions of (38), 
which a re  weakly dependent on the non-self-similar 
variables, can be constructed by starting from the 
family of the self-similar solutions (39). Namely, the 
parameter U,, which is constant for the self-similar 
solution, can be made an arbitrary function of the ratio 
z/x. The function U(Uo(z/x), z )  will then differ little 
from the true solution of Eq. (38). 

In fact, in terms of the coordinates x and z ,  Eq. 
(38) takes the form 

Let U(y, z )  satisfy Eq. (39) a t  a l l y  and let  furthermore 
the parameter y be a slow function of x and z. More 

accurately, we assume that 

where E is a small  parameter. (Obviously, y is an 
arbitrary function of the paremeter Uo introduced 
above. ) The derivatives U, and U,, in (39) must then 
be taken to mean the partial derivatives of the func- 
tion U(y, z)  with respect to the second argument. We 
calculate now the left-hand side of (42) with U a s  in- 
dicated. By virtue of (40) and (43), this left-hand side 
becomes 

This expression i s  of the order of z2 if y satisfies the 
equation 

a r  ar  o, --- + - = 
d l n z  d l n z  

i. e.  , if it  is a function of the ratio z/x, y =y(z/x). In 
this case U(y, z) satisfies (42) accurate to terms of or- 
der c2. 

The function U(U,(z/x), z)  is thus a good approxima- 
tion of the true solution (38). The '~slownessv of the 
dependence of U on z/x is ensured by the fact that at 
small  U, the solution U(Uo, z) (and only such solutions 
will be needed hereafter) depends on Uo only logarith- 
mically (in fact, even more weakly). 

It remains for us to establish the connection between 
Uo(z/x) and the entering pulse E,(t). This can be done 
in the following manner. At small U, Eq. (39) can be 
replaced by i ts  linear part 

The solution, regular a t  zero, of this equation is a 
Bessel function of imaginary argument: 

If ln(l/Uo) >>I, this expression is a suitable solution of 
(39) also a t  sufficiently large z, when I, can be replaced 
by i ts  asymptotic form [which i s  the same for all  
Z,,(z)I: 

The corresponding expression for the field E takes 
the form (40) 

On the other hand, we have in the same region the 
answer calculated in the linear approximation [ ~ q s .  
(23) and (23b)l. The last  of these equations, written 
directly in the notation used for the firing pulse, takes 
the form 

Comparison of (45) and (44) yields in fact that sought 
expression for U,(z/x): 

We present now the final expression for E(x, t )  (40), 
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We recall that the firing pulse E,( t )  is given a t  zero t  
by E,(t)  = E,( t /r )" + O(t /r)Y.  It is only in terms of the 
parameters of this t6sprout" of E,( t )  that the field in the 
pulse a t  the output of a long amplifier is given. The 
solution (47)  does not remember a t  al l  the subsequent 
behavior of E,(t) .  

It must be emphasized once more that Eq. (23), which 
plays a very important role in our approach, follows 
directly from the linear theory and need not be verified 
by resorting to the inverse-problem equations used to 
derive it in the preceding sections merely to save 
space. 

We indicate, finally, the limits of applicability of the 
solution (47) .  It is limited, f irst ,  by the inequality 
x / z  >> S ~ - A W ,  which determines the possibility of ne- 
glecting the inhomogeneous broadening. This limita- 
tion, however, is not burdensome. A more serious 
restriction is the following. With increasing x ,  Eq. 
(47)  becomes f i rs t  applicable when Eq. (45)  becomes 
suitable a t  sufficiently large z  that ensure the possi- 
bility of replacing the ratio Z,(z)/Z,(z) by unity, i. e. , 
when 

Solving the latter inequality, we obtain 

i. e. , Z ( x )  >> 1.  Let the length x, be such that Z(xo)  is 
large at the accuracy convenient for us (the ratio 
Zv(z)/Zo(z) - 1 is of the order of l / z  at  large z ) .  At 
x > x ,  Eq. (47)  is then suitable so  long a s  z / x  does 
not exceed Z(x,) /x , ,  i. e. , z <xZ(x , ) /xo .  [we simply 
do not know the function U , ( z / x )  for larger z .  ] Thus, 
the region of applicability of ( 4 7 )  with respect to z  in- 
creases linearly with x .  The maximum characteristics 
scale of the solution, on the other hand, is of the or-  
de r  of 

[the distance between neighboring maxima of E ( z ,  x ) ] .  
Therefore almost the entire solution is contained in the 
region of validity of ( 4 7 )  even a t  small ratios x/x, .  Fi- 
nally the last restriction is due to the power-law ap- 
proximation of E,(t) at  zero. It i s  clear that we can 
confine ourselves to such a growth of E ,  if the charac- 
teristic time scale of E ( 4 7 )  is small  compared with the 
pulse turning-on time, i. e., if 

(89'2) '+'rV (89%) '+'rV 
t (x) = In lnln /~s~'z<T. 

PE. PE. 

As for the degree to which ( 4 7 )  is explicit and effec- 
tive, even though in the general case the solution of (39) 
is not expressed in terms of any tabulated function 
(these a re  so-called Painlev6 transcendentals of type 
111), in the limit of interest to use In( l /U , )  >> lU(Uo,  z ) ,  
can be approximated by elliptic functions. This can be 
easily understood by noting that Eq. (39) can be inter- 
preted a s  the equation of motion of a Newtonian particle 
in a potential cosU with a friction inversely propor- 
tional to the time. This mechanical analogy provides 
an exhaustive qualitative picture of the behavior of the 
solutions U(U,, z )  which will not be described here. 

" ~ a m b ~  considered a l s o  the c a s e  of a nar row line k(w) -6(w)I. 
His analysis  of this  c a s e ,  however, i s  incorrect .  

2 ' ~ n o t h e r  shortcoming of the model  i s  the  neglect of relaxation 
processes .  It can b e  shown, however,  tha t ,  e. g. , allowance 
for  the  so-called t r a n s v e r s e  relaxation does not a l te r  the 
quaIitative picture of the solution, and that the only dissipa-  
t ive mechanism that l imi t s  the growth and contraction of the 
pulse i s  connected with the  conductivity of the  medium at  the 
transi t ion frequency. It i s  p rec i se ly  the allowance for  con- 
ductivity that  imposes the  upper bound on the value of x a t  
which the  obtained solut ions a r e  valid. 

3 ' ~ e  confine ourse lves  to a soliton-free s e c t o r ,  a h e n A ( . ~ )  has  
no z e r o s  in the lower w half-plane. 

4 ' ~ o  this  end i t  i s  necessary  to sat isfy,  besides (15). a lso  the 
condition R (-#J. 0) =-E(w, 0) that guaran tees  that E k  , t )  
i s  rea l .  Without l o s s  of general i ty,  however, we can a s s u m e  
this  condition to be  sat isf ied,  s ince  the phase of E k  , t) in the 
vicinity of the cone coincides with the phase of Eo( t )  at the 
point t = 0 and is  thus constant. We shall  t s k e  hereafter  this  
phase to b e  zero.  
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