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A Hubbard model with infinite repulsion at the center is considered. The purpose is a reformulation and 
simplification of the problem from the very beginning. An equivalent Hamiltonian is obtained (in two forms) 
and it is shown that in a number of cases it is more illustrative and convenient for calculations than the 
original Hubbard Hamiinian. 
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1. INTRODUCTION that in case (a) the ground state has a maximum pos- 

The Hamiltonian corresponding to the Hubbard mod- sible spin $N, but in the case (b) this i s  not so. Nagao- 
ka obtained next the spectrum of a spin wave in case (a) 

el1 is 
(for a simple cubic lattice) a t  a low vacancy density: 

1ordanskiT3 and ~ordanski? and Smirnov4 investigated 
The quantity U > 0 characterizes the interaction a t  one 

case (b) and obtained the spin structure and the ground- center; a,, and a;, a re  the annihilation and creation op- 
state energy for one vacancy in a triangular and hexa- 

erators for an electron with spin v = t, t at  the center n 
gonal close-packed lattice. 

and satisfy the usual Fermi commutation relations. A 
periodic arrangement of the center i s  implied. The The main purpose of the present paper i s  to construct 
matrix element t,,, couples the nearest neighbors: a Hamiltonian equivalent to the Hubbard Hamiltonian 

t for nearest neighbors (I), (2) under the condition (3) (Sec. 2). A reformula- 
t,",, = 1 0 in all other cases (2) tion of the Hubbard problem is needed because the 

At existing methods a re  too complicated to use for further 
study of the properties of the Hubbard model. This per- 

U+= (3) tains both to the Nagaoka method2 and to that of ~aytsev: 

not more than one electron can be situated on each 
center-this is  the case of the extreme strong correla- 
t ion The present paper i s  devoted to just such a mod- 
e l  (1)-(3). 

A number of the basic properties of the model (1)-(3) 
have by now been established. When the number of 
electrons N equals the number of centers N o  (half-oc- 
cupied band) everything is simple: there is one elec- 
tron on each center and all levels have the same ener- 
gy, while the states differ only in the values of the spin 
on each site. If, however, the number of electrons is 
less  than the number of centers, N < No, the properties 
of the system depend substantially on the type of lat- 
tice. 

Lattices can be &vided into two classes. Some lat- 
tices consist of two sublattices such that the nearest 
neighbors of each atom a r e  only atoms of the other sub- 
lattice. These a r e  the so-called divisible (alternating) 
lattices (e.g., simple cubic and body-centered cubic). 
The other class i s  that of indivisible (non-alternating) 
lattices (e.g., face-centered cubic). A distinction must 
be made between two cases: 

(a) lattices indivisible at t  > O  and lattices divisible re- 
gardless of the sign of t ;  

(b) indivisible lattices at t < 0. 

Nagaoka2 considered the problem with one unoccupied 
center, i.e., with one vacancy (No - N = 1), and proved 

the complexity i s  due in part to the fact that the interac- 
tion U considered in Refs. 2 and 5, while large, i s  
finite, and the authors attempt to take into account 
terms of order t / ~ ;  in the limit (3) of interest to us 
one can hope for a substantial simplification. In fact, 
a s  shown in Sec. 3, the use of the equivalent Hamil- 
tonian greatly simplifies in some cases the solution of 
the problem. For example, an equation for the disper- 
sion of a spin wave i s  easily obtained [case (a), limit 
(4)l. In the same section we obtain the vertex part that 
describes the interaction of a spin wave and a vacancy, 
i.e., a property needed to ascertain the influence of the 
spin waves on the conductivity. An interesting although 
obvious property of spin waves i s  established and points 
to a possible rearrangement of the magnetic structure 
in the presence of a vacancy flux. 

2. THE EQUIVALENT HAMlLTONlAN 

As already noted, an obvious property of the Hubbard 
model under condition (3) i s  the absence of doubly oc- 
cupied centers. This circumstance can be taken into 
account explicitly, without introducing an infinite in- 
teraction into the Hamiltonian, in the following manner. 
We consider the Hamiltonian 

H.= ~t , ,~anV+( l -a~- .a , , - , )a ,~ . ( l -a ,~ . - .a ,~ . - . ) .  (5) ."'. 
This Hamiltonian forbids the tunneling of a particle to 
an occupied center, whereas a transition to an empty 
site from a single-occupany center is described in the 
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same manner a s  by the operator (1). The Hamiltonian 
(5) does not forbid double occupancy of a center, but 
such a center cannot decay. In other words, the Hamil- 
tonian He conserves the number N ,  of the doubly oc- 
cupied centers, i.e., the corresponding operator 

commutes with He. It i s  clear after these remarks that 
any eigenstate of the Hamiltonian (I), (3) i s  an eigen- 
state (with the same energy) of the Hamiltonian (5) with 
the quantum number 

N,=O, (7 

and vice versa. Thus, the Hamiltonian (1) subject to 
conditions (3) i s  fully equivalent to (5) under condition 
(5). The transition from (I), (3) to (5), (7) is the basis 
of the new approach to the problem. 

It might seem at f irst  glance that we have gained 
nothing from this approach. Although He does not con- 
tain infinite terms explicitly the direct use, e.g., of 
standard diagram methods6 i s  impossible a s  before, 
this time because of the need to take the additional con- 
dition (7) into account. Actually this i s  not so. We shall 
show how the Hamiltonian (5), (7) can be used in limiting 
cases. 

A. The first  limiting case i s  when the number of elec- 
trons i s  small compared with the number of lattice 
sites: 

NIN,< l .  (8 
It i s  easy to see that the ground state corresponds to 
(7). We reason in the following manner. Assume, for 
example, that we have a doubly occupied center. The 
electron energy at this center i s  zero, whereas the en- 
ergy of two electrons located a t  different centers and 
capable of tunneling from site to site is negative and i s  
close to double the energy of the bottom of the band. 
The absence of doubly occupied centers i s  therefore 
energywise favored. 

Wltat i s  valid for the ground state holds also for not 
too highly excited states, i.e., for sufficiently low tem- 
peratures (the energy of the excitations and the tem- 
perature should be less than the band width). We see 
thus that in the limit (8), at not too high temperatures, 
the additional condition (7) can be disregarded, and the 
problem can be solved, for example, by a diagram 
technique7 (this i s  obviously valid up to some ratio 
N / N ~  - I). 

The considered limiting case i s  of no particular in- 
terest, and we shall discuss i t  only briefly. One can 
use here the well worked out so-called gas approxima- 
tion. A solution of the problem by a diagram" technique 
was presented for Fermi system by G a l i t ~ k i i . ~  As ap- 
plied to our problem, the results a r e  the following: the 
electronic self-energy part C is connected with the ver- 
tex part r calculated in the ladder approximation a s  
follows: 

+ =  A 9 - __cr_ - 1 + ; E :  
I w - 6  4 + . .. 

-t4 - (9 

The sing1 e and double lines pertain here to electrons with 
different spins, and the dashed line to the interaction. 
Knowing C we can obtain the electron spectrum in the 
usual manner a s  the pole of a single-particle Green's 
function. 

It should be  noted that so long a s  the ladder approxi- 
mation i s  used for r, we can s tar t  out with the Hamil-' 
tonian (1) (Ref. 8); the results a r e  the same when U 
-rn. It i s  difficult, however, to go outside the frame- 
work of this approximation for the Hamiltonian (I), (3), 
i.e., to take higher powers of the density into account. 
It i s  not simple to justify formally even the ladder a p  
proximation in the case of an infinite interaction, since 
in principle diagrams of all order in the interaction 
must be  taken into account, and only then i t  i s  possible 
to take the limit a s  U -* and see what i s  left. The fact 
that no such questions a r i se  when He i s  used i s  an un- 
disputed advantage. 

B. The second limiting case i s  that of few vacancies 
(4). In this limit, the condition (7) is certainly not 
satisfied for the ground state of the Hamiltonian H,, so 
that the direct use of He i s  impossible. We can, how- 
ever, to go over withthe aid of H, to another equivalent 
Hamiltonian which i s  free of the above difficulty. This 
i s  done in the following manner. 

We assume a ground state ("vacuum") with the maxi- 
mum possible number of electrons @=No) and spin 
(N ,/2); for the sake of argument let al l  electrons have 
spin t. The vacancy i s  then simply a hole against the 
background of electrons with spin t, and it corresponds 
to annihilation and creation operators a,, and ff: con- 
nected in the usual manner with the electron operators 

That Hamiltonian component i?, that describes the 
vacancy tunneling (in the absence of electrons with spin 
t )  takes the simple form 

We consider now the Hamiltonian component H,, which 
describes the displacement of the particles with spin t; 
this component i s  contained in He (5) and corresponds to 
v = +; changing from electron operators with spin t to 
vacancy operators in accord with (lo), we obtain 

where 

Let us clarify the meaning of the introduced operators. 
In view of the assumed definition of the vacuum and the 
exclusion of double occupancy of the center, a particle 
t i s  produced only by spin flip, i.e., via production of a 
vacancy plus production (on the same site) of a particle 
+. This is precisely the condition satisfied by the op- 
erator 0,'. The meaning of $ i s  clear-this operator 
gives tunneling of the particle 0 only if there i s  a 
vacancy alongside (in which case they exchange places). 

The operators and P' at different sites commute with 
each other, while on the same site they a r e  subject to 
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the condition 

The operator of the total spin of the system 

These a r e  precisely the properties of the operators 
S,,, S, and of S,, of spin $ if the following correspon- 
dence is assumed 

Each site is thus assigned i ts  own pseudospin. In this 
notation, the pseudospin projection corresponding to a 
center with particle 0 is - 3, and that to a free center 
is + $. We note that a transition of similar type to 
spin -$ operators was used in various papers (see, e.g., 
the paper by Andersong). 

Next, the operators 0 and j3' commute with a! and a' 
at  different sites, while on the same site 

This condition that there be no two particles on the 
same site can b e  taken into account by using the pro- 
cedure already used a t  the beginning of this section, 
i.e., by forbidding the transition of a vacancy (particle 
a!) to a center occupied by particle j3. This condition 
is obviously satisfied by the operator 

which must be used in lieu of the operator H, (11). 

The sought Hamiltonian i s  thus 

This Hamiltonian commutes with the operator of the 
number of doubly occupied centers 

and, a s  before, we a r e  interested only in states with 
quantum number 

The very method of constructing the Hamiltonian (16) 
shows that i t  is equivalent [subject to condition (18)l 
to the initial Hamiltonian (I), (3). This can be verified 
also directly, by calculating the matrix elements of 
these Hamiltonians from the corresponding functions 
and verifying that they coincide. 

Some of the quantities in u are: a a r e  Fermi opera- 
tors, S a r e  spin -$ operators that commute at different 
sites, while cu and S commute with one another. In the 
vacuum (all si tes occupied by spin i electrons) there 
a r e  no vacancies, and the pseudospins a r e  directed 
u p  All the states of the system can be enumerated by 
generating vacancies and reversing the pseudospins 
[but not a t  the same site, owing to condition (18)l. I£ a 
vacancy appears a t  some site, the pseudospin in this 
place i s  directed up a s  before; therefore the pseudo- 
spins have no direct physical meaning, although the 
pseudospin on a center free of vacancies shows the di- 
rection of the spin of the electron located on this cen- 
ter. This means that the spin operator on is connected 
with the pseudospin in the following manner: 

commutes with the Hamiltonian (16) and with the opera- 
tor (17). 

The advantage of the Hamiltonian (16) over (5) is that 
the ground state of the Hamiltonian (16) has a quantum 
number S/, = 0, so  that there i s  no need to take into ac- 
count this additional condition. This statement can be 
proved in the following manner. Consider a state with 
one flipped pseudospin, and let a vacancy be located on 
the same site; this cannot be a ground state, since i t  i s  
possible to indicate another state that i s  certainly lower 
in energy. The energy of the considered state (with 
double occupancy of a certain site) coincides with the 
average energy of the state in which all  the pseudospins 
a r e  directed up and one of the vacancies i s  localized a t  
the site. The last is not an eigenstate for the Hamil- 
tonian (16), and can therefore not be theground state 
(in any ground state, al l  the vacancies a r e  delocalized 
if the pseudospins a r e  directed up). Similar arguments 
can be advanced also for several flipped spins. We 
verify by the same token the validity of the statement 
made. 

Our main purpose has therefore been achieved: we 
have obtained an equivalent Hamiltonian (16) that does 
not contain explicitly infinite terms, and can be used a t  
sufficiently low temperatures [the temperature must be 
lower than the width of the band in the limit (4)1, with- 
out the need to satisfy the additional condition (18). It 
appears that this Hamiltonian i s  particularly useful for 
the study of the ferromagnetic state (with maximum 
possible spin). This Hamiltonian contains explicitly 
vacancies, spin waves (the "embryo" of the spin wave 
is the flipped pseudospin), and their interaction. The 
difficulty in using the Hamiltonian (16), just a s  mag- 
netism theory in general (see, e.g., Ref. lo), i s  the 
presence of spin operators, which a r e  considerably 
more difficult to use than particle operators. In some 
cases, however, this difficulty can be circumvented 
(see the next section). 

We emphasize that although we have arrived a t  the 
Hamiltonian (16) by considering the limit (4) and tacitly 
implying the case (a) of Sec. 1, this Hamiltonian i s  
nevertheless suitable in principle for any case; the 
problem i s  to know when i t  is more convenient to use 
the Hamiltonian (16) in place of the initial Hamiltonian 
(I), (3) or the Hamiltonian (5), (7). 

3. VERTEX PART 

In this section we study the interaction of vacancies 
with spin waves in the limit (4) of low vacancy density. 
Knowing this interaction, we can find, for example, 
the spectrum of the spin wave. 

We change first  from pseudospin operators to Bose 
operators. The transition might be effected, say, using 
the known Holstein-Primakoff transformation. In the 
case of single spin wave (one flipped pseudospin), how- 
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ever, there i s  a simpler method, namely, we can use a 
Hamiltonian expressed in terms of the operators P and 
p' (13). These a r e  Bose-type operators, and the condi- 
tion that there be no transition of a vacancy to a site oc- 
cupied by the particle /3 i s  taken into account, a s  in the 
preceding section; the suitably modified operator fi, 
(11) when added to (12) gives the sought Hamiltonian 

It i s  easily understood that this Hamiltonian i s  fully 
equivalent to (16) in the considered case of one magnon; 
j3 and 0' a re  magnon operators. 

The Hamiltonian (20) can be rewritten with the three- 
particle interaction discarded, since one particle j3 i s  
considered: 

This i s  the initial Hamiltonian for the study of the in- 
teraction of a vacancy with a spin wave. 

We change in (21) to the momentum representation by 
means of the usual formulas 

where k i s  the quasimomentum and R,, is the radius 
vector of the site n (and similarly for 8). In place of 
(21) we obtain 

Here e(k) is  the energy of the free (noninteracting) 
vacancy, i.e., the single-particle energy for a system 
with Hamiltonian (11); for a primitive cubic lattice 

E (k) =-2t (cos I;,+ cos k,+cos k,) (24 

(the lattice constant i s  taken to be unity). In (23) we 
imply the usual quasimomentum conservation law, and 
the summation over k, i s  within the confines of the Bril- 
louin zone. 

We use next the diagram technique of Ref. 6. The 
 ree en's functions G of the vacancy and D of the magnon 
take in the frequency representation the form 

where i s  the chemical potential of the vacancies, and 
E, i s  the magnon energy still to be determined. The in- 
teraction of the vacancy with the magnon i s  described 
by the vertex part r, which in the limit (4), when the 
gas approximation can be used, i s  given by the ladder 
diagrams (9) (a single line corresponds to a magnon, 
and a double one to a vacancy). In this approximation 
we can neglect the dispersion of the spin wave E,, which 
i s  proportional to the small parameter n, (if the magnon 
damping is of no interest). The vertex part r depends 
on the total frequency w and the total quasimomentum 
q and, for example, on the incoming and outgoing quasi- 
momenta p and pr of the vacancy. The integral equation 
for r i s  of the form 

Here w, q, and p1 a r e  parameters (we have left out of 
r, for simplicity, the dependences on w and q); 0, i s  
the Fermi momentum. Elementary integration has been 
carried out in (27) with respect to the internal frequency 
E [see the second diagram of (9)1, on which r does not 
depend. The vertex part, strictly speaking, i s  r / ~ ,  
[see (23)l. 

The restriction k > p ,  in the sum of (27) means inte- 
gration outside the Fermi sphere; this restriction is 
sometimes an exaggeration of the accuracy. It was 
retained in (27), since i t  i s  necessary to determine 
first  when it can be lifted [as lo1 -0 the sum in (27) 
diverges logarithmically]. 

Equation (27) becomes somewhat simpler when a 
change i s  made to another function 

after which we obtain the following equation for the func- 
tion r a n d  for i t s  mean value X: 

where, by definition, 

which follows directly from (29) after averaging over p 
and taking into account the relation 

We note that if the restriction k > p p  is  taken into ac- 
count in the last sum, we obtain a quantity of the order 
of tn,, which can be neglected. Equation (29) does not 
contain these terms. 

In the gas approximation, the spin-wave self-energy part 
Z i s  connected with the vertex part in accord with (9). 
In the lowest approximation in the gas parameter, we 
must find the function Yo(@) connected with by the re- 
lation 

We put here for the sake of argument t>O, since we 
a re  interested in case (a) of Sec. 1; the minimum of 
the vacancy band i s  located therefore a t  the point p = 0 
and corresponds to an energy ~ ( 0 ) .  For the function 
we obtain from (29) and (30) 

(the restriction k > bF was lifted. The magnon energy, 
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which coincides with the self-energy part, i s  deter- 
mined by the value of % at  zero: 

Relations (32) and (33) follow also from Eqs. (5.8) and 
(5.5) of Ref. 2. Thus, Eq. (5.8), corrected for mis- 
prints, can be written in the form 

[in our notation we should replace t(p) by -&(PI, let N 
-No, and the restriction k < means k > P,]. The vari- 
able k changes in a wide range of k < , and the param- 
eter p in a narrow region of p >, so  that we can simpli- 
fy the equation by neglecting the dependence on p (by 
putting p=O) and lifting the restriction k< ,  a s  well a s  
by discarding the small quantity E, (these simplifica- 
tion a r e  in fact made in Ref. 2 in the actual calcula- 
tions). We then obtain from (5.8) our Eq. (32) by intro- 
ducing the function 

Eq. (5.5) goes over then into (33) [it is necessary to 
correct  (5.5) by replacing t(p-q) by t(k -q)]. Notice 
must be taken here of the following. AS seen from the 
last equation, +,(O 1 k)!,, - -, since the quantity z(O) 
that determines the magnon spectrum i s  finite. The 
fact that the function +,(plq) i s  large a t  small  k follows 
also from the original equation (5.8), since the right- 
hand side of the equation is generally speaking not 
small a t  small k and arbitrary q, while the coefficient 
of @,(PI k) in the left-hand side of the equation is small. 
After the simplification this function is not merely 
large, but becomes infinite a s  k - 0. Refinement of the 
behavior a t  small k would mean inclusion of higher 
powers of the gas parameter in the magnon spectrum, 
something not included in our purpose. 

When it comes to comparison with Nagaoka's results, 
we note the following. Refinement of the results  in our 
approach within the framework of the same ladder ap- 
proximation leads to the appearance of damping of the 
spin wave because particle-hole pairs a re  knocked out 
of the Fermi background of the vacancies. This is not 
s o  easy to discern in the Nagaoka method. Further, 
Eqs. (29) and (30) can be used to investigate the bound 
state of a single [in the absence of a Fermi background, 
p = E(O)] vacancy with a magnon. This calls for solving 
the homogeneous equations and seeking a solution a t  w 
< 0. It turns out that for indivisible lattices a t  t < 0 
there actually exists such a bound state (this was veri- 
fied for triangular and face-centered cubic lattices), 
thus clarifying the meaning of Nagaoka's statement that 
the ground state of such structure is not the state with 
maximum possible spin (for a triangular lattice, the 
bonding of a single vacancy with a large number of 
flipped spins i s  according to Refs. 3 and 4 stronger 
than with one flipped spin). A bound state of vacancies 
with a magnon ar ises  also in case (a) in the presence of 
a Fermi background; in the limit (4) the binding energy 
is exponentially small (because of the aforementioned 

logarithmic divergence), and since the bond ar ises  only 
a t  a finite summary quasimomentum, the total energy 
of such a complex is positive, the ground state does not 
change, and one more type of elementary excitation a p  
pears. 

We proceed now to study the scattering of a vacancy 
by a magnon. This is necessary to determine, for ex- 
ample, the influence of spin waves on the conductivity. 
At low densities of the vacancies (4) and of the magnons 
(low temperatures) it suffices to know the vertex part 
7 a t  small values of the momenta [the difference be- 
tween f a n d  J?, see (28), turns out to be negligible]. 
Leaving out the straightforward calculations, we pre- 
sent only the result for a simple cubic lattice: 

where the dimensionless quantity y i s  given by the ex- 
pression 

We a r e  interested in the scattering of a vacancy with 
energy near the Fermi surface. In place of w it i s  
necessary to substitute in (34) the combined energy of 
the vacancy of the magnon, which is small: I w] << tp;, 
because the role of the vacancy energy i s  assumed by 
the quantity [(p), and the frequency w can be neglected 
in the last term. Recognizing that p = p f  =p, and intro- 
ducing the initial magnon momentum k = q  - p, we obtain 
in place of (34) in this case 

As for the dependence of y on w, i t  may turn out to be 
appreciable. Indeed, if we disregard terms of order n, 
in y, we can write a t  small I w l  

where yo does not depend on the frequency: 

2t sin'k, ~0,208 ' EN.$ a (k) -8 (0) 

(we have presented here Nagaoka's numerical result for 
a simple cubic lattice), and the dependence on w is con- 
tained in y,: 

At sufficiently low temperatures, allowance for y, may 
be necessary. 

Equation (34) can be used also for other purposes: let 
us obtain once more the magnon spectrum (at small k ) -  
this is found to make sense. The result of the principal 
approximation can be written a s  

where f(p) is the vacancy distribution function, and the 
vacancy momentum k = q  - p in Y i s  fixed. If we replace 
y by yo in .7, and this can be done under the summation 
sign, than (38) practically coincides with Eq. (25) of 
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Ref. 7, apart from an exchange term, which is obvious- 
ly missing from (38) because of the presence of the fac- 
tor 2. From (34) we have for the vertex part contained 
in (38) 

In the equilibrium state we obtain from (38), taking (39) 
into account, Nagaoka's result for the spectrum 

If, however, a vacancy flux is  present, we obtain in 
place of (40) 

where (p) i s  the average momentum of the vacancies. 
It i s  seen therefore that the magnon spectrum i s  sub- 
stantially altered-its energy becomes negative a t  cer- 
tain k. 

The cause of the change in the dispersion (41) i s  easily 
understood We consider the precession equation 

where o(r, t )  i s  the spin density and W i s  the energy of 
the ferromagnet; in the simplest isotropic case we have 

doc do, 
W=A dsra--. 

x k  

In the presence of a vacancy flux there i s  a counter- 
current of spin momenta, so that the left-hand side of 
(42) takes the form 

where v i s  the velocity of the spin liquid and i s  deter- 

mined by the vacancy flux: 

(we recall that the momentum i s  a dimensionless quan- 
tity and the velocity has the dimension of energy). 
From (42), with allowance for (43)-(45), we obtain for 
the oscillation frequency an expression of the type (41), 
and the increment linear in k, which i s  of interest to us, 
remains exactly the same. 

The change of the spectrum (41) i s  thus a direct con- 
sequence of the motion of the spin liquid and is  there- 
fore general in character, i.e., i t  does not depend on 
the model. One cannot exclude the possibility that the 
magnons produced in the presence of a vacancy flux 
will accumulate predominantly in a single state and 
form a condensate (this would mean formation of a spin 
superstructure). This question, a s  well a s  that of the 
conductivity, calls for a special analysis. 
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