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An equation for the state vector defined on an invariant light front ox = a(02 = 0) is derived by considering 
four-dimensional rotations of the light-front hypersurface. This equation supplements the Schriidinger 
equation and eliminates the ambiguities that arise in the determination of the wave functions of relativistic 
composite systems (in particular, in the Weinberg equation for a nonzero angular momentum). 
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1. INTRODUCTION 0,-+0,+6w,, 6o,,=e,w,. 

This paper continues the development, initiated in 
Refs. 1-5, of a formalism of wave functions (WF) of 
relativistic composite systems-the Fock components 
of a state vector defined on a light-front hypersurface 
w x =  0 (w2 =0).  The formalism developed is needed for 
the investigation of high-momentum components of large 
nuclear WF and hadronic WF in quark models. A WF on 
a light front (which is non-equal-time in an arbitrary 
system) coincides with the customarily used WF in a 
system with infinite momentum (which is equal-time in 
this system) if the infinite momentum has the arbitrary 
direction w .  In the particular case w = (1 ,0 ,0 ,  -1) we 
obtain a WF on the "null plane" t + z = O .  The choice 
of an arbitrary invariant light-front surface wx=O leads 
to explicit covariance of the corresponding Fock com- 
ponents, making it convenient to parametrize the WF 
and simplifying considerably the construction of states 
with definite total angular momentum. 

Parametrization of a relativistic WF differs from that 
of a nonrelativistic one in that, besides the relative mo- 
menta, the relativistic WF depends on an additional var- 
iable in the form of a unit vector n (Ref. 1). This de- 
pendence vanishes in the nonrelativistic limit. The ori-  
gin of this dependence can be easily understood by con- 
sidering, e.g. ,  the WF in a system with infinite mo- 
mentum. The WF depends on the direction of the infin- 
ite momentum n =p/p a s  p - m,  inasmuch a s  prior to the 
transition to the limit the equal-time WF had a dynamic 
dependence on the total momentum p of the system. The 
existence of the last dependence is  obvious: if the rel-  
ativistic WF were independent of the total momentum 
of the system, it would be meaningless to introduce WF 
in a system with infinite momentum, since the WF would 
be the same in any system (with arbitrary p). 

The indicated properties of WF on a light front a r e  
kinematic, i. e. , they follow from the transformation 
laws of the  state vector under translations and rotations 
of the coordinate system. The dynamics, on the other 
hand, i s  contained in the solution of the Schrodinger 
equation that a r i se s  when infinitely small  translations 
of the surface of the wave front o x = @  relative to the 
coordinate frame i s  considered: o - U +  60. However, 
besides translations, dynamic transformations of the 
state vector include also four-dimensional rotations of 
the surface: 

This leads to one more dynamic equation that i s  satis- 
fied by the state vector. The present paper i s  devoted 
to the study of this equation and to its ro le  in the clas- 
sification of the states and in the calculation of the WF. 

The plan of the exposition is the following. In Sec. 2 
we derive an equation for the dependence of the state 
vector on the hypersurface rotations. We note that in 
general a distinction must be made between three types 
of state-vector transformations: 1) Transformations in 
translations and rotations of the hypersurface relative to 
a given coordinate system, which is a s  though fixed in 
space. 2) Transformations in translations and rotation 
of the coordinate frame, with the state vector remain- 
ing specified on one and the same hypersurface whose 
position relative to the coordinate axes varies on going 
from one system to another. The hypersurface i s  a s  
though fixed in space. 3 )  Transformations of the coor- 
dinate system and simultaneous transformations of the 
hypersurface, such that the position of the hypersurface 
relative to the coordinate axes remains unchanged in 
a l l  systems. In this case  the hypersurface i s  rigidly 
bound to the coordinate axes. Transformations of this 
types a r e  combinations of the f irst  two. Obviously, 
these a r e  the only ones that take place in the theory on 
the  null plane t + z = 0. 

While the questions dealing with transformations of 
the s ta te  vectors a r e  trivial, the three aforementioned 
types of transformation a r e  frequently confused, leading 
t o  confusion and to difficulty in the understanding of the 
entire construction a s  a whole. We shall therefore 
dwell in detail on the transformation properties of the 
s ta te  vector in Sec. 3.  It i s  shown in Sec. 4 that the 
equation obtained in Sec. 2 for the dependence of the 
state vector on the rotations of the hypersurface wx=O 
eliminates the ambiguity in the classification of the 
states of a relativistic composite system. This prob- 
lem is  illustrated in Sec. 5 by using a s  an example a 
system of two scalar particles interacting in the ladder 
approximation via exchange of a sca lar  massless 
particle. Section 6 contains the concluding remarks.  

2. FORMULATION OF THE BOUND-STATE PROBLEM- 

Corresponding to a system of interacting fields a r e  the 
4-dimensional momentum and angular-momentum oper- 
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.. 
ators  @, and J,,, which satisfy the commutation rela-  
tions of the Poincar; group: 

r a , ,  a.1 =of ( l a )  
1 
7 [h Jwl =gwP>gwPp, ( lb)  

The operators j ,  and 3," a r e  represented in the form of 
the  sums 

P,-B:+P:()', (2) 

where and a r e  the oper$tors corresponding to 
the f r ee  fields, while $:' and JE contain the interac- 
tion, and a r e  expressed in the interaction representa- 
tion in t e rms  of the f ree  fields. On the light front w x  

A .  

= o, the operators P:' and j: take the form 

I,: '̂ = j H""(x) (x,o.-x,o,)  6 ( o x - o )  d'x, (5) 

where H '"'(x) i s  the density of the interaction Hamilton- 
ian, expressed in t e r m s  of the f r ee  fields. Thus, in the 
Wick-Cutkosky model 

H'"' ( 4  =-gcpZ(x) x ( X I ,  (6) 

where q(x) i s  a sca lar  field with mass  m and ~ ( x )  i s  a 
mass less  scalar  field; for ~ ( x ) ,  e . g . ,  we have 

d'k 
cp ( x )  = (2n) -" [ a  ( k )  e-'Lr+a+ ( k )  e ik=]  - = 

(&a)  ''I 

cp- ( x )  +cp+ ( 2 ) .  (7) 

From the operators P, and j,, we construct the Pauli- 
Lubanski vector 

The state vector @: defined on the hypersurface w x  
= and describing a s ta te  with a definite 4-momentum 
p, mass MZ =p2, total angular momentum J, and pro- 
jection s of the angular momentum on the z axis in the 
r e s t  system p = 0, satisfies the equations 

The s ta te  vector, being in the general ca se  a func- 
tional of the  surface on which it i s  defined, i s  in the 
case  of the plane surface o x = @  a function of the param- 
e t e r s  u and w .  The equations that determine the depen- 
dence of @ on u and w can be easily obtained by s ta r t -  
ing from the Tomonaga-Schwinger equation 

i6QI6a ( x )  =Pni ( x )  @. (13) 

From the  definition of the variational derivative in (13) 
i t  follows that 

where bV(x)  i s  the volume contained between the initial 

surface and the surface obtained from the initial by 
variation bo(x) about the point x .  

Following a translation o - u + 60 of the surface,  the 
total increment of the s ta te  vector is  the results  of the 
increments a t  each point of the surface: 

o r  
i d 8  ( a )  ldo=H ( o )  Q ( o )  , 

. -  - 

~ ( o ) = j  H n ' ( x ) 6 ( w x - a ) d i x  

The four-dimensional rotations 

0~-+0,,'=0~+60,,, ~ O , , = E ~ , , O ~  

lead to 

The  increment of the volume over the point x i s  

~ V = E ~ ~ X ~ O ~ S  ( O X - u )  d'x, 

and i t  follows from (14) that 

L , " ( @ ) ~ ( O ) = J ; ; ' ~ ( W ) ,  

where 
d 

2 , , ( 0 ) = i  0,-- 
a 

( BO" m v ~ ) l  

and j:; i s  given by Eq. (5). 

Equation (16) i s  the sought equation that supplements 
the Schrodinger Eq. (15). 

If (16) i s  satisfied, th_e operator 2:"' contained in the 
Pauli-Lubanski vector S, in (11) and (12) can be r e -  
placed by i,,(o). Next, introducing the notation 

8 , v = J , , 0 + L , v ( o ) ,  (18) 

where SO,, i s  a f r e e  operator ,  L^,,(w) i s  given by Eq. 
(17), and 

we obtain in place of (11) and (12) 
@,28.'(p)  =-M2J(J+1)  Q S J ( p ) ,  

The construction of s ta tes  with definite total angular 
momentum, which reduces to solution of Eqs. (20) and 
(21), is  a purely kinematic problem, i. e .  , it does not 
depend on the form of the interaction Hamiltonian [pro- 
vided that the state vector @ : ( p )  corresponds to a def- 
inite 4-momentum, i. e . ,  sat isf ies Eqs. (9) and ( lo ) ,  a s  
well a s  Eq. (16)]. Writing down in accord with Ref. 3 
the general expression for the WE on the light front with 
total angular momentum J, we can determine next from 
the dynamic Eqs. (9) and (19) the invariant functions it 
contains. The ro le  of Eq. (16) in this procedure is  
t raced in Sec. 4 and is illustrated by an example in 
Sec. 5. The kinematic par t  is thus maximally separated 
f rom the dynamic in this approach. 

To conclude this section we preseet  the  commutation 
relations of the operators G,,, with P, and$,,: 
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They can be easily-obtained_ if i t s  recognized 
that the operators Ji, and L,,(w), which enter in 
M,,, , a r e  respectively generators of infinitely small  
transformations of the f ree  field and of the 4-vector w, 
from which the ope_rator_s 3, and j,, a r e  constructed. 
The commutator [M,,, M p , ]  i s  similar to the commuta- 
tor  ( lc) .  

3. TRANSFORMATION PROPERTIES OF THE STATE 
VECTOR 

Equations (15) and (16) determine the transformation 
properties of the state vectors in translations and ro- 
tations of the hypersurface relative to a fixed coordin- 
ate system (type 1 in the classification given in the In- 
troduction). We obtain now the law of transformation of 
a state vector defined on a fixed surface under transfor- 
mations of the coordinate system (type 2). 

We consider f irst  the translations of the coordinate 
system, x -  x l = x + a .  The equation of the hypersur- 
face wx=o  takes in the new system the form wx'=ol, 
where a l = o +  wa. The state vector transforms a s  

Q (a)-+Q'(a+oa) =U(a)Q(o). (23) 

Our task i s  to find the operator U(a). 

By virtue of the translational invariance, the Tomon- 
aga-Schwinger equation retains its form in the new 
system: 

Substituting (23) in (24), we obtain 

6@ (01 
i- = U-' (a) Hin'(x+a) U (a) Q (0). 

60(x) 

Since H1"'(x) i s  expressed in terms of free-field oper- 
ators,  we have 

H'"' ($+a) =ex11 (iP.O) H'"' (x) exp (-iRo) , 

therefore 

U (a) =exp (iPoa), 

where i s  the free-field 4-momentum operator. 

Repeating this reasoning for the case  of infinitely 
small rotations x, - x:=gx, = x u  + E,,x,, we obtain 

(D(o)+~ ' (o ' )=U(g)Q(w) ,  (26) 

where 

w.I=w,+~,o., U(g)  =1+1/2if,,voe,,. 

Here 3, i s  a f ree  operator. 

We see  thus that the generators of the transformation 
of a state vector specified on an invariant surface do not 
contain the interaction when the coordinate system is  
transformed. 

Corresponding to a transformation of the coordinate 
system and to a simultaneous transformation of a 
hypersurface rigidly tied to the coordinate axes (type 
3) is a successive application of the transformations d 
the two types considered above. The corresponding 
generators a r e  given by Eqs. (2) and (3). Thus, at 
infinitely smal l  translations from the coordinate 
systemA into a system A': x-x' = x + a  we have 

where 9(o)  i s  defined in the system A on the surface 
ox=u ,  while @'(a) i s  defined in the system A' on the 
surface w x l = o  and @ is the 4-momentum operator (2). 

We change now to the Fock representation 

We have written out explicitly only the two-particle 
component. We assume for simplicity that all the par-  
ticles that make up the coupled system a r e  spinless, 
and the total angular momentum of the system is equal 
to J .  

From (23) and (26) we easily obtain the transformation 
properties of the wave functions C:. Thus, the trans- 
formation x - x r = g x  leads to 

@,: (P, o)+@s"(gp, go) =U(g) @sJ (P, 01, (30) 

where U ( y )  i s  defined by (27). Expanding 9'  in terms of 
the states @: 

and using the fact that 

we obtain 

C.?(~X,, gtz, gp ,  g ~ ) = x  D:I:'{R(~, P))c,,~(x,,z,,P, w). 
S' 

(31) 

It is now easy to verify that the state,vector (29) with 
Fock components that transform in accord with (31) is 
actually a solution of Eqs. (20) and (21). Wave func- 
tions of particles with arbitrary spins were constructed 
in Ref. 3. 

Expansion (39) takes in momentum space the form 

@,(" ( p )  = $,'(k,, k,, p. at) 6'" (k,+k.-p-~~) ei7'd~a+(k,)a+ (k,) 10) 

The equality k ,  + k ,  = p  + W T  defined by the 6 function in 
(32) i s  a consequence of translational invariance. In- 
deed, from (28), with allowance for the fact that is an 
eigenvector of the operator P, it follows that 

and from (23) we obtain 

It is easily seen that the state vector (32) satisfi_es the 
condition (33). The action of the operator exp(iPOa) 
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leads to the appearance of exp(i(k, +k,)a)  under the in- 
tegral  sign in (32), while the factor exp(i(pa + ~ w a ) )  ap- 
pears  in the right-hand side of (33) under the integral 
sign. The 6-function in (32) ensures equality of these 
factors and satisfaction of the condition (33). Thus, by 
starting with the transformation formulas (231, (28) and 
and (26), we reproduce the Fock-component properties 
obtained in Refs. 1 and 3. 

4. CLASSIFICATION OF RELATIVISTIC BOUND 
STATES 

With the aid of the Pauli-Lubanski vector (19) we Can 
construct the operator 

I: is easy to verify fhat this operator commutes with 
P,, M,,,,, and with W,. It appears therefore a t  first 
glance that the state vector should be characterized not 
only by the quantum numbers p, , !I ,  J ,  and s but also 
by an eigenvalue of the operator A: 

A@,=a@., (35) 

and, a s  will be shown below, states with different a cor- 
respond to the same energy, i. e. , degeneracy is pre- 
sent. 

The reason for this degeneracy is  that no account has 
been taken so far of Eq. (16). We shall show that a 
state vector that-satisfies (16) cannot be an eigenvector 
of the operator A, but i s  a superposition of states with 
different a! (except for the trivial case J =  0). 

We rewrite (16) in the form 

where 

~ f , , = @ , , - f , , = l , , ( o )  -f,t"', 

4, and j,, a r e  give? byA(18! an! (3). Let B be some 
operator (e. g. , B = P, , W; , W3,A) whose eigenvector i s  
*: 

B(D=bQ. (38) 

We shall show that Eqs. (36) and (38) a r e  compatible 
on!y inJhe case  when the action of the commutator 
[M,,,B] on d produces zero: 

Assume that Eqs. (36) and (38) a r e  simultaneously sat-  
isfied. Then 

On the other hand 

0- -AJp ,~Q=BAf ,Q+ [A],, B] @ = [ A f w ,  81 0. 

If the condition (39) is not satisfied, we ar r ive  at a con- 
tradiction. This result is a particular case of a theo- 
r em from the theory of group representations (see Ref. 
6). 

Putting B =A and calculating with the aid of relations 
(1) and (22) the commutator 

we s e e  that for a nonzero spin the condition (39) i s  not 
satisfied, and a state vector that sa;tisfies (36) i s  not an 
eigenvector of the operator = (w, W, 12. 

As already noted, the states d, a r e  degenerate. In 
fact, the state 9 '=uUv9,  i s  by virtue of (40) not an 
eigenvector of the operator A ,  i. e. , it i s  represented 
by the superposition 

.. .. 
But since [nJ,,,P,]=O, it follows that 9' corresponds 
to the same mass  a s  a,. The condition (16) o r  (36) 
separates in fact a definite superposition of the states 
4 a: 

.. 
such that W u V d  = 0,  and enables u s  to find the coeffi- 
cients in Eq. (41). Thus, allowance for (16) eliminates 
the problem of "redundant" states of a relativistic com- 
posite system. 

We note that since the commutators 

vanish a s  the state vector, Eq. (16) does not prevent 
the state vecto? from being an eigenvector of the oper- 
ators Wz and W,, i.  e . ,  from having a definite spin. 
This, incidentally, follows even from the fact that Eq. 
(16) i s  clearly covariant. 

5. LADDER APPROXIMATION 

Equation (16) leads to a condition on the Fock compo- 
nents. The concrete form of the condition depends on the 
Hamiltonian contained in (5) and on the approximation 
with which the problem with the given initial Hamilton- 
ian i s  solved. By way of example we solve the prob- 
lem with the Hamiltonian (6) in the ladder approxima- 
tion. Within the framework of this model the WF on a 
light front were  obtained in Ref. 4. We shall use this 
example to resolve problem discussed in Sec. 4, ob- 
tain next the condition that follows from (16) on the two- 
particle WF, and show that the WF obtained in Refs. 4 
and 5 indeed satisfy this condition. 

The equation for the two-particle WF is  of the form1p4 

In place of the variables k,, k,, p ,  and wt we have in- 
troduced in (42) the variables q and n (see Refs. 1 and 
4), where q has the meaning of the particle 1 in the r e s t  
system of the pair 1 and 2 (i. e. , at  k, +k,  = O) ,  and n 
i s  a unit vector in the w direction in this system. Equa- 
tion (42) rewritten in terms of the variables k, and x of 
the infinite-momentum system (see Ref. 4) coincides 
with Weinberg's equation. ' 

The angular momentum operator j a s  a function of the 
variables q and n i s  of the form3 

(43) 
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In the nonrelativistic limit, the WF ceases to depend on 
n, therefore the term -i[n x a/an] can be left out of (43) 
at q<< m. 

We consider now the operator1' 

A1=(nJ)". 

It commutes with the angular momentum and with the 
kernel V(ql, q, n, M2) (the kernel V i s  a scalar) .  There- 
fore the solution of Eq. (42) i s  characterized by the 
mass M and by the angular momentum J and its pro- 
jectipns, a s  well a s  by the eigenvalue a of the opera- 
tor A'. The state J # O  always corresponds to several  
eigenfunctions with different values of a .  For example, 
for J =  1 we have (Y = O  and 1. Since this property of 
the spectrum does not depend on the kernel V, it is  
clear that some of the states a r e  not physical and a r e  
redundant. The appearance of redundant states is due 
to the failure to use Eq. (16). 

Before we obtain the corollary of (16), we illustrate 
how Eq. (9) for the state vector leads to Eq. (42), since 
the condition for the two-particle WF from (16) is  ob- 
tained in similar fashion. We rewrite (91, taking (2) 
and (4) into account, in the form 

(a:-p,) U J = - C O , ~  H ~ ~ ~ ( Z ) ~ ( O X ) ~ ~ X Q .  (44) 

Here and below we assume u=O. The action of the 
operator @: - p ,  on the state vector causes each of the 
Fock components in (32) to be multiplied under the inte- 
gral sign by w , ~ .  We put 

P:-p"=o,r. 

We have introduced an operator ; such that - Ip ', 
where the Fock components a '  a r e  obtained from @ by 
multiplication by T.  Introducing the Fourier transform 
of the interaction Hamiltonian 

R ( p )  = e-ipxH'nl(x)dix, 

we obtain from (44) 

Corresponding to the Hamiltonian (6) i s  the operator 

R ( - o r ) = -  L j  ti(') ( o r + k l - t k 2 + k r ) ~  ( k , ) @  ( k ? ) f  (k3)dLkld5kzd'k~,  
(2%) 'I' 

(46) 
where 

@ ( k )  = (2n) -'/>j e-'brcp(~) d'x. 

We confine ourselves in the expansion (32) to the contri- 
bution of only the two- and three-particle components 
qZ and $S. The component qZ corresponds to two par- 
ticles described by the field cp, while $, contains in ad- 
dition a particle described by the field X. From Eq. 
(45) with the Hamiltonian (46) follows a system of two 
equations for these components. Eliminating from them 
the three-particle component, we arr ive  at the equa- 
tion 

'i *(kt ,  k,. p, o ~ ) 6 ' " ( k , + k ~ - p - ~ r ) d .  -- 
= j ; ( (k , .  k ,  p, C O T ) ~ " )  ( k , + k 2 - p - m ~ ) d ~ .  
-- (47) 

where 

R ( P ( ~ I ' ,  k ~ ' ,  P, o r l ) K ( k , ' ,  k2', or ' ,  k g ,  k,) 

d8k,' d'k*' dr' 
X 8"'(k,'+k,'-p-or') --- 

2e,' Ze,' 2n ' 

and the kernel K is given by the formula4 

The kernel V in (42) i s  proportional to K: V=-n2K/mZ, 
and an expression corresponding to (49), for V in terms 
of the variables q', q, and n, i s  given in Ref. 4. 
Equation (42) follows from (47) when the change is  made 
to the variables q and n. 

We obtain now the condition arrived at from (16) in the 
laddfr approximation. We transform expression (5) 
for J E  

Equation (16) takes the form 

where the operator i , , (w)  is  defined in (17), and acts 
in the right-hand side of (5) only on fi(-wt). An equa- 
tion for a two-particle WF can be obtained from (50) in 
exactly the same manner a s  Eq. (47) from (45). It is 
possible, however, even without two cumbersome 
manipulations, to obtain this equation by comparing 
(45), (501, and (47): 

where 

and R i s  defined in Eq. (48). 

The left-hand sides of (45) and (5O)Piffer in fact in that 
the operator ? in (45) is replaced by L,,(o) in (50). This 
is also the difference between the left-hand sides of 
(47) and (51 1. The right-hand side of (50), in ccntrast to 
(45), contains fhe  operator L,,(w) that acts on H ( - ~ 7 ) .  
The operator L,, differentiates the 6 function contained 
in (461, and this yields 6:' in (51) in lieu of the 6 func- 
tion in (47). The factor 1/r in (50) is cancelled when 
the ti function i s  differentiated. 

We multiply both halves of (51) by 6(w2 -q2)6(w,)d'w, 
integrate with respect d4u ,  and let q2  go to zero. The 
integral of the left-hand side of the equation gives zero, 
and the integral of the right-hand side leads to the con- 
dition 

We emphasize that in (52) it is necessary first to carry 
out the differentiation and then put k ,  + kz = p  + COT. 
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Starting from Eq. (42) and using the convergence of 
the integral in (42) at q'<< m we have obtained in Refs. 
4 and 5 an approximate expression for the WF by sub- 
stituting in the right-hand side of (42) the nonrelativis- 
tic WF, and taking the kernel V outside the integral sign 
at the point ql=O. In the same approximation we shall 
calculate (48) for R and verify that the condition (52) is 
indeed satisfied. In the system where p =  0, the kernel 
K can be taken outside the integral sign at the point k: 
= % = r 1 = 0 ,  and this yields in an arbitrary system 

R -  e (ll~-wkllop) + 8 ('/r-~k210p) 
2m'- (k,p) ' 2mx- (kg) ' 

It is seen from (53) that R does not depend on o, and 
it is  this which leads to satisfaction of the condition (52). 
Exceptions a r e  the points wk,, , /wp = $, in the vicinity of 
which, however, the approximation that leads to ex- 
pression (53) for R no longer holds. 

It follows from (47) that 

in which the arguments R a r e  connected by the rela- 
tion k ,  + k, = p  + 0 7 .  It is  convenient to change to the 
variables q and n with the aid of the following equations 
(at M =2m): 

t= (p-kl)2=Ml+mz-2(pk,) =mZ-2r(ok2), 
2m2- (pk,) =-z(okZ) =-2qaokr/op=-q2(I+nq/e (q) ), 

where c(q)= (q2+ rn2)ll2. From this, taking (53) and (54) 
into account, we obtain an expression for the WF: 

which agrees with that obtained in Ref. 4. We empha- 
size that although satisfaction of condition (52) i s  en- 
sured by the independence of R of w ,  by virtue of the 
relation k, + k, = p  + w7 between the arguments in (54) 
R becomes a function of o. This leads to a dependence 
of the WF on the argument n. It can be similarly veri- 
fied that the condition (52) is  satisfied also for the sol- 
utions with nonzero angular momentum and spin, ob- 
tained in Refs. 4 and 5. 

We have thus shown how to obtain from (16) the con- 
dition on the Fock component, and have verified that the 
WF obtained in Refs. 4 and 5 with kernel (49) in the lad- 
der approximation satisfy this condition. In a higher 
order, the kernel of Eq. (42), its solution, and the WF 
condition that follows from (16) should be obtained in 
approximations that make them mutually consistent. I£ 
some phenomenological kernel is  used in (42), we must 
s_ee to it that the corresponding 4-momentum operator 
J,, ensures the correct  commutation relations of the 
Poincar6 group. In this way we arr ive  at the quantum- 
mechanical approach developed in Refs. 8-11, in which 
the number of particles was fixed from the very outset. 

If it is assumed within the framework of this approach 
that the kernel of Eq. (42) does not depend on n, the 
operator J,, in the WF is likewise independent of n, and 
we obtain the relativistic quantum-mechanical-approac h 
variant developed in Refs. 10 and 11. This assumption, 
however, seems unrealistic to us since it is  not con- 
firmed even by the simplest models. 

6. CONCLUSION 

We have shown that allowance for Eq. (16) r ids the 
determined the state vector of the ambiguity that ar ises  
when the angular momentum i s  not zero. Thus, the de- 
veloped formalism of relativistic WF on a light front is  
closed and self-consistent. This circumstance, in 
conjunction with knowledge of the general properties of 
the  WF (such as the character of the dependence of the 
WF on the variable n o r  the spin structure of the 
WF), investigated in Refs. 1-5, provides a solid base 
both for the calculation of the WF in dynamic models 
and for their phenomenological analysis, i. e. , for find- 
ing them directly from the experimental data. Since 
the information on the interaction of the components in 
a bound system is most frequently scanty, the deter- 
mination of the WF from an analysis of the experimen- 
tal  data would apparently produce more results  so  far .  
Of particular interest to researach in this direction 
a r e  the prediction and observation of the qualitative 
consequences of the characteristic dependences of the 
relativistic WF (change of the parametrization and of 
the spin structure) due to the relativistic character of 
the motion of the components, and therefore weakly 
dependent on the details of the dynamics. 

The author thanks L .A.  Kondratyuk, V .  E. Markushin, 
Dzh. M. ~ a m ~ s l o v s k i i ,  and I.S. Shapiro for helpful and 
stimulating discussions. 
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