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It is shown that a lattice instability develops very rapidly (with respect to the coupling constant) near defects 
whose interaction with the vortex lattice impedes the entrance of the vortex core into the defects. If the 
interaction exceeds a numerically small threshold value, metastable states will be formed at the defect. Such 
states cannot be described by elasticity theory. 
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1. INTRODUCTION and to a temperature T  close to T, .  The latter limita- 
tion is unimportant and the analysis can easily be gen- A magnetic field penetrates into type-I1 superconduc- 

tors  in the form of quantized vortices. In ideal super- eralized to the case of arbitrary temperature. 

conductors, the vortices form a regular triangular lat- 
tice.' The flow of current in such superconductors pro- 2. VORTEX LATTICES IN  A SUPERCONDUCTOR 
duces motion of the vortex lattice a s  a whole and leads A DEFECT 
to energy dissipation. Various defects, which a r e  al- We consider a superconductor with a defect of cylin- 
ways present in superconductors, lead to the anchoring drical shape and small transverse dimensions. Near 
of the vortex lattice. As a result, a nondissipative cur- the transition temperature, the free energy of such a 
rent of finite amplitude can flow through the supercon- superconductor can be represented in the form4 
ductive. 

In many cases the critical current density in the ex- 
periment is proportional to the defect concentration. As 
has been shown by Labusch,' this requires the satisfac- 
tion of a rather str ict  criterion for the strength of the 
interaction of the defect with the vortex lattice. The 
essence of the Labusch criterion is that the magnitude 
of the displacement of the vortex lattice a t  the defect 
site should be of the order of the radius of action of the 
pinning forces. Upon satisfaction of this condition, for- 
mation of metastable states a t  the defect is possible. 
The change in the free energy on going from one meta- 
stable state to another also determines the magnitude of 
the critical current. 

1 + -J d3r (HZ-2H,H)+6F; 
8n 

nv (1) 
6 9  = -J d%6($) I ~ - A I ~ + ~  J d3rg, ( r )  1612, 

8T 

where v=mp,,/2n2 is the density of states on the Fermi  
surface, 5(3) is the Riemann zeta function, D = v l ,J3  is 
the diffusion coefficient, H, is the external magnetic 
field, a,= a / a r  - 2ieA, A is the vector potential, 

$ ( x )  is the psi function. For superconductors with 
small free path length of the electrons, the quantity 

However, in addition to the metastable states with a q ( T )  = 1. 
smooth deformation, the abrupt change of state of the 
vortex lattice, of the type of a structural transition, 
also turns out to be possible a t  the defect. The result- 
ant state is not described by elasticity theory. There 
exists a physical reason for the relative ease of onset 
of such a transition: the lattice vortex and the energies 
of the triangular and square lattices differ by no more 
than 2% near the critical field H,,. As will be shown 
below, such a change in state is also realized a t  weak 
defects of small radius. In contrast to the Labusch 

The function 6 4 i s  the free-energy change associated 
with the presence of the defect. It is assumed here 
that there is little change in the electron f ree  pathlength 
and the effective electron-electron interaction constant 
in the vicinity of the defect: 

g-' ( r )  =gm-'+g, ( r ) ,  (3) 

where g, is the effective interelectron interaction con- 
stant in the superconducting matrix. 

deformation instability, for which the sign of the in- Near the critical field H,, the order parameter A can 
teraction does not play a role, a change in the lattice be expanded in a ser ies  in the eigenfunctions of the 
structure takes place upon repulsion. A structural operator 82, with the smallest eigenvalue. We choose 
transition also ar ises  in the case of attraction, but the a special gauge of the vector potential: 
interaction with the defect in this case should be great- 
e r  by two orders of magnitude than in the repulsion A,=H,(O, X, 0) .  (4) 
case. In this gauge, the order parameter A can be repre- 

The simplest case of a weak defect of small radius sented in the form5 
will be considered below, a defect that is strongly - 
drawn out along the magnetic field. Here we limit our- 

m=o 

(5) 
selves to consideration of magnetic fields close to H,,, 
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Here we have transformed to the dimensional variable 

p=(eiI) '"r,  p= (x, y); (6) 

p i s  a two-dimensional vector in a plane perpendicular 
to the magnetic field. In formula ( 5 ) ,  Z\, is the solution 
corresponding to a regular triangular lattice: 

na na d.=c 2 exp [E + inp+2iy (? + aa) - ( X  - - - , ( 7 )  2  2  

where 

the parameters 0 and fix the position of the lattice 
relative to the defect, n2 is the Ginzburg-Landau para- 
meter. 

As will be shown below, the structural transition 
first  ar ises  at the position where the null of the unper- 
turbed lattice coincides with the defect. We therefore 
choose the parameters 0 and 0 in the form 

a=-'1,-6x(3'"/2n)'", p=n/2+ (2n/3'")'"6y.  (9  

With such a choice of parameters 0 and 0 ,  the zero of 
the unperturbed solution is located a t  the point ( b x ,  b y ) .  
In what follows, we shall be interested in the case of the 
small values 

16x1, I ~ Y I K ~ .  ( 1 0 )  

With account of formula ( 5 ) ,  the expression ( 1 )  for the 
free energy reduces to the form 

where A, and A, a r e  components of the order parame- 
ter  A, and a re  proportional to the function in the right 
side of formula ( 5 )  with m  =O.  1. For  defects of small 
size,  the interaction with components with m  3 2 is 
small. 

It is convenient to introduce new variables in place of 
the variables C, through the formula 

where I?(%) i s  the Euler gamma function. The equations 
for the coefficients Dm a r e  obtained from the extremum 
condition for the free energy 3 

6 F / 6 D m ' = 0 ,  

and can be written in the form 
1  - 

3"'pA 

where the parameters Z and 2, a r e  determined by the 
interaction of the lattice with the defect and a re  equal 
to 

The matrix elements M ( m ) ,  I ( m )  and I ( m ,  m , ) ,  which 
enter into the se t  of equations ( 1 3 ) ,  a r e  equal to 

M ( m )  = ---- 
C r ' *  ( m + l )  

[ '2 X s r y  T ~ 2 + i ~ p - s  ( N + 2 a ) ' ]  ; 

M ( N )  M ( m - N )  r ( m f  I )  
r ( m ' = &  P+'n [ F ( N + l ) P ( m - N + I )  1 I" (I5) 

It is natural to expect, and calculation confirms this 
expectation that the structural transition with respect 
to the parameters Z and Z, takes place f i rs t  a t  the point 
a t  which the zero of the unperturbed order parameter 
coincides with the defect. 

The order parameter I hOl2 has a six fold symmetry 
axis passing through the zeros of z,. This important 
property leads to a special form of the matrix elements 
M ( m )  and to a breakup of the se t  of equations ( 1 3 )  into 
several weakly coupled subsystems. 

The matrix elements M(m) can be expanded in powers 
of 6% and 6 y  in the vicinity of the point ( 6 x ,  b y )  = 0 .  The 
expansion coefficients a r e  defined by sums of the form 

The presence of the sixfold symmetry axis leads to an 
infinite ser ies  of relations for the sums S ( m ) .  Some of 
them are:  

Using the relations ( 1 7 ) ,  we reduce the matrix ele- 
ments M ( m )  in the vicinity of the point ( 6 x ,  6 y )  = 0  to the 
form 

MiaB, (6x ,  6 y ) = B ( 1 + 6 K ) P ( 1 + G K I  6 5 ,  6 y ) .  

MSX. (6x ,  6 y )  = - B ( 6 K )  (2n/3'b) ' i s (6x+i6y)P(6K,  Ox, ly), ( 1 8 )  
Mz+, , (6x ,  6 g )  = - B ( 6 K + 2 )  (2n/3'")'"(6x-i6y)P(2+6K, 6 x ,  6 y ) ,  

where K = O , 1 , 2 ,  ...; 

The remaining matrix elements a re  proportional to the 
square of the departure from the point ( b x ,  6 y ) = O .  

We can easily remove the exponential phase factor in 
( 1 9 )  in the matrix elements by introducing the new 
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variables 

in place of the quantities Dm. In what follows, we shall 
assume that this substitution has been carried out. 

The coefficients B(m) in formula (18) a r e  real  num- 
bers. We write out the first  few such coefficients: 

B ( 1 )  =-6.99864; B ( 7 )  =10.1705; B(13)  =5.66386; 

B ( 0 )  =3.67455; B ( 2 )  =-5.1966; B(16)  =-14.128; (21) 
B(8)=15.1035; B(12)-10.722; B(14)=11.1267. 

It follows from formulas (15) and (18) for the matrix 
elements that in the vicinity of the point (6x, 6y)= 0 the 
se t  of equations (13) breaks up into the four weakly 
coupled subsystems 

Analysis shows that a structural instability in the 
vicinity of the defect ar ises  in the system {a, 6K + 2) 
and induces weak transitions in the remaining subsys- 
tems. Only the coupling with the subsystem (1 + 6 ~ )  is 
significant here near the transition point. 

We now proceed to a detailed analysis of two impor- 
tant special cases: In the first  the defect is a region 
with a changed value of the interelectron interaction 
constant ( 2  =0. Z,#O). In the second case, there a r e  
regions in the superconductor with a changed value of 
the mean free path of the electrons (Z #0, Z, =0). 

3. STRUCTURAL TRANSITION ON A DEFECT WITH 
CHANGED VALUE OF THE INTERELECTRON 
INTERACTION CONSTANT (2 = 0, Z1 Z 0) 

At Z =0,  2, #0, the system of equations (13) turns out 
to be simplest to study. As has been noted above, a 
structural transition takes place in the subsystem 
{ 6 ~ ,  6K + 2). The critical value Zf a t  which the struc- 
tural transition occurs is determined from the condi- 
tion 

det {S(m,  m,)  +3'"pAZIc6,, 06m,, , )  =0, (23) 

where 

Here the matrix elements of M must be taken a t  the 
point (6x, 6y) =O. Numerical calculations yield the 
value 

The eigenvector corresponding to the eigenvalue Z i  is 
equal to 

(Do; D,'; 0 , ;  0,'; Dl?; Dl,' . . .) = 

=Y(0.531; -0.561; -0.486; 0.398; -0.056; 0.076;. . .). (26) 

The quantity Y, a t  values of Z, close to Zf, is propor- 
tional to the square root of the supercriticality. For  
the determination of the value of Y and also of the ra- 
dius of the circle within which the structural transition 

takes place, it is necessary to take into account the 
nonlinear terms in the se t  of equations (13) and also 
the connection with the subsystem (1 + 6~). As is 
easily seen from the se t  of equations (13), 

The vector U, is equal to 

Multiplying the subsystem { 6 ~ ,  2 + 6 ~ )  of the se t  of 
equations (13) on the left by the column vector 
(D$; D,; D,*; D,. . . ), with account of the formulas (18) 
and(25)-(27), we obtain a cubic equation for the quan- 
tity Y: 

where 

? is a real  quantity. 

The last term in Eq. (29) is small  in terms of the 
subcriticality parameter, but i t  determines the value 
of the jump in the free energy. It follows from Eq. 
(29) that an abrupt change in the state of the vortex lat- 
tice in the neighborhood of the defect takes place at 
2, <Zf (the structural transition). The distance p at 
which the break occurs, and also the initial Fb',, and fi- 
nal Yf,, states, a r e  easily found from Eq. (29): 

where 6 2  = Z, - Zf. 

We note that the structural transition se ts  in very 
early in the case of negative value of the interaction 
constant 2,. The negative sign corresponds to ejec- 
tion of the vortex from the region of the defect. In the 
case of a positive sign of the interaction, no transition 
of the kind considered takes place. 

4. CHANGE OF STATE OF THE VORTEX LATTICE AT 
INHOMOGENEITIES IN  THE FREE PATH LENGTH 
OF THE ELECTRONS (Z# 0, Z, = 0) 

The study of this case turns out to be somewhat more 
complicated. The solution of the se t  of equations (13) 
has the form 

{D,; D,; D,3; . . . )=(Y*)+I Y I 2 { U ) ,  

{Do; Dz*; D,; 0,'; D,,; Dl,'; . . . ) = Y { Y , ) ,  

where {Y,), {u}, {Y,) a r e  r ea l  vectors. The critical 
value of 2, is determined from the condition 

det { ~ ( m ,  ml )+S , (m,  mi)) =0, (33) 

where {m, mJ and the matrix S a r e  determined by the 
formulas (23) and (24), and the matrix S, is generated 
by the vector {Y,} and is equal to 
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where m, = 1 + 6N. 
As a result of numerical calculation, we find 2, 

=O. 1505, 

The value of Y i s  determined from a cubic equation. 
This equation can be obtained by multiplication of the 
subsystem (13) { 6 ~ ,  6 K  + 2) by the vector: {Y,). With 
account of formulas (18) and (35) we find 

where i.' is a real  function. 

The equation (36) has the same form a s  Eq. (29). 
The break point and the solutions in the initial Pbr and 
final Tf,, states are  equal to 

where 62 = 2 - 2,. 
We note that in repulsion ( 2  >O) an abrupt change in 

the state of the vortex lattice (structural instability) s e t  
in a t  a numerically small value of the coefficient 2 .  In 
attraction, the structural instability arises a t  a large 
value, Z = 10.3. Here it turns out that, both in the 
case of a defect in which the transition temperature dif- 
fers from the transition temperature in the supercon- 
ductor, and in the case of a defect in which only the 
free path length of the electrons differs from its  value 
in the superconducting matrix, if the sign of the inter- 
action corresponds to attraction of the core of the vor- 
tex to the defect the presence of the defect leads initially 
to stabilization of the lattice, increasing i ts  stability. 
And only a t  relatively large values of the interaction 
constant Z does the structural instability again arise.  

5. JUMP IN THE FREE ENERGY IN STRUCTURAL 
TRANSITION AT A DEFECT AND THE DENSITY 
OF THE CRITICAL CURRENT 

Formulas (31) and (37) allow us to find the jump in 
the free energy in the case of a structural transition at 
a defect. First ,  by using Eq. (13), we reduce the ex- 
pression (11) for the free energy to the form 

where 

I - H H  t 2 T ' r  ] 
' = ' ( I  -5) [ 5-liZxz 7.3 C ( 3 ) p ~  

Using the expressions (26) and (27) that we obtained 
for the coefficients Dm at {Z = 0 ,  2, #0), and (32) and 
(35) in the case {Z #0,Z, = 01, we reduce the expression 
(38) for the jump in the free energy to the form 

The jump in the values of k and I ?12 in the transition is 
determined by formulas (31) and (37). Substituting the 
value of the jump found from these formulas in the ex- 
pression (40) we reduce the expression for the change in 
the free energy in a structural transition a t  a defect to 
the form 

If an individual defect is capable of bringing about 
the formation of metastable states, then, in the ap- 
proximation of low concentration of defects, the criti- 
cal current density is proportional to the jump in the 
free energy a t  the transition from one metastable state 
to another and to the defect concentration n:' 

where L is the mean length of the defect in the direction 
of the magnetic field, 6 3 i s  the jump in the free energy 
per unit length [ formula (41)], and pb is the radius at 
which the break occurs [formulas (31) and (37)]. 

In the cubic equations (29) and (36), the coefficient in 
front of the cubic term is small. As a result, the value 
of the lattice deformation, which is determined by the 
quantity k, increases very rapidly upon increase in the 
supercriticality 6 2  and 62,. The numerical smallness 
of the coefficient of leads to the result that the re- 
gion of s applicability of formulas (31) and (37)) i s  
small in terms of the value of the supercriticality. An 
estimate of the magnitude of the region can be obtained 
from the condition that the terms proportional to p in 
formulas (31) and (37) should be small in comparison 
with the first term. From this we find 

1 6Z,/ZiC1 <0.07, (Z=O, Z,#O), 
(43) 
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Upon increase in the supercriticality, saturation first  
occurs. The character of the solution upon further in- 
crease in the supercriticality has not been investigated. 

6. CONCLUSION 

The critical current in many cases is proportional to 
the defect concentration. This circumstance indicates 
the formation of metastable states a t  an individual de- 
fect. At the same time, the Labusch criterion is too 
stringent and is never satisfied for defects of small  
size. ' 8  We have shown that, in addition to the meta- 
stable states with smooth deformations, which a r e  also 
given by the Labusch criterion, an abrupt change in the 
state of the lattice vortex near  the defect (structural 
transition) takes place a t  defects whose interaction with 
the vortex lattice impedes the entry of the vortex into 
the defect. Here the structural transition se ts  in the 
case of a numerically small interaction. It follows 
from formula (14) that upon approach to H,,, in addi- 
tion to the numerically small coefficient, the condition 
of onset of a structural transition is eased because of 
the factor 1-HdH,. The very rapid increase in the 
value of the deformation with increase in the super- 
criticality is extremely important. It is natural to 
suppose that saturation of the deformation is already 
taking place at the boundary determined by formula (43). 
The character of the solution for further increase in the 
interaction has not been investigated. It can be ex- 
pected that if the defect is a superconductor region 
with increased value of T,, then the critical current will 
be an oscillating function of the parameter Z,, similar 
to what took place in the previous work. The presence 
of scatter in the characteristics of the defect leads to a 
smoothing of the dependence of the critical current on 
the value of the magnetic field. As follows from for- 
mulas (39) and (42), the quantity j,B here is propor- 
tional to 

We note that formula (44) has a universal character 
and does not depend on the strength of the interaction of 
the vortex lattice with the defect. If the interaction of 
the defects with the vortex lattice is sufficiently weak, 

then, a s  follows from formula (14), on approaching the 
critical field H,,, we fall into the region of a strong 
field dependence of the critical field density (the region 
of the peak effect). 

On the rising portion, this dependence reflects the 
distribution of defects with respect to the interaction 
strength and does not have a universal character. Upon 
further approach to H,,, the dependence of the critical 
current density becomes the universal law determined 
by formula (44). 

The sign of the interaction is extremely important for 
the s tar t  of the structural instability, in contrast to the 
instability of the Labusch type. The structural insta- 
bility se ts  in early only in the case of repulsion of the 
vortex from the defect. In the case of attraction, the 
defect initially stabilizes the lattice. Only in the re-  
gion of large values of the interaction constant Z does 
the vortex lattice again lose stability. Such a sensitivity 
to the sign of the interaction appears on defects of large 
size. 

We emphasize again that the physical reason for the 
anomalously rapid loss of stability of the lattice and 
the appearance of the structural transition near the de- 
fect a r e  connected with the looseness of the vortex lat- 
tice and the small  (2%) difference between the energies 
of the triangular and square lattices. 

In conclusion the author expresses his gratitude to 
A. I. Larkin for valued comments and discussion of the 
results. 
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