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The conductivity of highly anisotropic media with macroscopic dielectric or perfectly-conducting inclusions is 
considered. It is shown that, when the matrix is highly anisotropic, so that it can be characterized by a 
quantity y > 1, the approximation linear in the inclusion concentration c is violated in a number of cases even 
at low c -y-'(1, since the expansion parameter is the quantity cy. A significant isotropization of the 
properties of the system is found to occur in the case cy>l, for which an order-of-magnitude analysis is 
performed with the aid of the diffusion analogy. The metal-dielectric phase transition region for such systems 
is considend. It is concluded that the properties of highly anisotropic two-component media in the vicinity of 
the transition point are close to the properties of isotropic systems. Certain size effects in highly anisotropic 
samples with low inclusion concentrations are discussed. 

PACS numbers: 71.30. + h, 72.10.m 

1. INTRODUCTION flux perturbation that ar ises  during the flow around an 

The permittivity, conductivity, and other character- 
istics of isotropic media with low spherical-inclusion 
concentrations c can be calculated in standard fashion1 
in the approximation linear in c.  The generalization of 
the result obtained in Ref. 1 to the anisotropic case for 
a crystal with "normal" anisotropy (i.e., one of the 
order of unity) does not lead to any qualitatively new 
phenomena, amounting only to a quantitative refine- 
ment; a s  ?n the case of the isotropic medium, the ex- 
pansion parameter is the inclusion concentration c << 1. 

In a number of cases,  however, the medium can be 
highly anisotropic. Strong anisotropy of natural origin 
is possessed, for example, by layered crystals of the 
graphite type of filamentary crystals of the TCNQ type. 
Anisotropy can also be artificially created in a system: 
by introducing identically oriented prolate inclusions 
into the isotropic matrix. Finally, any conducting me- 
dium becomes highly anisotropic when it is placed in a 
sufficiently strong magnetic field. Allowance for the 
anisotropy in these cases leads to  qualitatively new re- 
sults. Thus, i f  a polycrystalline sample located in a 
magnetic field H contains "special" crystallites whose 
conductivity does not depend on H, then the current dis- 
tribution (as H- co) will be highly inhomogeneous, and 
the effective transverse conductivity will differ signifi- 

obstacle propagates along the z axis over a distance 
not -R (R i s  the radius of an inclusion), a s  in the iso- 
tropic case,  but -yR >> R ;  y = (o , /~ , )"~ >> 1. The "stag- 
nation" region has an anomalously large volume - Y R ~ ,  
and makes to  the resistance a contribution -cy. For cy 
2 1 the expression for the effective conductivity i s  neg- 
ative, which indicates the inapplicability in this region 
of the approximation linear in c.  Indeed, the inclusion 
closest to  the one in question in the direction of the z 
axis is at a distance of -R/c. For yR - R / C  the flux 
perturbation regions for these two inclusions overlap, - 
and the approximation based on the consideration of the 
isolated inclusion is  inapplicable. Consequently, in the 
case of the longitudinal conductivity a,, the approxima- 
tion linear in c i s  valid when cy<< I .  For  the opposite 
limiting case cy >> 1, a qualitative, order-of-magnitude 
analysis has been performed with the aid of the diffu- 
sion analogy.3 The longitudinal conductivity a,, has a 
much lower value in this concentration region (y-'<< c 
<< 1). If, on the other hand, the inclusions are perfect- 
ly conducting, then the transverse conductivity o,, in- 
creases  sharply on going from cy<< 1 to cy >> 1. In both 
cases there occurs a significant isotropization of the 
properties of the medium: the anisotropy of the system 
a s  a whole i s  significantly weaker than that of the ma- 
trix. - 

cantly from the mean c o n d u c t i ~ i t ~ . ~ ' ~  The expansion 
This isotropization increases as  the inclusion concen- 

parameter in this case is  the quantity cp, where p= H tration is  increased further. The analysis of the region 
(P>> 1) and c is the concentration of the special crystal- of co~centrations close to the critical concentration 
lites (c << 1); therefore, the approximation linear in the with the aid of the ideas of percolation theoryt1 allows 
concentration is inapplicable even when c - P'' << 1. us to conclude that the isotropization of the system in 

In the present paper we consider the conductivity of 
uniaxial media possessing natural anisotropy, and con- 
taining dielectric o r  perfectly conducting inclusions. 
We find here, just a s  ~ r e i z h  and Dykhne found in their 
i n v e ~ t i ~ a t i o n s , ~ ' ~  that in a number of cases the expan- 
sion parameter at low inclusion concentrations c is  not 
c << 1 ,  but the quantity cy (where y>> 1 characterizes the 
anisotropy of the matrix), i.e., such anomaly is  a gen- 
e ra l  property of highly anisotropic media. We shall 
elucidate the cause of the appearance of the parameter 
cy in the particular case of the filamentary crystals 
(0, =a, << or) containing dielectric inclusions. Let the 
mean current be directed along the z axis. Then the 

the critical region will, apparently, be practically totaL 
The properties of randomly inhomogeneous anisotropic 
media in the vicinity of the metal-dielectric phase 
transition are in many respects similar to the proper- 
t ies  of isotropic systems. For example, they have the 
same critical exponents, which are  largely determined 
by a purely geometric factor: the randomly inhomo- 
geneous isotropic distribution of the components (in 
particular, the topology of the infinite cluster) ." Let 
us note that highly anisotropic layered crystals (i.e., 
those for which a, =o,>>a,) undergo another metal-di- 
electric phase transition: at the "two-dimensional" 
critical concentration c =$. 
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Connected with the characteristics of the flow of cur- 
rent in an inhomogeneous sample with CY>> l a re  cer- 
tain size effects that occur in highly anisotropic media. 
In the case of filamentary crystals with dielectric in- 
clusions the effective longitudinal conductivity a,, of the 
sample exhibits a significant dependence on the sample 
thickness d in the direction of the z axis. When d 2 dc 
- R/C the quantity us,- a,. For greater thicknesses d 
2 d c  the longitudinal conductivity has much lower val- 
ues: a,,-o,c'*<<~,. If, on the other hand, the inclu- 
sions are  perfectly conducting, then the size effect 
exists fo r  the effective transverse conductivity a,,: this 
conductivity increases sharply when we go over from 
ds dc to d 2dc .  Here, a s  above, d is the sample thick- 
ness in the e direction and dc -R/c. 

The investigation of the conductivity of two-compon- 
ent media with magnetic-field-induced anisotropy, i.e., 
the study of their galvanomagnetic properties, i s  com- 
plicated in the general case by the fact that the conduc- 
tivity tensor has an antisymmetric part (Hall compon- 
ents), which must be considered separately. If, how- 
ever,  the Hall components do not depend on the coor- 
dinates, i.e., if they a re  the same for the matrix and 
the inclusions, then they practically drop out from the 
problem, and can be discarded in the computation of the 
symmetric part Ge, of the effective conductivity t e n s ~ r , ~  
so  that the results of the present paper a re  applicable 
in the case of Ge,. It is precisely this case that is con- 
sidered in Refs. 2 and 3 for the problem of polycrystals 
in a strong magnetic field H. Therefore, the results of 
the present paper concerning highly anisotropic fila- 
mentary crystals with perfectly conducting inclusions of 
low concentration are  entirely similar to the results of 
Refs. 2 and 3 pertaining to  polycrystals a s  H- a. The 
replacement of the special crystallites by perfectly con- 
ducting inclusions is unimportant in the order-of-mag- 
nitude estimates. 

2. THE TWO-DIMENSIONAL CASE 

Let us consider an anisotropic film (matrix) lying in 
the (x,y) plane. Let us orient the coordinate axes along 
the principal axes of the conductivity tensor 6, of the 
matrix, and let us denote the corresponding principal 
values of 6, by a,, and a,, (a,, % a,,). Finally, let the 
film contain circular inclusions with isotropic conduc- 
tivity a,. To compute the effective conductivity tensor 
of such a system by means of the Landau-Lifshitz 
method,' we must know the electric field inside an in- 
clusion when a homogeneous field Eo i s  prescribed in 
the region far from it. In the case of an inclusion of 
circular shape the field inside it has the form (Ref. 1; 
see problem No. 6 at the end of $13): 

Here the na(a =x ,y )  are the depolarization coefficients 
for an elliptical cylinder with semiaxes a, =RU;:/~ and 
a, = R U ; : ~ ~ ,  where R is the inclusion radius. The quan- 
tities n, and n, have a simple form: 

from which after substituting the values of a, and a, we 
obtain 

The computation of the effective conductivity tensor 
6, of the system under consideration is  carried out in 
the same way a s  i s  done in Ref. 1. As a result, we ob- 
tain for the principal values of 6* the expression (a 
=x,y)  

where c<< 1 i s  the dimensionless inclusion concentra- 
tion: c =nnR2, n being the number of inclusions per 
unit area. The expression (3), together with (21, gives 
the solution to the formulated problem in the approxi- 
mation linear in c. In the case of an isotropic medium 
we, =ul, ua, =ae, and n, =n, =$, and from (3) we obtain 
the usual result 

For dielectric (d) inclusions we find from (4) that 

o.(d)=o, (1-2c). , (5 

The corresponding expression for  the case of perfectly 
conducting ( s )  inclusions (i.e., for 02') is obtained from 
(5) by changing the sign in front of 2c. For  a highly 
anisotropic film with dielectric inclusions (uz<< Us, 

<cay,) we find from (3) and (2) that 

Notice that, according to  (6b), the quantity u,, vanishes 
when cy = 1, and is negative when cy > 1. It is clear 
that the expression (6b) is inapplicable in the region cy 
- 1. 

In order to elucidate the meaning of the results (6), 
let us consider the pattern of flow of a uniform current 
around a dielectric obstacle. In the case of an isotropic 
matrix the perturbations introduced by an inclusion of 
radius R into the flow propagate over distances -R. 
The effective area that is then exciuded from partici- 
pating in the conduction (the stagnation region) is ,  ac- 
cording to (5), equal to twice the area of the inclusion. 
In the anisotropic case, when the current is directed a- 
long the x axis (oxt<<ayl), the perturbations along this 
axis propagate over small distances -R/y<< R;  the ef- 
fective area is roughly equal to the area of the inclu- 
sion (see (6a)]. On the other hand, if the current is 
directed along the y axis, then the flux perturbations 
along y propagate over long distances -Ry>>R, and the 
effective area,  which is of the order of yR2, is anoma- 
lously large, so that the contribution to the resistance 
is equal to cy [see (6b)]. 

In deriving the expression (3), we made essential use 
of the "single-particle" character of the problem, i-e., 
the fact that the contribution to  the resistance of any in- 
clusion is independent of the contributions of all the re- 
maining inclusions. This i s  valid if the regions of 
perturbed fluxes from different inclusions do not over- 
lap. In the case of an isotropic matrix, this condition 
will be fulfilled if the inclusion radius R is small com- 
pared to the mean inclusion spacing -RC-'". There- 
fore, the condition for the expression (5) to be appli- 
cable is that the concentration should be low: c << 1. 
These arguments are  valid also for an anisotropic ma- 
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t r ix  with current flowing along the x axis. 

If the current is directed along the y axis, then, a s  
has already been noted, the flux perturbation is strong- 
ly extended along this axis over a distance -yR. For 
the expression (6b) to be applicable, the quantity yR 
should be small compared to the mean distance (L) be- 
tween inclusions lying closest to  each other in the y 
direction. (The distance between the centers of these 
inclusions in the direction of the x axis should not ex- 
ceed a quantity -R.) To determine (L), let us draw a 
straight line of length L?' along the y axis. This line 
will intersect a certain number of inclusions along 
chords, whose lengths we denote by 1, (i = 1,  . . ., N; N 
being the number of intersected inclusions). Then, ac- 
cording to Ref. 5, a s  2- .o 

c = P i  l , = P - i N ( l ) .  (7) 
i 

Here c i s  the fraction of the area  occupied by the inclu- 
sions, i.e., their concentration and (Z) is the mean 
chord length. From (7) we determine the quantity (L), 
noting that a s  3'- .o we have the equality (L) + (1) =Y/N. 
From this and (7) we obtain 

For  a circle of radius R, (I) =7r~/2  (see Ref. 51, so  that 
for c<< 1 we finally obtain from (8) the expression 

As noted above, the condition of applicability of the 
formula (6b) is yR<< (L), or, with allowance made for 
(91, cy<< 1. Thus, in the case of a highly anisotropic 
matrix (i.e., for y>> 1) the expansion parameter for a, 
is the quantity cy, and the expression (6b) is inappli- 
cable even at relatively low concentrations c - y" << 1. 
Nevertheless, the formula (6b) indicates that we should 
expect a significantly reduced a, value when c -  y-'. 

Let us use the diffusion analogy3 to  investigate the 
case cy >> 1. The gist of this analogy i s  that the equa- 
tion for the direct current and the steady-state diffu- 
sion equation essentially coincide: the first  equation 
goes over into the second when the conductivity is re- 
placed by the diffusion coefficient and the electric po- 
tential is replaced by the density of the duffusing par- 
ticles. At the same time, the diffusion phenomenon is 
more visualizable, since we can analyze it by following 
the behavior of a single particle. Furthermore, we can 
determine the effective diffusion coefficient by consid- 
ering the time picture i f  we use the well-known formu- 
la 

Here is the mean squared displacement of a particle 
along the xa coordinate axis during the time t and D, 
is the corresponding principal value of the diffusion 
tensor. The transition to the conductivity problem is 
effected by making the substitution Da - o, in the final 
formulas. Below we shall, for brevity, also make this 
substitution in the intermediate calculations. 

As an example of the application of the diffusion an- 
alogy, let us estimate the dimension of the perturbed- 
current region during the flow along the y axis. In or- 

der  for the current to  bypass an obstacle of radius R ,  
a particle should move along the x axis through a dis- 
tance -R, which will require a time t - ~ ~ / a , ~ .  The dif- 
fusion of the particle should begin at a distance y 
- ( ~ , ~ t ) " ~  from the inclusion, whence we obtain the di- 
mension of the perturbed-current region along the y 
axis: 

Let us now consider the diffusion of the particle in the 
case when the mean current is directed along the y axis 
and cy >> 1. In the zeroth approximation, when the dis- 
placement along the x axis can be neglected, the parti- 
cle executes one-dimensional diffusion along the y axis 
between two nearest (in the y direction) inclusions. 
Consequently, for y=- ,  every particle of the diffusing 
material i s  "locked" inside a region of length -(L) 
(along y)  and width -R (along x). The transfer of the 
particles through the sample then does not on the whole 
occur, and the effective diffusion coefficient (and, con- 
sequently, a,) i s  equal to zero. (In the language of the 
conductivity problem, we have the following picture. 
F o r  o,, = O  the current lines are  straight lines parallel 
to  the y axis. In a sample of infinite dimensions, any 
such current line will, with probability equal to unity, 
"abut" against one of the inclusions, whose distribution 
we assume to be random; from this it follows that a,, 
= 0.) When y is large but finite, there occurs, besides 
the fast motion along the y axis, slow diffusion in the 
transverse direction (along the x axis). As the particle 
diffuses along the x axis through a distance -R, it 
rapidly moves along the y axis through a distance -(L),  
and then gets locked in the next region. 

Let us estimate the lifetime of the particle in such a 
region with the aid of (10): 

Thus, the motion of the particle is a random walk (on 
the average, along the y axis) with step -(L) and hop- 
ping time -7,. The diffusion coefficient, which coin- 
cides with a,,, for such a random walk can be esti- 
mated with the aid of a formula similar to (10): 

The substitution into (12) of the expressions (9) and (11) 
leads to the following order-of-magnitude estimate for 
the effective conductivity a,,: 

The formula (13) is valid up to a numerical factor. Let 
us note that, for ox, in the concentration region y-' << c 
<< 1 ,  we have, a s  before, the formula (6a), i.e., ox, 
= US'. 

Comparison of the expressions (6b) and (13) shows 
that the value of o,, decreases by a factor of (cyl2>> 1 
when we go over from c << ye' to c >> y-I. There occurs 
therewith a sharp decrease in the anisotropy of the 
conductivity of the system a s  a whole, i.e., the in- 
crease  in the concentration of the dielectric inclusions 
leads to a significant isotropization of the properties 
of the medium. Notice that the expression (13) can be 
rewritten in the form 0,- ~ , , / ( cy )~ .  This fact and (6b) 
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allow us to postulate that the conductivity a,, for arbi- 
t rary  cy (but when c << 1 and y>> 1) can be written in the 
form 

where the function qYa(5) has the following asymptotic 
forms: $,([)=I - 5 for 5 << 1 and $*([)- 5-2 for 6 >> 1. 

Let us now consider an anisotropic film with perfect- 
ly conducting inclusions. For uz - - and Y>> 1 ,  we find 
from (3) and (2) that 

where y is the same a s  in (6). In this case the correc- 
tion to the quantity a,, is large, which is connected with 
the characteristics of the flow of the current in the di- 
rection of the x axis in the vicinity of a perfectly con- 
ducting inclusion in the anisotropic matrix. The per- 
turbed-current region has a dimension -yR along y and 
-R along x. Inside this region the current lines a re  di- 
rected largely along the "easy" (y )  axis, along which 
the resistance is low, s o  that, for the quantity a,,, 
the whole region plays the role of a "perfectly conduct- 
ing inclusion" with area  -yR2. The condition of appli- 
cability of (15a) i s  yR<< (L), i.e., cy<< 1. 

As the parameter cy increases, the perturbed-cur- 
rent regions stretch out along the y axis, overlapping 
when cy- 1. As a result, the current distribution in the 
sample is highly inhomogeneous when cy>> 1. The cur- 
rent lines are  directed along the applied electric field 
(along the x axis) only inside the inclusions; outside the 
inclusions the current flows largely parallel to the y 
axis. In the language of the diffusion problem we have 
the following picture (the corresponding arguments are  
similar to those adduced in Ref. 3). A particle, on 
reaching an inclusion, i s  instantaneously displaced a- 
long the x axis through a distance -R. After this, it i s  
"advantageous" (when cy>> 1) for it to diffuse along the 
y axis through a distance -(L) until it encounters the 
next inclusion, after which a jump again occurs along 
the x axis, and so  on. Thus, in this case the particle 
executes a random walk (on the average, along the x 
axis) with step -R and hopping time T,- (L)~/c,,. ES- 
timating the effective diffusion coefficient from the for- 
mula a,, -R2/r,, we finally obtain for the quantity ox, 
the estimate 

For  the conductivity 0::' in the concentration region 
under consideration we have, a s  before, the formula 
(15b), i.e., U $ ' ~ U ~ , .  Notice that, a s  in the case of di- 
electric inclusions, the transition from c<< y-' to c 
>> y-I i s  accompanied by substantial isotropization of 
the properties of the system a s  a whole (in the present 
case a s  a result of a sharp increase in the quantity a,,). 
We can also conjecture the form of a,, for an arbitrary 
value of the parameter cy (c<< 1, y>> 1 )  in the case of 
perfectly conducting inclusions: 

0:s) -ox,$,. (cy), (1 7) 

where &,(5)= 1 + 5 for 5<< 1 and qXs(6)- t2 for  5>> 1. 

In conclusion of this section, let us consider a simple 
model with artificial anisotropy: an isotropic film of 

conductivity a i  with a set of impermeable scratches of 
length 2h ,  oriented parallel to the y axis, and disposed 
in such a way that their centers are  randomly distribut- 
ed. The effective conductivity ax, in the case when the 
length of the scratches is small compared to the mean 
distance between their centers (-n-lf2, n i s  the number 
of scratches per unit area of the film) can easily be 
found (see, for example, Ref. 6): 

In the opposite limiting case,  i.e., for nh2 >> 1, we can 
use the diffusion analogy to estimate a,,. Let us denote 
the mean distance between the scratches along the x 
axis by (L). The diffusing particle will execute in the x 
direction a random walk with step of length -(L) and 
hopping time T. Between two successive hops the par- 
ticle should be displaced along the y axis through a dis- 
tance -h, from which we determine 7: T - ~ ' / U ~ .  The 
quantity (L) can also be determined with the aid of (81, 
where (I) should be regarded a s  denoting the mean 
chord length in the direction parallel to the x axis, for 
an ellipse with semiaxes a- 0 (along x) and h (along y). 
It is not difficult to  see that (1) = 1ra/2; therefore, allow- 
ing for the equality c = n ~ a h ,  we find from (8) that @) 
= (2nh)''. As a result we obtain for the effective con- 
ductivity a,, 

When the current flows along the y axis the scratches 
do noi offer resistance, s o  that u,,=c, in the consider- 
ed model. 

3. RECIPROCAL RELATIONS 

We can establish for a two-dimensional anisotropic 
medium reciprocal relations that generalize the ones 
found earlier  by ~ ~ k h n e '  and the present a u t h ~ r . ~  Let 
us consider a system for which the directions of the 
principal axes (x and y)  of the conductivity tensor 6(r)  
do not depend on the coordinates (such a situation ob- 
tains, for example, for a thin isotropic film located in 
a magnetic field parallel to i t s  plane), i.e., 6(r)  has a 
diagonal form for any r: 

Let us, following Refs. 7 and 8, express the current 
density j and the electric field E relative to the primed 
system: 

Here n is the unit vector along the normal to the plane 
(x,y) of the system and p is some coordinate-independ- 
ent constant. The transformation (21) does not lead to 
a change in the system of equations for the direct cur- 
rent, and the conductivity tensor in the primed system 
has the form (20) with 

The effective characteristics of the original (a,,, a,,) 
and primed (Gx,, G,,) systems a re  connected by the re- 
ciprocity relations 
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Let us note that the relations (23) are  valid also for the 
continuous problem, in which 6(r) is a continuous func- 
tion of the coordinates. 

For two-component media the quantities a,, a re  
many-parameter functions: 

where p is the concentration of the first component and 
ox, and a,,, are  the principal values of the conductivity 
tensor of the i-th component. The effective character- 
istics of the primed system are  given by the same func- 
tions (24) with the arguments changed according to  (22): 

If we select a dimensional factor, say a,,, in (241, the 
quantity ua6/uxl will be a function of four dimensionless 
parameters: 

It follows from (23)-(26) that the parameter g virtually 
drops out from the reciprocity relations. It is never- 
theless convenient t o  fix it. If we set k2  =oxlaYl, then 
the reciprocity relations assume the form 

Gc(p; ox,, our; 0.2, ovz)aue(p; o.~, on,; 0xrou~/0~rr o ~ ~ o ~ I / o ~ ~ ) = O = ~ O ~ I ,  

oyL(p; OX, .  a",; aZ2, ~ , , ~ ) o . ~ ( p ;  or,, oul; oTloyl/oy2, 0.~o~~lo.2) = a ~ ~ o ~ ~ .  
(27) 

In particular, for G2- 0, we obtain from (27) a rela- 
tion between the effective characteristics of a two-di- 
mensional system with dielectric inclusions and the 
properties of the same system with perfectly conduct- 
ing inclusions: 

oLd) (p; a=,, o v l ) o ~ ~ "  (p; US,, nu,) =a=lavi, 

(6) 
(28) 

owe (p; ox,, ovr)oAa1 (P; omr avt)=o=rov,. 

The substitution into the second relation in (28) of the 
expressions (14) and (17) allow us to find a relation be- 
tween the functions JI,, and 6,: 

If the distribution of the components in the system is 
geometrically isotropic, then the substitution a,, = a,, 
with a simultaneous rotation of the coordinate axes 
through 90" does not alter the properties of the medium, 
i.e., 

It is not difficult to  see that, in the approximation lin- 
e a r  in c ,  the expressions (3) and (2) satisfy the rela- 
tions (27) and (30). Finally, let us not that the proper- 
t ies  of a randomly inhomogeneous medium a re  not 
changed by the double substitution p- 1 -P, 61 = G2, 
whence (a = x ,  y)  

The relation (31), written in the form ~ , , ( p ; 6 ~ , 6 ~ )  
=uUola(l - ~ ; 6 ~ , 6 ~ )  (where a =x,y,z) ,  is valid in the 
three-dimensional case a s  well. 

4. THE THREE-DIMENSIONAL CASE 

For three-dimensional anisotropic media with low 
concentrations of spherical inclusions with isotropic 

conductivity a2, the principal values of the tensor G6 a r e  
also given by the formula (3), in which the n, (a = x ,  y , 
z )  a re  the depolarization coefficients for an ellipsoid 
with semiaxes a, =RU;~(~, where R is the inclusion ra- 
dius. For an isotropic medium a, , =al, a,, = a,, and 
n, =+, and from (3) we obtain the well-known result1 

For systems with dielectric and perfectly-conducting 
inclusions, we respectively have from (3) the expres- 
sions 

(dl - ( 81  
a) o.. -o.,[l-cl(1-n,)]; b) o., =o.l(l+c/n,). (33) 

Below we shall consider a uniaxial matrix (axl =ay, 
fa,,), and distinguish two cases: 1) a filamentary 
structure of the TCNQ type (a,, =ay1 < a,,); 2) a layered 
structure of the graphite type (axl =ayt  > a,,). 

1. Let us first  consider filamentary crystals (a,, 
=ayl <a,,). For the depolarization coefficients this 
case corresponds to an oblate ellipsoid of revolution 
(a, =ay  > a,), for whicht 

n,==(l+e2) (e-arctg e)/e3, n,='lz(l-n,) ; 
(34) 

e=[(aJa, )Z- l ] '"=[(o, , lo . , ) - l ] '" .  

In the case of strong anisotropy, i.e., for ( o , , / ~ ~ ~ ) " ~  
>> 1 ,  we find from (34) that 

s o  that for dielectric inclusions we obtain from (33a) the 
estimates 

a) ,,::) co,, ( I - ~ ) ;  b) co , ,  (I-2cytn) ; y= (ozJo=s)'"Bl. (36) 

Here and below we retain the designation y for the an- 
isotropy characteristic (U,~/U,,)"~ of the matrix. 

The expressions (36) a re  similar to the formulas (6), 
which is connected with the similarity of the patterns 
of flow around the obstacles in the two cases. Thus, in 
the case of flow along the z axis the perturbed-current 
region (the stagnation region) has the shape of a pro- 
late ellipsoid of revolution with semiaxes -yR >>R along 
the z axis and -R in the transverse direction. The dis- 
tance (L) to the nearest (in the direction of the z axis) 
obstacle is determined with the aid of (8), where now c 
is the three-dimensional dimensionless concentration of 
the inclusions and (1) is the mean secant length. For a 
sphere (Z)=#R (Ref. 5), s o  that at low concentrations 
(L)=+R/C. Hence we obtain the condition of applicabil- 
ity of (36b): cy << 1. The opposite case cy >> 1 is con- 
sidered in exactly the same way a s  in Sec. 2. As a re- 
sult, we arrive at a formula similar to (13): 

For  arbitrary cy (c << 1 ,  y >> 1) we can likewise put for- 
ward a hypothesis of the type (14) concerning the form 
of a,,: 

where \ksd(5)= 1 - 25/n for 5<< 1 and rk,,(5)- [-2 for 5 
>> 1. 

For  perfectly conducting inclusions we have from 
(33b) and (35) the estimates 
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The expression (39a) coincides with Korzh's r e ~ u l t . ~  
For cy>> 1 the diffusion analogy leads to an expression 
of the type (16) ( ~ e f s .  2 and 3): 

For arbitrary cy we can make an assumption similar 
to (1 7): 

where 4r(t;)= 1 + 45/77 for 5 << 1 and *x,(5) - t2 for 5 >> 1. 

Thus, the properties of filamentary crystals turn out 
to be similar to those of highly anisotropic thin films. 
In particular, the properties of filamentary crystals 
alsobecome increasingly isotropic a s  the inclusion con- 
centration increases. 

2. In the case of layered crystals (ox, =a,, > or,) the 
depolarization coefficients correspond to  a prolate el- 
lipsoid of revolution1: 

( "' ))/. n x = l / z ( l - n z ) ;  n,=' / , ( l -e ' )  ln- - 28 
I-E 

(42) 

In the case of strong anisotropy we have from (42) the 
estimates 

For dielectric inclusions we find from (33a) and (43) 
that 

In this case we do not have an anomalously large stag- 
nation region associated with the flow around an ob- 
stacle in any direction, and the expressions (44) are  
valid for all c << 1. 

For perfectly conducting inclusions we have from 
(33b) and (43) the estimates 

where e is  the base of the natural logarithms. The 
cause of the anomalously large correction to o,, is the 
same as  the one indicated above. The form of this cor- 
rection is  somewhat different, which is connected with 
the difference in the patterns of flow around a perfect- 
ly conducting inclusion in the cases of filamentary and 

, layered crystals. The condition of applicability of (45b) 
i s  c << y2 ln(l/y). 

Let us consider the case c>> y21n(l/y) with the aid of 
the diffusion analogy. If the mean current is directed 
along the z axis, then a particle, on reaching an inclu- 
sion, i s  instantaneously displaced along the z axis 
through a distance -R. After this, it diffuses in the 
plane perpendicular to the z axis until it reaches the 
next inclusion. Then the particle again hops a distance 
-R in the z direction and so on. Let us, for the pur- 
pose of estimating the time between two successive 
jumps, note that perfectly conducting inclusions corre- 
spond to absorbing traps in the diffusion problem. Such 
a problem is considered in Refs. 9 and 10, where the 
probability for "survival" of a particle is found. The 

mean lifetime of a particle gives an estimate for the 
time r0 between successive jumps. In the case of fila- 
mentary crystals the corresponding diffusion is one- 
dimensional (along the z axis), so  that an estimate with 
the aid of Ref. 10 yeilds 7,- (L)~/U,,, a relation which 
was used in the derivation of the formula (40). 

In the case of layered crystals the particle executes 
two-dimensional diffusion in the plane perpendicular to 
the z axis. For the estimation of 70 in the two-dimen- 
sional case, it is sufficient to  limit ourselves to the 
gas appro~imat ion, '~  s o  that we have the order-of- 
magnitude e ~ t i m a t e . ~ ' ~ ~  

where n2 is the number of traps per unit area. To de- 
termine the quantity n2, let us draw a plane of area  S 
perpendicular to the z axis. It will intersect a certain 
number N2 of inclusions; let us denote the correspond- 
ing intersection areas  by s,. According to Ref. 5, a s  S 
-- a we have 

Here c is the three-dimensional concentration of the 
inclusions (the fraction of volume occupied by them). 
The mean intersection area for a sphere is easy to find: 
(s) =$TR' (see Ref. 5), and from (47) we obtain 

so  that (46) gives 

RZ 1 
PO - - ln-. 

a,,c c 
(48) 

Estimating o,, in the usual manner (a,, - R ~ / T ~ ) ,  we 
finally obtain 

The formulas (45b) and (49) can apparently be regarded 
a s  the two limiting cases of the general expression 

where \E([) = 1 + 5, r= ye/2 for [ << 1 and @(5) - 5, I'- c 
for 5 >> 1. Notice that in this case also the properties 
of the medium become increasingly isotropic a s  the 
concentration of the perfectly conducting inclusions in- 
creases.  

5. THE CRITICAL REGION 

Also of interest a re  the properties of an anisotropic 
inhomogeneous system with fairly high c ,  especially in 
the vicinity of the critical concentration, i.e., in the 
metal-dielectric phase transition region. Here, a s  in 
the standard percolation theory," we shall consider a 
medium with a random, geometrically-isotropic com- 
ponent distribution. In this case, for systems with di- 
electric inclusions, the flow through the sample cases 
in every direction at the critical con~entration.~'  This 
statement i s  a purely geometrical fact, and does not 
depend on the properties of the matrix. From this it 
follows that, in the anisotropic case, the critical con- 
centration is the metal-dielectric phase transition 
point, i.e., the point at which all the components of 
the effective conductivity tensor 8, vanish simultane- 
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ously. 

To determine the form of 6, in the critical region, 
let us first consider a two-dimensional system with di- 
electric inclusions. It is convenient to  perform the 
subsequent analysis in the particular case of the lattice 
model-(the bond problem on an anisotropic quadratic 
lattice). If the concentration of the nonconducting bonds 
tends to the critical value (i.e., if T<< 1, where T is the 
proximity to the transition point in terms of concen- 
tration), then we have for the effective conductivity of 
the system in the case of an isotropic matrix the es- 
timatell* 

a,-a,~~, (51) 

where a1 is the conductivity of a single bond (the con- 
ductivity of the matrix in the continuous case) and t is 
the critical exponent. The dependence of the conductiv- 
ity on the concentration in (51) is determined largely by 
a purely geometric factor: the topology of an infinite 
cluster," which, by assumption, is isotropic. It there- 
fore follows that the dependence of a,, and a,, on the 
concentration in the case of an anisotropic matrix also 
has the form (51) with the same critical exponent t. 
The dimensional factor in a,, and a,, is determined, 
when U,~>>U,,, by the bond with the lowest conductivity, 
i.e., it is equal to  a,,. Finally, if the bonds with a,, 
and oyl are  encountered equally frequently along the 
majority of the flow paths (which appears to be natural 
when T<< I ) ,  then the numerical coefficients in a,, and 
a,, will also be identical, so  that (a,, << a,,, T<< 1): 

On the basis of the general ideas of percolation theory," 
the result (52) will obtain in the continuous problem a s  
well. Thus, virtually complete isotropization of the 
properties of the systems under consideration i s  to  
be expected at T- 0. Let us emphasize that the iso- 
tropization begins (here andbelow) just when T << 1 ,  and not 
upon the fulfullment of a stronger condition, say, of the type 
T<< y-' << 1. This is connected withthe geometry of the flow 
paths in the critical region: in the present case, with 
the topology of an infinite cluster. 

Now let the second component have a low, but finite 
conductivity: 62 << 6,. In highly anisotropic media this 
implies the satisfaction of the following chain of in- 
equalities: ux2 << uy2 << a,, << a,,. The reciprocal rela- 
tions (23) allow us in this case, as  in the case of an 
isotropic matrix,lv8 to relate the properties of the 
"metallic" (T > 0) and "dielectric" (T < 0) phases. Let 
us, using (31), write the first  of the relations (23) in 
the form 

a=.(p; a+,. a,,; 0.2, oqt)oW(l-p; p'loV2, p2lorr; p21oe, ~ ~ / o ~ ~ )  -pa. 

Setting here p2 =uX1uy2, and proceeding to  the limit a,, - ", a,,-- 0, we obtain 

where, for brevity, we have set  oa,(p) =uae(p; ox,; a ;  
0, a,,). Also given in (53) is a second relation, which 
differs from the first  by the substitution p- 1 -p. The 
reciprocal relations in the form (53) are ,  according to  
the results of Sec. 2, valid provided the concentration 
of either component is not too low: 

I - p B  (o.,/ov,)"Kl and p > ~  ( ~ , ~ l o , ~ ) ' " a l .  

When the conductivity of the second component is fin- 
ite (but 62<<6,), the expressions (52) describe the 
properties of the system in the metallic phase (T > 0, 
p > i) in the region lying within the T << 1 ,  but outside 
the smearing,12 region. The substitution of (52) into 
(53) allows us to determine the properties of the sys- 
t em in the dielectric phase (T< 0) also outside the 
smearing region, but where 1 T 1 << 1 : 

The result (54) can be interpreted a s  follows. In the T 

< 0 region outside the smearing region the inclusions 
of the first component can be considered to be perfect- 
ly conducting. For ) T I  << 1 the current flows largely 
through the perfectly conducting regions (finite clust- 
e r s ) ,  the dimension of which increases without re- 
striction a s  171- 0 (Ref. 11). It is "advantageous" for 
the current to get over the short cross- connecting 
jumpers between these regions in the direction of they  
axis. To elucidate the nature of the isotropy of the 
properties of such a medium, let us note that, using 
(301, we can write the equality a,, =a,, for(u,,,o,,) - - a ,  
ox,- 0 in the (p< 3) 

On the left-hand side of the equality (55) stands the con- 
ductivity of a system in which the finite clusters are  
connected by jumpers formed by only the vertical bonds, 
while the conductivity on the right is for a system in 
which the clusters a re  joined by jumpers formed by 
only horizontal bonds; in both cases the conductivity 
of the bonds is equal to a,,. Consequently, if such 
"switching" of the jumpers does not change the prop- 
er t ies  of the system, the system will be isotropic. 

According to  (52) and (541, the considered system in 
the vicinity of the transition point (IT/<< 1) outside the 
smearing region is isotropic. It is natural to suppose 
that it is also isotropic inside the smearing region. 
Then it follows from (53) that at the critical point ( p  
= t )  

The dimension A of the smearing region is determined 
in the usual fashion by "matching" the expression (56) 
with (52) o r  (54), which yields A'- (U,, /U~,)~'~.  Thus, 
the properties of the considered anisotropic system in 
the critical region qualitatively coincide with the prop- 
er t ies  of an isotropic medium with conductivities of 
components a,, and oy2 (axl >> oy2). At the same time we 
should expect the occurrence in, for example, the 
formula (52) (in comparison with the isotropic case) of 
a numerical coefficient a 2, since nearly half of the 
bonds (with conductivity a,,) do not, when a,, << a,,, 
make any contribution to  the resistance. Accordingly, 
there then a r i ses  in (54) a factor = i. 

Arguing in exactly the same way a s  in the two-di- 
mensional case (assuming, in particular, that the 
switching of the jumpers between the finite clusters 
does not change the properties of the system), we find 
in the case of filamentary crystals with a,, >> a,, >> a,, 
>> a,, that in the critical region IT(<< 1 
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a) o,.=o.,-o.,rf; T>O, A<s<<l;  

b) ozF~.r-ozr  (orz/~*t)'; 171 "A; 

Here the dimension of the smearing region is deter- 
mined from the condition A' - (u,~/u,,)~ and the expon- 
ents t , s ,  and q a r e  connected by exactly the same rela- 
tion that obtains in the isotropic case12: q = t(1- s)/s. 
As follows from the arguments leading to  (57a) and 
(57c), t and q a re  the same exponents that occur in the 
isotropic case. Since t, s ,  and q are  connected by the 
same relation that obtains in the isotropic percolation 
theory, the critical exponent s coincides with the cor- 
responding "isotropic" exponent. The case of layered 
crystals (a,, >> u,, >> oX2 >> ucz) can be considered in ex- 
actly the same fashion, and differs from (57) by the 
substitution x 2%. 

The foregoing analysis [see (57)] pertained to  the 
three-dimensional critical concentration region pd3' 
5 0.2 (Ref. 11). It turns out that another metal-dielec- 
t r i c  transition is possible in layered crystals: at the 
two-dimensional critical concentration ~ 0 ~ '  =+. Let the 
mean electric field be directed along the x axis. Then 
in the case of a sufficiently strong anisotropy, i.e., for 
u,, << or,, the current distribution in the region of di- 
electric (e2 =0) component concentrations c <+ will be 
largely two-dimensional: in the planes perpendicular 
to the  z axis. [ ~ o t i c e  that this explains the similarity 
of the expressions (44a) and (5); according to (47), the 
fraction of the area occupied by the dielectric compon- 
ent in any plane is  equal to  the three-dimensional con- 
centration c.] Therefore, a s  pj2' i s  approached, the 
quantity ox, will decrease according to  the law Or,-0%' 

( p  -pi2')'2, where t2 = 1.3 is the corresponding two- 
dimensional critical exponent.'" l 2  For p < pi2' (but P 
>pi3'), a purely two-dimensional percolation is im- 
possible,'' and the flow of the current has a three-di- 
mensional character. In this case the resistance of the 
sample is determined by the lowest ucl plays a role 
similar to the role played by the conductivity of the "di- 
electric" component in the ordinary metal-dielectric 
transition." It is natural to expect, therefore, that the 
conductivity or, will have in the critical region 1 T2 1 
<< 1 the form 

Here r2 = ( p  -pL2))/pi2'; the dimension A2 of the smear- 
ing region is determined from the condition A:' 
- (uy1/orl)". The critical exponents t', s', and q' a re  
connected by the usual relation q' = f' (1 - s')/sl, one of 
them being known: t' = tz 5 1.3. Thus, there occurs at 
p =pL2' a metal-dielectric phase transition that i s  
similar in form to the normal transition.12 To the con- 
ductivity u,,, nothing apparently distinguishes the point 
p =pP), and in this region of concentrations u,, SO,,  

<': us*. 

6. THE SIZE EFFECTS 

Connected with the characteristics, considered in 
Secs. 2 and 4, of the flow of current in highly aniso- 

tropic inhomogeneous media a re  distinctive size effects 
that manifest themselves in critical dependences of the 
the effective characteristics of a sample on i ts  dimen- 
sion in the direction of highest conductivity in the ma- 
trix. 

Let us first  consider the two-dimensional case. Let 
the film have a finite width d in the direction of the y 
axis (u,,>>u,,). Let us assume that the inclusions are  
dielectric, and that the condition cy  >> 1 i s  fulfilled. 
Then for d<< (L) - R/C we have o,,- u,, even when cy 
>> 1. On the other hand, if d>>R/c, then the effective 
conductivity a,, will be the same a s  in an unbounded sample: 
a,, - u,,/c2 << u,,. Thus, there exists a critical film 
width dc - (L)-R/C, such that the transition from d 2 dc 
to  d 2dc is accompanied by a sharp decrease in the 
quantity uy,. 

To determine the critical width dc more accurately, 
we must solve a problem that it is natural to  call the 
problem of flow along straight lines. Specifically, set- 
ting ?=-, we arrive at the problem of current flow 
along straight lines (along the y axis) through a sample 
of finite width. It is clear that the conductivity will be 
nonzero when d <<(L)- R / c  and zero when d =-. The 
conductivity will be sharply reduced when d -  (L). It 
will be interesting to determine that value of the sam- 
ple dimension (in the y =m case) at which a, vanishes, 
specifically, to find out whether U, vanishes at a finite 
d =d,-(L), o r  a s  d--, i.e., whether the phase transi- 
tion is sharp in terms of the film width o r  smeared. 

If the inclusions a r e  perfectly conducting, then the 
s ize  effect exists (when cy>> 1)  for the quantity or,, and 
manifests itself in the dependence of or, on the film 
width d along the y axis. If d << (L), then the mechan- 
ism, described in Sec. 2, of flow of current along the x 
axis cannot be realized, and U,,=U,,. If d >> (L), then, 
a s  in an unbounded sample, or, - u,,,c2 >> u,,. The corre- 
sponding critical width is ,  a s  in the above-discussed 
case,  of the order of d,-(L)-R/C. Thus, the effective 
conductivity o,, increases sharply when we go over 
from d s  dc to d 2dc. 

Entirely similar size effects exist for filamentary 
crystals (when cy>> 1) in the dependence on the sample 
width in the direction of the z axis. The case of per- 
fectly conducting inclusions is entirely similar to the 
problem, considered by Dreizin and ~ ~ k h n e , ~ ' ~  of the 
transverse conductivity of polycrystals in a strong 
magnetic field. 

For layered media, the size effect is manifested at c 
<< 1 only by the quantity u,, in the case of perfectly con- 
ducting inclusions. If the sample i s  a circular cylinder 
of radius r with the generatrix along the % axis, then 
the conductivity a,, increases sharply from o,,=uCi to 
the value given by the expression (49) when we go over 
from rsrc (rc- (L)-R/C) to rzr,. 

7. CONCLUSION 

The range of problems considered in the present 
paper pertains to the simplest problems of the aniso- 
tropic percolation theory. The necessity of the investi- 
gation of such problems ar ises  both in the case of nat- 

1187 Sov. Phys. JETP 55(6), June 1982 



ural  highly anisotropic crystals and in the study of the 
galvanomagnetic properties of two-component media 
located in  strong magnetic fields. For  three-dimen- 
sional systems the latter problem is, in the general 
case,  complicated by the presence of Hall components. 
In the two-dimensional case (thin films) this difficulty 
does not arise if the magnetic field is parallel to the 
plane of the system. Such a system with induced and 
controlled anisotropy can serve a s  a convenient object 
for the experimental investigation of anisotropic in- 
homogeneous media. The investigation of such a sys- 
tem is also of interest for the reason that i t s  proper- 
t ies  qualitatively coincide with the properties of three- 
dimensional filamentary crystals. 

In considering the critical region (thin films), we 
made essential use of the assumption that bonds with 
0, and u, are, on the average, encountered equally fre- 
quently along the majority of the flow paths. If the 
results  obtained in Sec. 5 a r e  not confirmed in experi- 
ment, then this will indicate that the dominant contribu- 
tion to the effective conductivity (even in the isotropic 
case) is made by the flow paths with the preferred ori- 
entation, and, what is more, their number should be 
fairly high. Thus, the study of highly anisotropy in- 
homogeneous media in the region 1 T 1 << 1 will enable us 
to  verify (and, if necessary, refine) the current ideas 
about the flow pattern at 7--0, and can provide addi- 
tional information about the structure of the infinite 
cluster." 

Also of interest is the investigation of the size ef- 
fects, in particular, the problem of flow along straight 
lines for a sample of finite thickness (width). Here we 

should first  and foremost elucidate the question whether 
there exists a sharp phase transition in terms of thick- 
ness,  and determine the corresponding critical expon- 
ents. Similar questions ar ise  in the case of perfectly 
conducting inclusions. 

I am grateful t o  A.I. Larkin and D.E. ~hmel 'n i tsk6 
for a discussion of the present paper. 
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