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The existence of lines of parabolic points on the Fermi surface of metals leads to the appearance of 
singularities in the phonon spectrum d o  and in the value of the inverse lifetime f of the phonons; we have 
called these "Taylor" singularities [P. L. Taylor, Phys. Rev. 131, 1995 (1963)l. Because of the presence of 
antipode points on the Fermi surface, Taylor singularities show up most clearly in f .  The loci of singular 
points in Aw and f i n  the momentum space of the phonons are considered, and the relation between the local 
geometry of the Fermi surface and the form of these loci is investigated, together with the nature of the r 
singularity. It is shown that the presence of a plane of symmetry in the Fermi surface leads to the appearance 
of an enhanced singularity in d o  and in T. 

PACS numbers: 63.20.Dj 

Singularities in the dispersion law w = w(q) of pho- lari t ies ,  we may neglect the phonon energy, since 
nons, produced by their  interaction with the conduction Ew, <<&, (c, is the F e r m i  energy). Then a t  the abso- 
electrons (see Migdall and Kohn2), a r e  observed a t  lute ze ro  of temperature, the expression (1) can be put 
q= 2p,, if the Fermi  surface (FS) is a sphere of r a -  into the following form: 
dius p, . The nature of the singularity is Aw - x  ln 1 x 1, 
x = q  - 2p,. At the same value of the phonon quasi- r=fimq !M126 (E,-e,) 6 ( ~ ~ + ~ - e ~ )  d3p. 

momentum, the derivative with respect  to q  of the quan- 
tity l? (where r=  l / rq ,  and r9 is the lifetime of a pho- 
non) experiences a discontinuity. Afanas'ev and ~ a g a n '  
showed that the singularity is enhanced if the FS con- 
tains finite cylindrical o r  plane sections, and Kaganov 
and Semenenko4showed that the nature of the singularity 
i s  influenced by the local properties of the FS. In a l l  
the cited papers, the phonon momenta q considered 
were close to the value of the diameter  of the FS. The 
existence of dents and bridges on the FS leads to sin- 

It is evident that singularities of r, and hence of Aw, 
occur in those and only in those cases  in which there is 
a change of topology of the line of intersection of the 
surfaces &,= E, and c,, = E,. Consequently the locus of 
singular points (LSP) in the phonon spectrum is deter- 
mined a s  the s e t  of those values of the vector q for  
which the surfaces E, = c, and c,, = E, a r e  tangent. We 
shall cal l  these values of the vector q cri t ical  values 
and shall designate them by (E. 

gularities in the phonon spectrum a t  q  -0 in those The phonon momentum values q = q ,  corresponding to 
cases  in which sound i s  propagated in the dierction of Kohn singularities connect points on the FS a t  which the 
a tangent a t  a parabolic point. 5 p 6  According to Ref. 5, electron velocities v, and v,, a r e  antiparallel. If there 
there a r e  parabolic points of two types, the 0 and the X a r e  parabolic points on the FS, then there a r e  singu- 
types. At an 0-type point there is a discontinuity, and lari t ies  of another type: the surfaces &,=&, and &,,=&, 

at an X-type point a logarithmic singularity, in the may touch a t  points a t  which the velocities v, and v,, 
absorption coefficient of sound. a r e  parallel; we shall designate the corresponding pho- 

non momentum values a lso  by &. The existence of such 
In the present paper, we investigate singularities in singularities was f i r s t  pointed out by Taylor. We 

the phonon spectrum with q f  0; these a r e  possible only therefore call them Taylor singularities. 
in metals whose Fe rmi  surfaces contain lines of para- 
bolic points. The singularities considered in Refs. 5 All types of Taylor singularities can be investigated 
and 6 a r e  the limiting case of these singularities for  on FS of two types: udumbbeIlsw (Fig. 1) and "tops" 
q  -0. (Fig. 2). In the case of a "dumbbell", a Taylor singu- 

To  determine the singularities of the quantity r and 
of the frequency shift Aw, we shall use the expressions 
obtained in the f i r s t  order of perturbation theory: 

Here c, is the energy of the electrons, n=n(c)  is the 
Fe rmi  function, and M is the matrix element of the 
electron-phonon interaction [all factors of the type 
1/(2nli13 and the like a r e  included in it]. The expres-  
sions (1) and (2) a r e  cor rec t  under the condition a"" FIG. I. Fermi surface of udumbbellfl type. Points X and X' . , . . 
- 0 ,  where 1 is the f r ee  path length of the electrons. lie on collars of parabolic points of X type. The arrows in- 

dicate the directions of the velocities at the corresponding 
For  a comparatively crude estimate of the singu- points of the Fermi surface. 
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FIG. 2. Fermi surface of "top" type. Collars of parabolic 
points of 0 and of X type are marked on the surface. 

larity occurs when the surfaces &,= &, and &,% = &, a r e  
tangent, for example a t  points A and B; a Kohn singu- 
larity, for tangency a t  points A and C (see Fig. 1). 
Since a singularity is determined by the local proper- 
ties of the FS, the treatment given here is of general 
character. The 'ddumbbellu and the "topm a r e  chosen 
only for illustration (on a '6dumbbellm there a r e  para- 
bolic points only of X type; on a "top", both of X and of 
0 types). 

We note an important difference of Taylor singulari- 
ties from Kohn. In consequence of the central sym- 
metry of the dispersion law of electrons, each of two 
chosen points on the FS with parallel velocities (they 
a re  connected by the vector &) has a point with anti- 
parallel velocity (the antipode point). We shall desig- 
nate by e' the critical momentum connecting the anti- 
pode points corresponding to the two chosen points. If 
we neglect the phonon energy Ew, in the expressions (1) 
and (2), then the singularities corresponding to these 
two pairs of points occur a t  a single point of q space 
(q,=qp)); the singularities in r add, while those in Aw 
cancel. When the value of Ew is taken into account, 
f irst ,  the momenta & and e' differ somewhat in value 
and in direction: I q, - e' I - hqc/v,, and the angle be- 
tween them is of order Ewqc/(q,v,) (v, is the Fermi 
velocity); second, each of the two singularities is split 
and weakened. The structure of singularities, for ex- 
ample of 0 and X type (see below), is shown in Ref. 5. 
Fig. 7 (for visualizability, we neglect the splitting of 
the singularities). In our case, the width of the step 
on this figure for angular singularities -fio,,/(q,v,); 
and for singularities due to change of the phonon mo- 
mentum in magnitude, -Ew,,/v,. Hence i t  follows that 
Taylor singularities show up most clearly in r. There- 
fore we shall hereafter be interested chiefly in singu- 
larities in the value of the inverse lifetime of the pho- 
nons . 

We shall consider the LSP of Taylor singularities. 
For  this purpose, by use of the equations of the sur- 
faces E,=&, and &,,= E, in the vicinity of an arbitrarily 
chosen point of tangency (p = p, when q = e,), we shall 
determine the equation of the LSP in q space in the vi- 
cinity of the point q ~ & , .  We shall designate by the 
letter A the point of tangency on the surface &,= cs, 
with coordinates p, =pa, p, =P,,,p, =PC,, and by the let- 
t e r  B the point of tangency on the surface &,, = &, 
(p=pc + so). We shall attach to the point A an ortho- 

gonal system of coordinates, whose p, axis is directed 
along the normal to the FS a t  this point, while the p, 
and p, axes a r e  located in principal sections of the sur-  
face. If we assume for simplicity that the points A and 
B a r e  located in planes of local symmetry of thecorre- 
sponding surfaces (with respect top,), the equation of 
the surface E,=E, in the vicinity of the point A can be 
written in the following form: 

and for the equation of the surface &,, = C, in the vi- 
cinity of the point B we have 

where 6, = 9,-q,, , 6, =q,-q,, , 6,=q,-9,; 161 
<: I q,, I .  In the expressions (4) and (51, the coefficients 
f ,, pi ,, and s o  on a r e  determined by the partial de- 
rivatives of the quantities z p  and E , , + ~  with respect to 
the components of the momentum p at the respective 
points A and B; for example, 

The equation of the line of intersection of the surfaces 
&,=&, and &,,=&,-the equation of a "collar" on the 
FS-is found from the relation 

The collar formed when the surfaces c ,=  &, and cpfqc 
= E, a r e  tangent we shall call a critical collar. Thus 
the expression (6) with 6 = 0 determines a critical col- 
lar. The equation of the LSP of Taylor singularities in 
the vicinity of the point q =qco, i. e. , the relation 6, 
= 6,(6,, by), is determined by the requirement that equa- 
tion (6) with 6 2 0  shall give a new critical collar (a 
critical point on this collar of course does not coincide 
with the points A and B; therefore in writing of the 
equation of the collar in standard form, a shift is re- 
quired-a translation of the coordinate system). 

We shall investigate the various cases that a re  en- 
countered oftenest. The structure of the LSP is deter- 
mined by the relations between the coefficients f i j ,  q i j ,  
and s o  on in the expansions (4) and (5). 

I. Suppose that f, f cp,, f,, + cp,,, and any one of these 
coefficients is nonzero. For the equation of the LSP we 
get from (6), with the necessary accuracy, 

then the surface (7) represents an elliptic paraboloid; i f  
the sign of this product is the opposite, then (7) deter- 
mines a hyperbolic paraboloid. The coordinate axes in 
q space a r e  parallel to the corresponding axes in p 
space. The topology of the critical collar does not 
change along the LSP in the vicinity of the point q=q,,: 
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FIG. 3. Locus of s ingular  points in the vicinity of a chosen 
point q= qC0 in c a s e  11. 

If (cp, - f,,)(cp,, - f,,) >O, then the critical collar i s  a 
point, and the value of experiences a discontinuity; 
but if (cp,, - f,,)(cp,, - fyy) < 0, then the critical collar 
near the critical point is two intersecting straight lines, 
and r has a logarithmic singularity. Hereafter we 
shall classify and name these Taylor singularities as in 
Ref. 5: 0 type (discontinuity of r) and X type (logarith- 
mic singularity of r ) .  

n. Suppose that f,, + cp,,, f,, + 0, cp,, $0, and f,, + Coy, 
=O; that is, the point B i s  a parabolic point. The 
equation of the LSP i s  written as follows: 

6, = -- 1 
q=f- 6 2  + Fqvun6:.  

2 fm-qzz 
(9) 

The form of the surface (9) is shown in Fig. 3 (q 3 Q,). 
The topology of the critical collar does not change with 
change of the vector 8, =qc - c&, ( 1  6, I << 1 Q, I): 

' 1 2  (cp,-f,) p,l-'~,f,,p,,"=0. (10) 

The structure of the critical collar and the nature of the 
singularity a re  similar to those of case I. 

111. Suppose thatf,,+cp,,, f,,+O, cp,,+O, cpyy=fyy*07 
(P,,, f fyyy.  In this case, we get two wsheets99 of the LSP, 
6, = 6iU(6,, 6,) and 6, = 65'(6,, 6,), when 6, >0: 

[for definiteness we suppose that pYy( fyyy - q,,,) >0]. 
The surface (11) is shown in Fig. 4. The LSP contains 
a line of reentry points on the plane 6, =0: 

6,='/,cp,fn6,"/ (f,-cp,) . 

The evolution of the critical collar with change of the 
vector 6, along the first  "sheet" of the LSP i s  deter- 
mined by the equation 

'12 (qP-fm) P I I - ' I z [ ~ ~ ~ ~  (fYYY-cpYYY) 1 " d  pyZ ' 

+l/e(cpyyv-fvy")~yS=O, 6,">0; (12) 

FIG. 4. Locus of s ingular  points in the vicinity of the point 
q=qc0 in c a s e  111. 

FIG. 5. Change of topology of the c r i t i ca l  col lar  (12) on 
transi t ion from one "sheet" of the  locus of s ingular  points to 
another [for defini teness,  we suppose that (p,- f,) > 0 ,  
(cp, - f,,,,,,) < 01: a )  s t ruc ture  of the c r i t i ca l  col lar  along the f i r s t  
"sheetv of the locus;  b) s t r u c t u r e  of the c r i t i ca l  col lar  at  the 
transi t ion points; c) s t r u c t u r e  of the c r i t i ca l  co l la r  along the 
second '8sheet" of the locus. 

along the second "sheet", by 

' / z ( ~ - f = ) ~ 2 + ~ ~ r t 2 q n v ( f u n v - ~ v u n )  I"%:' pyt 
+ i / ~ ( ( p v ~ ~ - f v v n )  pyt-0, 6cv>0. (12') 

It is clear from (12) and (12') that on passage from one 
"sheetv of the LSP to the other, the topology of the criti- 
cal collar changes (Fig. 5). Consequently, the type of 
singularity also changes: a singularity of 0 type i s  
transformed to a singularity of X type (and conversely). 
We emphasize that the points of transition from 0- to 
X- singularities (and conversely) on the LSP a r e  not 
directly related to the local structure of the FS but 
a r e  determined by the relation of the corresponding 
derivatives at various points on it (of course with para- 
lel  velocities vpc and vPc+qco). 

At the transition points (bey =0), the singularity is 
enhanced: 

In the expression (13), we have for singularities due to 
change of magnitude of the phonon momentum: 6, 
= 6, cose, where 6, = q - qco and where 8 is the angle be- 
tween the vectors qco and v,=, and the vector q is di- 
rected along the vector so. For  angular singularities 
6, 3 -qco sine. 60, where 68 is the deviation of the vector 
q from the critical momentum eo. We shall not consid- 
e r  here the singularities in those cases in which the 
approach to the critical value of the momentum occurs 
in the plane 6, =O.  The singularity can be easily cal- 
culated in each concrete case. 

Suppose thatf,,= V,,+ 0, f,, + v,,, f,, +O, Pyy +0,  
and P + 0. To avoid unnecessary complexity, in this 
case we restrict  ourselves to the equation of the section 
of the LSP by the plane 6, = 0. The section has two 
branches 6, = bJ"(6,) and 6, = 6F'(dy): 

FIG. 6. Line of intersect ion of the  locus of s ingular  points 
by the  plane 6,=0 in  the  vicinity of the  point q=qco (case  IV) 
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FIG. 7 .  Structure of the critical collar (15) a s  it depends on 
thevalue of6,whenp>O: a)crb,<O; b) a 6 , 2 0 .  Forde-  
finiteness, we suppose that (qm- f,)(cp, - fW) > 0. 

where 

a-cp,f,-fwcp-, P==(f--cp-) (fW--cp"Y) -3(cpnll-fa; 

the second branch of the LSP exists for those 6, for 
which cu6,//3 SO.  

The line (14) of intersection of the LSP by the plane 
6 ,=0  is  shown in Fig. 6. The evolution of the critical 
collar with change of the vector 6, along the first  branch 
of the LSP is determined by the equation 

As i s  evident, the type of singularity changes: a sin- 
gularity of 0 type is transformed to a singularity of X 
type (and conversely). We shall consider the various 
cases a s  they depend on the relation of the coefficients 
of equation (15). 

1) 6 >O: that i s ,  the quadratic form in p: and py is of 
one sign. Then the critical collar for 6,, = 0  degene- 
rates to a point (Fig. 7), and we have for the singular 
part of r at the transition point 

Ar- (6.1 -'" when 6. sign (cpw-f,) >Or 

Ar=0 when6, sign (cp,-fw) (0. 
(16) 

2) 6 < 0 :  that i s ,  the quadratic form in & and py is 
hyperbolic. When 6, ,=0,  the critical collar has a point 
of self-tangency (Figs. 8 and 9), and the singular part 
of the quantity r is 

On the second branch of the LSP, the singularity may 
be a singularity of 0 or  of X type; i t  is transformed to 
the enhanced singularity (16) o r  (17) for 6,, =O.  

V. Suppose that cp,, ff,,,, cp,, f 0 ,  f y y f O ,  f,, = cp,,, 
f 0 ,  f,, = c p ,  # 0 ,  f,,, = cp,,, and a l l  the subsequent 
coefficients of terms p:, pi ,  etc. in the expansions (4) 
and (5) a r e  equal to each other. We have for the equa- 

FIG. 8. Structure of the critical collar (15) as  it depends on 
the value of 6,, when p < 0 and ( f ,  - cp,)( f ,  - cp,) < 0 : a) a 6, 
<O; b) 6, =O; C )  ad,> 0. For definiteness, we suppose that 
(cpm -fny)(cpw - fw)  > 0.  

FIG. 9. Structure of the critical collar (15) a s  it depends on 
the value of 6,, when p <O and (f, - cp,)(fyy - G) > 0: a)  Q6, 
<O; b) 6,,= 0; C )  'Y6,,> 0. For definiteness, we suppose that 
(cpPV-fay)(%-fw) >o.  

tion of the LSP 

in the plane 6 , = 0 ,  the LSP line is determined by 
the equation 

but the solution 6 , = 0  for arbitrary 6,  must be rejected. 
The surface (18) is shown in Fig. 10. 

The evolution of the critical collar with change of the 
vector 6 ,  along the LSP in the plane 6,  = 0 i s  deter- 
mined by the equation 

It i s  evident from the expression (19) that along the LSP 
there occurs a transition of a singularity of 0 type to a 
singularity of X type; when 6, = 0 ,  tangency of the sur- 
faces E, = cF and c,,co = c ,  occurs along the line py = 0 .  

On calculating the singularity due to a change in mag- 
nitude of the phanon momentum, we have for the singu- 
l a r  part  of r at the transition pcint, depending on the 
form of the FS ( 6 ,  = q - q,,), 

~ r - 6 , ' ~  when 6,>0, Ar=O when 6,<O, (20) 

Ar=0 when 6,>0, AI'-~,-' when 6,<O. (20') 

VI. We consider the singularity of r due to a plane of 
symmetry a on the FS [for example, on a udumbbellfl 
(Fig. l l ) ] .  We introduce an orthogonal system of co- 
ordinates such that the p, axis is directed perpendicu- 
l a r  to the plane of symmetry a, while the p, axis is di- 
rected along the normal to the FS, parallel to the plane 
a. The critical vector &, is parallel to the p, axis and 

FIG. 10. Locus of singular points in the vicinity of the point 
q=q,, in c a s e  V.  
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FIG. 11. 

is equal in magnitude to the distance between the planes 
that contain the normals to the FS parallel to the plane 
o. For  small values of the quantity p, (p, ~ p , ,  where 
p, is the Fermi momentum), we may write 

+a(pZ+6,)'-b (pZ+6,) "I ;  
here a + 2m&,c >O and 6, = -6.. In order of magnitude 
the coefficients in the expressions (21) a re  estimated 
thus: a-1 ,  b-1/p,, c-l/p:, d-I/$. 

For  a comparatively rough estimate of the singularity 
due to change in magnitude of the phonon momentum, 
we have, using (3), 

where 

The equation of the line of intersection of the LSP 
with the plane 6, = 0 in the vicinity of the point q = ~ ,  
has the following form: 

3 qme '" 6 z ~ ,  
6 . - ( - f - )  E . (23) 

and the surface is obtained by rotation of the line (23) 
about the 6, axis (Fig. 12). On passage through the 
point q = ~ ,  along the LSP, the type of singularity of r 
does not change. When q, # q,,, has a logarithmic 
singularity (this applies specifically to the udumbbellv). 

The treatment given enables us to construct the form 
of the LSP of Taylor singularities for FS of the "dumb- 
bellv (Fig. 1) and "top" (Fig. 2) types. For  simplicity 
we a r e  supposing that the FS is a solid of revolution. 
From the continuity of the LSP for arbitrarily chosen 
small sections of the FS, it follows that for  closed- 
cavity FS the LSP is continuous and closed. In the case 

FIG. 12. Locus of s ingular  points in the vicinity of the  point 
q=qco in  c a s e  VI: a) ~ > 0 ;  b) q < 0 .  

FIG. 13. Lacus of s ingular  points of Taylor s ingulari t ies  for 
a sur face  of the  "dumbbell" type, in the c a s e  TJ >O. 

of the '6dumbbellfl, which is symmetric with respect to 
the plane p,=O, we obtain different forms of LSP (Figs. 
13 and 14), depending on the sign of the quantity q [see 
(22)]; when 77 >0, depending on the specific structure of 
the FS, two types of LSP a r e  possible (Fig. 13a and b). 
The LSP of Taylor singularities in the case of the "topM 
is shown in Fig. 15. The q, axis in these figures is 
chosen parallel to the axes of symmetry of the FS con- 
sidered. We note that in the case of the 'Yopw, depend- 
ing on the specific structure of the FS, three different 
forms of LSP a r e  possible, whose surfaces differ from 
each other in the vicinity of the points S, (Fig. 15). 

We shall identify the points on the LSP in accordance 
with the type of singularity in r. At points S, in Figs. 
13-15 there a r e  singularities of the type (13); a t  points 
S,, singularities of the types (20) and (20'); a t  points S,, 
singularities of the type (22). At other points of the 
LSP, r = r (q)  has a standard singularity: either of 0 
type o r  of X type. The critical directions n, (see Ref. 
5) for singularities a t  q - 0 lie along the generatrices 

FIG. 14. Locus of s ingular  points of Taylor s ingulari t ies  
for  a sur face  of the  "dumbbell" type, in the c a s e  q < O .  
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FIG. 15. Locus of singular points of Taylor singularities for 
a surface of the " top" type. 

of the cones, tangent a t  the point q = ck = 0. 

Openness of the FS is reflected in the properties of 
the LSP of Taylor singularities. As an example, we 
consider a FS of the "corrugated cylinder" type (Fig. 
16a). The LSP in this case, in a system of recurrent 
zones, is shown in Fig. 16b. The first  Brillouin zone 
in the planes p, = 0 and q, = 0 is distinguished by dotted 
lines in Fig. 16. 

Earlier, in the calculation of the singularities and the 
construction of the LSP, we neglected the quantity fiw, 
in comparison with E,. As was mentioned above, al- 
lowance for the valuesof lo, leads to the result that the 
singularities described split and weaken; correspond- 
ingly, the LSP splits into two surfaces (allowance for 
antipode points leads to the result that the LSP splits 
into four surfaces). As a rule, the velocities vPc and 
vDCMc a r e  not equal to each other; therefore the amount 
of the splitting is of order lwac/vF, and the derivative 
with respect to q of the quantity I' has the singularities 
described in sections I-IV. If the velocities a r e  equal 
then the amount of the splitting Aq, is usually of order 
(~W,~)~/(&,U,). The case of equal velocities is realized 
in sections V-VI. In V, the singular part of r has a 
root-type singularity. 

We shall determine the fine structure of the singu- 
larity in case VI. Using (I), we have for A r  (for def- 
initeness, we suppose that q >O) . 

when ) 6,- 6,1<< )6,1, where 

3qZ" (mf2oqCf1' 
6, = - 2.,,1 

61 = 3  ( m q a  - 2'Is ( ~ d  - 3qc) (mfiuq~'la 
2'Is5 q'/,Ea 

FIG. 16. a) Fermi surface of the "corrugated cylinder*) type. 
b) Locus of singular points of Taylor singularities for a 
"corrugated cylinder. " 

FIG. 17. The function Ar(6,). For definiteness, we suppose 
that v > O  and [ d - 3 ~ > 0 .  

Here in the expressions for 6, and 6,, only the shift of 
these quantities with respect to each other is calculated 
with accuracy ( A W , ~ ) ~ ' ~ / ( V , & ~ ~ ~ ) .  The function ~ r ( 6 , )  is 
shown in Fig. 17. It is clear from (24) that the amount 
of the splitting in this case is of order ( f i ~ , ~ ) ~ ~ ~ / ( v ~ & ~ ' ? .  
In this case,  because of the presence of a plane of sym- 
metry a in the FS, the singularity in Aw with allowance 
for antipode points does not cancel out. From the ex- 
pression (2) we have for Aw (q >O): if ) 6, - 6, ) << ) 6, - 6,1, 
then 

if 16,-6,1<<I6,-6,), then 

A m -  E M 2  { E(q/mEo. c)L(6,-&), 6,>6,. 
(Ed-%) (Eq)"'(62-6z)"2, 6z<62. 

(25') 

In (25) and (25'), the notation i s  the same a s  in (24). 

It must be noted that a finite temperature T and va- 
rious scattering mechanisms lead to a smoothing out of 
the singularities; the fine structure of the singularities 
can be observed whenthevery strict  conditions T <<Ewqc 
and ql>> c,/wqc a r e  satisfied. 

Use of formulas (1) and (2) for analysis of singulari- 
ties of the phonon spectrum means, in particular, ne- 
glect of the electromagnetic fields that accompany the 
propagation of sound waves in a metal. The follow- 
ing can be said in favor of the model adopted: when 
q/lke, >> 1 (where kern is the value of the wave vector of 
the electromagnetic field at frequency w,), the electro- 
magnetic field is insignificant (the amplitude of the ac- 
companying field approaches zero when q/&,, -- m). It 
is this fact that enables us to "separate" phonons with 
finite momentum from other elementary excitations 
(photons in the medium, plasmons, weakly attenuating 
waves, and so  on). For  q - 0 (the region a t  the origin 
of coordinates in Figs. 13-16), the situation is more 
complicated. Formally (for lw, -- 0 and 1 - w), allow- 
ance for the longitudinal electric field that accompanies 
the sound wave eliminates the singularity. '*lo But the 
conditions for elimination a r e  s o  s t r ic t  (for example, 
ql/7i>>exp(vF/s), where s is the velocity of sound) 
that in r ea l  metals, the singularities investigated here 
should undoubtedly show up. 

Experimental observation of singularities of the pho- 
non spectrum is related to investigation of inelastic 
scattering of thermal neutrons (see Refs. 11 and 12 
and references in Ref. 11). Model calculations" show 
that the intensity of Taylor singularities is less than 
that of Kohn singularities, and perhaps also than that 
of the three-particle singularities predicted by Brov- 
man and Kagan. l3 Therefore fo r  experimental detec- 
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tion of Taylor singularities, i t  is apparently necessary 
to apply methods different from inelastic scattering of 
neutrons. For example, it is possible to use the fact 
that accordingto the results of the present treatment, the 
values of the critical momenta q, in certain directions 
approach zero. This enables u s  to seek singularities 
on the basis of angular anomalies in the absorption of 
ultrasound (cf. Refs. 5 and 6 and also Refs. 14 and 15); 
for detection of singularities at  finite values of &, i t  is 
necessary to use hypersound (the maximum frequency 
of hypersound s o  f a r  attained is w,, = 2n. 2-10" sec-' 
Ref. 18). 
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