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The cross sections u for scattering by the Coulomb and screened Coulomb potentials in a strong magnetic 
field (in the sense that the cyclotron energy is greater than the Bohr energy) are computed for an arbitrary 
energy of the electron motion along the field. It is found that the quantity u ( k )  (k is the wave vector along the 
field) tends to infinity as k 4  in the case of the screened potential, but remains finite in the case of the 
unscreened attractive potential. These results are generalized to the case of a scattering potential of arbitrary 
shape. 

PACS numbers: 41.70. + t 

1. In the present paper we investigate the scat ter-  
ing of electrons by a force center in a magnetic field. 
The field intensity is assumed to be s o  high that 
we can, in considering the scattering of the electrons 
inside the zeroth Landau band, ignore the presence of 
al l  the higher bands. Fo r  this purpose, i t  i s  sufficient 
that the electron cyclotron energy be much higher than 
the characteristic energy of the interaction of the elec- 
tron with the center. 

Let us assume that the potential of the center  i s  
axially symmetric about the direction of the field. Then 
the component M of the angular momentum of the elec- 
tron along this direction i s  conserved in the scattering. 
Therefore, i t  i s  convenient to use the representation in 
which M i s  a quantum number. '  F o r  the zeroth Landau 
level M =O. 1 , 2 ,  . . . . The motion of the f ree  electron 
along the direction of the magnetic field is character-  
ized by the value of the wave vector k.  In our case  of 
scattering inside the zeroth Landau band the quantity k 
may ei ther  be conserved o r  change sign. We shall be 
interested in backward scattering, i. e. , scattering in- 
volving a change in sign of k .  

Let the incident electron beam be characterized by 
the fact that the states with different M a r e  identically 
populated. In the classical  picture of scattering, this 
corresponds to the situation in which the electron flux 
i s  homogeneous. F o r  the scat tering cross-section, 
given by the rat io of the reflected-electron flux to the 
incident-beam intensity, we then easily obtain the ex- 
pression 

rn 

o = 2 n h 2 x  R,,, 
M - 0  

where R, is the coefficient of reflection of an electron 
with angular-momentum component M and h i s  the 
magnetic length. If the values of M a r e  such that the 
quantity R, changes little when M is changed by unity 
(this, in any event, is the case fo r  large M), the sum- 
mation over these M can be replaced by integration. 
Let us  represent  the contribution to  the c ros s  section 
(1) from such M in the form of an integral: 

2 n j  R ( p ) p  dp, p= (2M)'"h. (2) 

pendicular to the direction of the field in a thin ring of 
radius ( 2 ~ ) ' l ~ h  and thickness -A, s o  that in the case of 
large M we can introduce the quasiclassical impact 
parameters  p [ ~ q .  (211. This expression corresponds 
then to  classical  integration over the impact parameter. 
Notice that the quantity o determines directly the longi- 
tudinal magnetoresistance of an  electron gas in the 
presence of scat tering by force centers .  

According t o  the foregoing, the electron motion trans-  
ve r se  to the magnetic field is entirely determined by 
this  field (the magnetic field is strong). On the other 
hand, the longitudinal motion of the electron, which i s  
scattered with a definite value of M, is described by a 
wave function F,(z )  (the z axis is oriented along the 
direction of the field) satisfying the equation 

Here V(r) is the potential of the center  and the matrix 
element is evaluated with the functions of the trans-  
verse  motion. 

To  find the quantity o ,  we must find the coefficients 
of reflection of the electrons from the one-dimensional 
potentials V,(z). F i r s t ,  we shall  consider in Sec. 2 the 
solution to  Eq. (3) in the particular case  of a Coulomb 
center, then in Sec. 3 we shall generalize the analysis 
t o  the case  of the screened center ,  and, finally, in Sec. 
4 we shall investigate the character  of the cross  
section u(k) for  slow electrons with k -0 in the case  of 
an arb i t ra ry  shape of the scat tering potential. In the 
process we shall distinguish between the cases  of at-  
tractive and repulsive potentials. 

2. The Coulomb potential. The potential energy of 
the electron in the case  of scat tering by a Coulomb cen- 
t e r  has the form V(r) = * e2/r. The cri ter ion for  a 
s trong magnetic field implies that the cyclotron energy 
is much grea ter  than the Bohr energy, i. e . ,  that 
h <<a (a is the Bohr radius). As  has  already been noted 
above, for  M >> 1 the electron moves in a thin cylin- 
dr ica l  layer. The effective one-dimensional potential 
ha s  then the form 

V , ( z )  ==te'/(p2+z2)'", p=  (2M)"h, M B 1 .  This result  can be given the following meaning. Fo r  (4) 

large M >> 1 the free electron moves in a plane per-  a )  Attractive potential. Let us  find the coefficients of 
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reflection of incoming electrons with definite values of 
p and k from a potential well described by the function 
V,(z), (4), taken with the plus sign. To begin with, let 
p >> a. It i s  not difficult to see that in this case the po- 
tential V,(z) satisfies a t  any z and k the inequality 

I dk1-I ( 2 )  Idz 1 K l ,  k ,  ( z )  = (kZ-ZmV, (3)  /hZ) ';. (5) 

Here k,(z) is the quasiclassical wave vector. This in- 
equality is connected with the long-range nature of the 
Coulomb potential. The slowness of the decrease of the 
potential leads to a situation in which, a s  1 z 1 - a, an 
electron incident witheven zero energy (i.e., with k = O), 
and picking up speed in the field of the center, has a 
wave function that oscillates strongly in a segment of 
length equal to the distance over which the potential 
changes significantly. Accordingly, the usual quasi- 
classical functions are  the solutions to Eq. (3) for  
p >>a (Ref. 1). In the completely classical picture 
of scattering the electron is not reflected a t  all from 
a one-dimensional attractive potential, and in the 
quasiclassical picture the reflection coefficient for any 
k is much smaller than unity. 

Now let p s a. In this case the inequality (5) is no 
longer fulfilled a t  al l  z and k: 

It is, however, clear that, for 1 z 1 >>a, the inequality (5) 
is satisfied in any case. Therefore, scattering in the 
region ( z 1 >> a is quasiclassically weak, and the quantity 
R, is entirely determined by the scattering in the re-  
gion I z / 2 a.  Thus, the reflection coefficient a t  small  k 
i s ,  unlike in the quasiclassical case p >> a, not small. 
It can be determined for p << a by using the wave func- 
tion of the continuous spectrum (see Ref. 2, Appendix 
1). In this case i t  turns out that 

for k = 0 and R, << 1 for k >>kt. The characteristic 
quantity 

k'-ln (alp) la 

gives the electron binding energy E2kt2/m in a one-di- 
mensional Coulomb potential cut off in the region of 
small z at a distance 1 z 1 -p under the condition that 
p s a (Ref. 3) .  Perturbation theory is valid in the 
case of large k, and, applying it to the potential (4), we 
easily obtain 

where KO i s  a Macdonald function. This function de- 
creases rapidly (exponentially) with increasing p when 
kp >1. Therefore the dominant contribution to the 
cross  section is made by the values p - l/k <<a. Inte- 
grating (6) with respect to p, we find for the cross sec- 
tion the expression 

o=na21(ka)', IlhBkWlla. (7) 

This result coincides with that obtained in Ref. 4. The 
upper bound on the value of k is connected with the fact 
that, for k 2 l/A, the values of M -1 a re  important, and 
the formula (4) is invalid. 

FIG. 1. Dependence of the scattering cross section u on the 
magnitude of the electron wave vector k for an attractive (I) 
and a repulsive (11) Coulomb potential (a is the Bohr radius). 
The dashed curves a re  a plot of the dependence u(k) for the 
screened potential (r, is  the screening distance). 

The expression (7) gives the cross  section in the re-  
gion k >> l / a ;  for k l / a  the cross section is of the or- 
der  of a2. Indeed, a s  shown above, the electrons with 
impact parameters p >>a fly through the potential almost 
without being reflected, and therefore do not make a 
contribution to the cross  section. On the other hand, 
the electrons with p s a and k 5 l / a  a re  reflected with 
probability - 1. Thus, the function ~ ( k )  has the form 
shown in Fig. 1. The exact value of o(k -0) is deter- 
mined by the impact parameters p -a ,  and must there- 
fore be computed numerically. 

b) Repulsive potential. As in the case of the attrac- 
tive potential, the scattering of electrons with p >> a i s  
quasiclassical. For these p values the functions V,(z) 
describe large potential barriers.  In this case the r e -  
flection coefficient R, drops sharply from unity to a 
small  value when the energy of the longitudinal motion 
of the electron exceeds the height of the potential bar- 
r ier .  This occurs when k = ( ~ / a ~ ) ' / ~ .  As to the width of 
the k-value region where this change occurs,l) it is1 
- l /p .  Accordingly, electrons with p such that 
k > ( 2 / ~ ~ ) ' / ~  pass almost completely through the poten- 
tial, while those with smaller p a re  almost totally 
reflected. The foregoing indicates that the cross  sec- 
tion is entirely determined precisely by these small 
p values, i. e. , o = np2, where p = 2/ak2: 

The indicated inequality for k is connected with the fact 
that, for k 2 l/a, the significant contribution to the 
cross  section i s  made by the values of p 2 a,  for which 
the quasiclassical treatment is inapplicable. It is easy 
to see that, for k >> l /a,  perturbation theory is valid 
and, hence, the cross  section is given by the formula 
(7). It is noteworthy that o(k) for k << l / a  and o(k) for 
k >> l / a  differ only by a factor of 4: the curve is flatter 
a t  large k. The general shape of the function o(k) is 
shown in Fig. 1. It is significant that, a t  small k << l /u ,  
scattering by repulsive Coulomb centers is much stron- 
ger than scattering by attractive ones. 
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3. The screened Coulomb potential. Let  u s  consider 
the case in which the potential energy of the electron in 
the field of the center has the form 

where the screening distance r, >> a >>A. Then the 
potentials V,(z), (31, for  M >> 1 a r e  given by the ex- 
pression 

e' ( (pa:!)'h ) V ,  (2) - * - exp - 
(pZ+z2) I% 

a )  Attractive potential. Let us  cal l  the one-dimen- 
sional well shallow if i t  contains only one localized state 
with binding energy much smal ler  than the depth of the 
well. Fo r  this to be the case ,  i t  i s  sufficient that the 
inequality (m VIA 2 ) ( ~ z ) 2  << 1,  where V and Az a r e  the 
characteristic depth and dimension of the well, be sat is-  
fied. Then the binding energy of the level1 

If the value of k is not very high (i. e . ,  if k < < l / ~ z ) ,  
then the wave function of the electron changes little 
over the extension of the potential. This means that 
the properties of a shallow potential for  smal l  k a r e  
determined only by the integral of i t  over a l l  z ,  i. e . ,  
i t  can be represented in the form of a 6 potential. The 
reflection coefficient R, then has  the well-known form: 

It can be seen from the expression (9) that the potentials 
V,(z) a r e  shallow for 

The binding energy of the level is then determined by 
the quantity k,,, which i s  equal to 

The formula (10) shows that R, = 1 for  k = 0, i. e .  , the 
electrons a r e  totally reflected. This i s  clearly a con- 
sequence of the short-range character  of the potential: 
a s  shown above, in the case  of the long-range at trac-  
tive Coulomb potential electrons with any k have a fi- 
nite probability of passing through the potential. It is 
significant that electrons with k = O  a r e  reflected in the 
case of arbitrari ly large values of M (corresponding to 
arbitrari ly shallow potentials). This means that, a s  
k -0, the c ros s  section is determined by eve r  in- 
creasing values of p (such that k,, -k), i. e .  , i t  di- 
verges. Substituting the expressions (10) and (11) into 
the formula (I) ,  and going over to integration, we ob- 
tain 

The limit of applicability i s  determined by the fact that, 
for  values of k not satisfying the given inequality, the 
significant contribution to the c ros s  section is made by 
the impact parameters p s r, ln(r,/a), for  which the 
corresponding wells a r e  not shallow. 

Let  u s  now consider the case  k >> l/r,. In this case  
i t  is convenient to split the contributions to the c ros s  

section from the various p into two parts: the contribu- 
tions from the values of p s a and those from p >> a. As  
is easy to  verify, the condition (5) for  the scattering to  
be quasiclassical is fulfilled in the f i r s t  p domain fo r  
arbitrari ly large k and any z .  On the basis  of the gen- 
e r a l  assumptions of the quasiclassical approach, this 
implies that the reflection coefficients R, a r e  expo- 
nentially small. We shal l  not compute these values of 
R, here. We only note that the contribution from them 
to  the c ros s  section decreases  with increasing k basi- 
cally in proportion to exp(-akr,) ( a  - l ) .  In the second 
p domain (p 2 a )  we can (for k >> I/?-,) ignore the screen- 
ing, since in this case  the scattering occurs largely in 
the region 1 z 1s a.  The contribution to  the scattering 
from p 5 a then coincides with the contribution obtained 
in Sec. 2a. 

Thus, for  k -ln(r,/a)/r,, the exponentially decreas-  
ing-with increasing k-contribution to the c ros s  sec-  
tion from p >> a is comparable to the contribution from 
p -;I a ,  and fo r  higher values of k the dependence u(k) is 
the same a s  f o r  the unscreened potential. The general 
shape of the function u(k) for  the screened potential is 
shown in Fig. 1 by the dashed curve. 

b) Repulsive potential. Fo r  smal l  k the dominant 
contribution to  the c r o s s  section is again made by the 
scattering by the 6-function potentials, and therefore 
we obtain, a s  before, the formulas (10) and (12) (here 
the quantity A2ki/2m has the meaning of a shallow-vir- 
tual-level energy). On the other hand, for  large 
k >> l/rs 1n1l2(rs/a), the cross  section i s  determined by 
the scattering of the electrons with impact parameters 
p << r, ln(rs/a) (for higher values of p, perturbation 
theory i s  applicable, and the contribution to  the c ros s  
section i s  negligibly small). In this case  the potential 
b a r r i e r s  a r e  large (with the exception of those corre-  
sponding to the narrow range p 2 a )  in the sense that 
(mV/A2)(Az)2 >> 1. Consequently, a s  in Sec. 2b, the 
scattering on them is quasiclassical, i. e . ,  the c ros s  
section u=sp2,  where p is given by the requirement 
that the electron energy and the energy of the top of the 
potential ba r r i e r  be equal: 

k2= (21ap) exp (Gplr.). 

It can be seen that the screening is insignificant when 
k >> l / ( a ~ , ) ' ~ ~ .  But in the region k S l/(ar,)'12 the u(k) 
dependence is logarithmically weak. The shape of the 
function u(k) for  the screened potential i s  schematically 
shown in Fig. 1 by the dashed curve. 

4. The considered effective one-dimensionality of 
the electron motion in a magnetic field allows u s  t o  
establish easily the character  of the dependence u(k) f o r  
k -0 and an axially-symmetric scattering potential of 
a rb i t ra ry  shape. As  can be seen from the results  ob- 
tained in Secs. 2 and 3 ,  the law of variation of u(k -0) 
is determined by the asymptotic form of the potential 
V ( r )  a s  r - m. Therefore, when speaking of attractive 
o r  repulsive potentials, we shall have in mind below 
the sign of the potential for  r - a. 

a )  Let the potential be attractive. If i t  decreases with 
increasing r slower than l / r 2 ,  then for  sufficiently 
large p the product (mV/E2)(~z)2  >> 1; here V and Az 
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a r e  the characteristic magnitude and range of the cor- 
responding one-dimensional potentials. Then, simi- 
larly to the case of the Coulomb potential (Sec. 2a), 
the one-dimensional wells satisfy the quasiclassicality 
condition (5) for any z and k. This implies that elec- 
trons with large impact parameters and any k pass 
through the well with probability equal to almost unity 
without being reflected. In other words, the large M do 
not contribute to the sum (I) ,  and a is finite a t  k -0. 

If the potential V(r) falls off faster than l / r 2 ,  then a t  
sufficiently large p we have (mV/ti2)(~z)2 << 1, i. e. , the 
one-dimensional potentials a r e  shallow. Similarly to the 
case of the screened potential (Sec. 3a) the correspond- 
ing values of R, a re  given by the formula (10). As 
k - 0, all the R, - 1 and o - -. It is noteworthy that 
the quantity o diverges a s  k - 0 in the case of short- 
range potentials, and converge in the long-range case. 
In other words, a short-range potential in a magnetic 
field reflects electrons more strongly than a long- 
range potential when k is sufficiently small. By com- 
puting the values of k,,, (lo), we can establish the law 
governing the divergence of o(k - 0) for any short- 
range potential. Thus, if the potential decreases in a 
power-law fashion, i . e . ,  if V(r)m l / r 2 ,  then 

In a number of papers (see, for example, Ref. 5) a 
bounded result is obtained for the cross section for 
scattering by a short-range potential in a magnetic field 
in the case when k - 0. This is due to the fact that a 
6-function potential is assumed in these papers, i. e . ,  
i t  i s  assumed that it is possible to se t  ro-0, ur;=const 
(here Y, and u a r e  the characteristic dimension and 
magnitude of the three-dimensional potential). At the 
same time, no matter how small ro is,  the inequality 
k <k,, will be satisfied at sufficiently small k (the k,, 
for small Y, a r e  small but finite). In this case elec- 
trons with given M will be totally reflected. As k de- 
creases,  ever increasing values of M become involved 
in the scattering, and o - 00. Thus, Skobov and Bych- 
kov's5 results a r e  valid only for k >k,,. In other words, 
the idea that the smaller k i s ,  the smaller is the con- 
tribution from the large M to the cross section for scat- 
tering in a magnetic field is incorrect. But all  the 
k,,, except k,,, tend to zero  a s  ro -0, ue=cons t .  
Therefore, if ro is very small, then the Skobov-Bych- 
kov theory5 i s  invalid only for very small values of k. 

And let us note here without proof that the disregard 
in Secs. 2 and 3 of the presence of higher Landau bands 
is wrong when the electron energy is close to the 
energy of the quasidiscrete levels in the wells "be- 
longing" to the first  Landau band (in a narrow region 

just below the bottom of this band). This i s  due to the 
strong resonant scattering into the states corresponding 
to these levels. The dependence u(k) in this region has 
the form of a sparse "ridge" of peaks, whose height - h2. 

b) Now let the potential V(r) be a repulsive one. Then 
the quantity a diverges a s  k - 0 regardless of i ts  de- 
pendence on the asymptotic form of V(Y- m). For 
long-range potentials that decrease more slowly than 
l / r 2 ,  the scattering by the one-dimensional potentials 
is quasiclassical in the case of large p. It is borne in 
mind that reflection coefficients decrease sharply from 
unity to a small value when the electron energy becomes 
greater than the height of the potential barr ier  (see Sec. 
2b). Consequently, it is easy to establish that, i f  the 
law of decrease of the potential is a power law, i . e . ,  
i f  V(r) a l/r I, then the cross  section 

If, on the other hand, the potential is a short-range 
potential, i. e . ,  if i t  decreases faster than l / r 2 ,  then 
the law of variation of o(k - 0) is the same a s  for an 
attractive potential (this was apparent in Sec. 3b in the 
particular case of the screened Coulomb potential). 

The above-described method of finding o(k - 0) can be 
generalized to the case in which the sign of V(r) de- 
pends on the direction of the vector r ,  and therefore the 
one-dimensional potential is of alternate sign. It may 
then turn out that the quantity k,, i s  not given by the 
formula (lo),  and we must take into account the change 
that occurs in the electron wave function F,(z) in the 
region of action of the potential. An example is the 
scattering of an electron by a hydrogen atom in a strong 
magnetic field. 

The author is  grateful to V. I. Perel '  for useful ad- 
vice and for a discussion. 

The quasiclassical approach i s  inapplicable only in this nar- 
row region of k values. 
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