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The applicability of the adiabatic approximation to the calculation of the phonon spectrum of a metal with 
impurities is analyzed. A successive procedure is presented for determining the adiabatic phonons in such a 
system, and the necessary nonadiabatic corrections are considered. The latter are determined in the long-wave 
limit by a large number of interference processes in which electron-phonon and electron-impurity interactions 
participate. When their diverging contributions cancel one another, these processes result in a weak damping 
of the adiabatic phonons and in a renormalization of the speed of sound. In the case of optical phonons the 
contribution of the electron interaction to the damping in "pure" metals (c < O / E ,  where c is the defect 
density, f 2  is the optical frequency, and E, is the Fermi energy) is found to be stronger than in "dirty" metals 
(c > f2 /cF ) .  Anharmonic processes in impurity metals are considered. 

PACS numbers: 63.20.Mt 

1. INTRODUCTION 

The Born-Oppenheimer adiabatic approximation i s  the 
basis of the microscopic analysis of the properties of 
such multiparticle systems a s  molecules and solids. 
Because of the large difference between the masses of 
the electrons and nuclei (m/M < 1/2000) it is possible to 
distinguish between two types of motion, namely rapid 
motion of the electrons, which manage to attune them- 
selves to the slow motion of the nuclei, while the latter 
move in the self-consistent field of the electrons. The 
parameter for the applicability of the adiabatic approxi- 
mation is  not the ratio m/M itself, but the ratio of the 
characteristic frequency 8 of the nuclear motion to the 
energy spacing A& between the levels of the electron 
subsystem. 

Usually the parameter @/A& - ( m / ~ ) " ~  << 1. Excep- 
tions a r e  systems with degenerate electronic terms. 
The most important example of such systems a re  me- 
tals. Since the electronic states fill densely the energy 
region near the Fermi energy c,, the parameter @/A& 
is not small regardless of the value of 8. Migdall has 
shown that this is the cause of the strong normalization 
of the spectrum of the electronic excitations near &,. 

This violation of the adiabatic approximation, however, 
is local and does not pertain to  electrons located far  
from the Fermi surface. For this reason, in those 
cases when one deals with the metal properties deter- 
mined by all  the electrons, e. g., with the phonon spec- 
trum, the adiabatic approximation is somehow still 
valid accurate to the small parameter 8/&,. For  the 
case of a pure metal, the corresponding microscopic 
analysis was carried out by Brovman and Kagan2 (see 
also their reviewS and the article by Maksimov4). 

In principle, the qualitative considerations advanced 
above can be directly made applicable also to a metal 
with impurities. However, whereas the applicability of 
the adiabatic approximation to relatively short-wave 
phonons is not subject to doubt, the situation is not s o  
obvious for long-wave phonons. If the phonon wave- 
length exceeds the electron mean free path, the diffu- 
sion decrease of the electron velocity comes into play. 
This can give the impression that the distinction between 
two subsystems in disordered metals, fast (electrons) 

and slow (nuclei), is now no longer justified, and the 
adiabatic approximation no longer holds. 

A detailed analysis of this question is particularly im- 
portant because its results play a fundamental role in 
the calclllation of the kinetic coefficients o r  the critical 
superconducting transition temperature in a disordered 
metal. A number of recent ~ t u d i e s ~ - ~  resulted in a 
negative coefficient of the temperature dependent part 
of the resistivity because of singularities in the elec- 
tron-phonon interaction in impurity metals. The re -  
sults of these studies patently contradict the results  
of Ref. 9, where it was shown that in the low tempera- 
ture limit (T <cO, where c is the impurity density) the 
contributions of the different electron-phonon interac- 
tion processes to the resistivity practically cancel one 
another. At T >cO, two terms a r e  significant in the 
phonon part of the resistivity, namely a T 5  (the Bloch- 
Griineisen law) and acT2 (Ref. 10). 

The results of Refs. 6-8 a r e  in all  probability due to 
the explicit6 o r  implicit7s8 erroneous assumption that the 
adiabatic approximation is violated in the models con- 
sidered by the authors of the cited papers. However, 
pippard" has shown phenomenologically long ago that 
ultrasound attenuates weakly in such systems (the mi- 
croscopic analysis is contained in a paper by schmid12). 
As will be shown below, this circumstance i s  closely 
connected with the question of applicability of adiabatic 
approximation. The same can be stated also concern- 
ing the cancellation of the various contributions to the 
resistivity at T < cO (Ref. 9). 

In a disordered metal, many electron-phonon interac- 
tion processes contribute to the formation of the pho- 
non spectrum. Many of these processes, taken sepa- 
rately, could cause the appearance of instability of the 
phonons in the long-wave limit. Taken jointly, however 
they cancel each other, and it is possible a s  a result  to 
devise a consistent procedure for constructing the pho- 
non spectrum in the adiabatic approximation and find 
subsequently the small nonadiabatic corrections to the 
spectrum. (We encounter a similar cancellation also 
in the analysis of anharmonic interaction of phonons). 
This cancellation of diverging contributions has a sim- 
ple physical meaning. The divergences themselves re-  
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sult from the already mentioned diffusion slowdown of 
the electrons, which "lag" the nuclei a s  a result. This 
produces immediately strong electric fields that cause 
the electrons to "catch up" with the nuclei. The com- 
petition between these two opposing mechanisms deter- 
mines the small (to the extent that the nonadiabaticity 
parameter is small) renormalizations and the damping 
of the long-wave phonons. 

2. ADIABATIC PHONONS OF AN IMPURITY METAL 

The Hamiltonian of a metal with impurities i s  of the 
form 

1 11 aa,rJ2 +x V,,,,(R,-R,) +z (k-k') 
1 I", lkk' 

Here M, is the mass  of the ion located a t  the lattice site 
with coordinate R,; Vii ,,,(R)and Vei,,(r) a r e  respectively 
the potentials of the ion-ion and electron-ion interac- 
tions; a; and a,, a r e  the electron creation and annihila- 
tion operators. To find the equilibrium positions {Rf) 
of the ions and the phonon spectrum i t  is necessary to 
calculate the total static (with the ions immobile) energy 
of the system a s  a function of {R,}. The equilibrium 
positions of the ions a r e  obtained by equating to zero the 
first  derivatives of this energy with respect to R,, and 
by investigating the small harmonic oscillations of the 
ions about {Rf} we obtain the phonon spectrum. 

It is known that the purely ion-ion contribution to the 
total static energy cannot serve even a s  the zeroth ap- 
proximation, since the contribution of the electron sub- 
system turns out to be of the same order, and must be 
taken into account from the very beginning. This can 
be easily done with the aid of a formal procedure pro- 
posed by Kozlov (cf. also Refs. 4 and 13). We calcu- 
late the contributions of the electron sub-system 
E,~({R,}) by perturbation theory with respect to the 
operator of the electron-ion interaction E-I,,. We add 
the energy E,,({R,)) to the ion-ion part of the Hamil- 
tonian (1) and subtract i t ,  respectively, from the elec- 
tron-ion interaction operator. The result can be writ- 
ten in the form 

The symbol 2 in front of the electron-ion interaction 
operator indicates that the latter i s  purely dynamic. 
This means that in the calculation of the energy correc- 
tions due to the electron-ion interaction it is necessary 
to retain only the dynamic contributions (w #O), sub- 
tracting the static contributions already taken into ac- 
count in E,,({R,)). In the case of a pure metal these 
contributions a r e  always small to the extent that the 
non-adiabaticity parameter is small. 

If we confine ourselves to the harmonic approxima- 
tion, allowance for the contributions of order higher 
than second in He, to E,,({R,}) reduces in the case of a 
regular metal to a renormalization of the electron 
spectrum, i. e . ,  to replacement of the plane waves by 
Bloch waves and to a corresponding distortion of the 
spherical Fermi surface. Therefore i f  the true elec- 

tron spectrum and the wave functions of the electrons 
a r e  used directly, there is no need, in the harmonic 
approximation, to take into account in the electronic 
part of the energy of the regular crystal the terms of 
order higher than second in Hei (cf. Refs. 2 and 3). It 
a r ises  only in the analysis of the anharmonic interac- 
tion o r  dynamic corrections in an impurity metal. For 
simplicity in the calculation of the total energy of the 
metal 

however, we shall describe the electronic snbsystem 
wing  plane waves and a spherical Fermi  surface, a s  
well a s  leave out everywhere the summation over the 
reciprocal-lattice vectors. This simplification, a s  can 
be easily verified, does not influence qualitatively the 
singrilarities of interest to u s  in the behavior of the 
long-wave phonons. 

We consider now adiabatic phonons [corresponding 
to the effective interaction (3) in the static approxima- 
tion] in a metal with impurities. Using the standard 
procedure of expanding in small  ion displacements u, 
about their equilibrium positions R:, which we assume 
to be known, we obtain after a Fourier transformation 

and the dynamic matrix DaB(k, kt)  is connected with the 
effective ion-ion interaction (3) by the relation (see, 
e.  g . ,  Ref. 14) 

We assume the defect concentration to be small and use 
in the calculation of the lattice sums the set  of vectors 
{R,) corresponding to equilibrium positions of the ions 
in the regular lattice, neglecting by the same token the 
dilatation effects. N is the number of unit cells in the 
lattice and coincides in this case with the number of 
ions. Generalization to the case of a polyatomic unit 
cell entails no difficulty. 

After determining the eigenvalues of (4), we can in 
principle obtain the phonon spectrum of an impurity 
metal. In this case, of course, the quantity k cannot 
be interpreted a s  the phonon quasimomentum, espec- 
ially in the case of short-wave phonons. On the other 
hand, for long-wave excitations, a good zeroth approxi- 
mation can be the phonons of a pure metal, which a r e  
weakly scattered by the defects, and the corresponding 
qi~asimomentum characterizes sufficiently well the pho- 
nons of the impurity metal. We shall assume below that 
we know the proper phonon frequencies w,(k) and polari- 
zation vectors e,(k) (the normalized eigenvectors us,) of 
the pure metal, which a r e  connected with the dynamic 
matrix ~F,'(k)b,,.. 

Introduction of a small number of impurities in a 
pure metal causes corrections to appear in the dynamic 
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matrix (5), due to the change in the energy of the ion-ion 
interaction proper 

where 

On the other hand, in second-order perturbation 
theory in the electron-ion interaction operator H,, , we 
obtain for the total electron energy the expression 

Here (T. .  .) denotes T-ordered averaging over the 
ground state of the unperturbed electron subsystem. 

The expression for the impurity correction to the 
electronic part of the dynamic matrix is of the form 

where 

V.,(q; k-q)  =v!? (k)6kt,+6V., (q ;  k - q ) ,  

GV.,(q; k-q)  - - e ~ p { - i ( k - q ) R ~ ) 6 v . ~ ,  ( p ) .  
1 

lI(k,, k:;q) is the static limit of the mean value of the 
four-fermion operator in expression (7). 

Assuming the impurities to be a small perturbation 
of the phonon system of the pure metal, we obtain in 
first  order in the impurity density the following for- 
mula for the corrections to the phonon frequencies and 
polarization vectors, averaged over the impurity con- 
figuration, 

1 
60.2 ( k )  = [ A 9  ( k )  I ( k ,  e . W )  ~ ' + G o . ' ( k )  1, -.- 

(k ,  e . (k)  ) a (e.sa(k), k)e.. ( k ) .  (9) ~z 'a:(k)  - ~ , . ~ ( k )  

Here - - 
AV ( k )  -6V,, ( k )  + 6V., ( k )  v!? ( k )  n ( k )  

i-V..(k)rc(k) ' '  

where c, is the density of the impurities of species j, 

6V, , , ,  and 6V,, , ,  a r e  the changes of the potentials of the 
ion-ion and electron-ion interaction following introduc- 
tion of the impurity of species j, and n(k) is the static 
limit of the polarization operator that is irreducible 
with respect to the Coulomb interaction. In the long- 
wave limit (k -O), when we can use the Coulomb 
asymptotic form of the potentials 

where 62, =Zj - Z'O), and Z ,  and 2'') a r e  respectively 
the valences of the jth impurity and of the matrix ion, 
we obtain 

- -  
be. ( k )  = 

Here b is the limit of the pseudopotential of the elec- 
tron-ion interaction a s  k - 0 (Ref. 3). The result (10) 
is physically quite clear: In the long-wave limit the 
phonon spectrum of an impurity metal takes the same 
form a s  the phonon spectrum of a certain fictitious 
regular crystal (customarily called virtual in the litera- 
ture, see, e.  g., Ref. 15) with a potential that is some- 
what modifiedcompared with the pure metal 
( Z ' O ) - -  Z ' O )  + AZ,  b'O' - b'O) + Ab) and with an ion mass 
M ' O )  -M") +=. It is interesting that we can always 
choose theLmpurity compositions such a s  to make - - 
AZ = Ab = AM = O .  In this case the phonon spectrum 
of the impurity metal does not differ a t  al l  from the 
spectrum of the pure metal, since the corrections (10) 
vanish. In order for the p o l a r i . t i o ~ v e c t o r s  to remain 
unchanged, i t  suffices to have AZ = Ab = 0.  h he purely 
longitudinal modes of the oscillations do not change at 
al l  in the approxima_tion (10) when impurities a r e  in- 
trodi~ced, even if AV #0.] We note that in this case the 
effects connected with the change of the volume upon in- 
troduction of impurities with different AZi and 6bi have 
likewise apparently a tendency to cancel each other. 

Expression (10) corresponds to the Born approxima- 
tion for the scattering of phonons by impurities. Going 
outside the framework of this approximation, we can 
obtain the phonon-spectrum c o n t r i b u t i z  tha ta re  linear 
in the density and a r e  proportional to 6Z2 ,  6M2, etc. 
These contributions a re  usually significant i f  the vibra- 
tional spectrum of the crystal contains the so-called 
local o r  quasilocal modes. Their investigation is the 
subject of an extensive literature, and they will not be  
discussed here. We imply by the same token that we 
a r e  dealing throughout with frequencies far from those 
of these modes. 

Among the corrections proportional to 622, we dis- 
cuss here only the contributions to the energy of the 
electron subsystems, shown in Fig. la. The dashed 
line shows here the procedure of averaging over the 
configurations of the impurities (see, e.  g., Ref. 16). 
Each wavy line (which is transformed after quantiza- 
tion of the field of the vibrations into a phonon propaga- 
tor) corresponds in the si te representation to differentia- 
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FIG. 1. 

tion a/aR;. The shaded loop denotes a polarization 
operator reducible with respect to Coulomb interaction, 
and the electron-phonon vertex with the heavy dot corre- 
sponds to the quantity (ka - kta)6Vei,,(k -kt). 

It i s  easy to verify that if the corrections shown in 
Fig. l a  were taken into account in the dynamic matrix 
(5), this would lead to the appearance of an unphysical 
gap in the spectrum of the acoustic phonons. To elimi- 
nate this gap and obtain the correct  limiting behavior of 
the acoustic phonons a s  k -0 i t  is necessary to  take in- 
to account also the diagram shown in Fig. lb.  Here the 
vertex with the heavy dot without wavy lines corresponds 
to scattering of an electron by a static impurity 
6Vei,,(k- kt)  and the vertex with two wavy lines corre- 
sponds to scattering of an electron by an impurity 
with emission (absorption) of two phonons: 
(ka - kJU)(P-  k tB)6~e i , j (k -  k'). 

Comparing diagrams a and b of Fig. 1, we can verify 
directly that the corresponding expressions are  equal 
in absolute value and opposite in sign. Thus, the static 
parts of the diagrams a and b of Fig. 1 cancel eachother 
and do not take part in the formation of the adiabatic 
phonons. In the dynamic regime, however, there is 
no sllch cancellation and a s  a result these processes 
play the principal role in the formation of the low-tem- 
perature limit of the phonon part of the resistivity of 
impurity r n e t a l ~ ~ * ' ~  (the same pertains also to other 
kinetic coefficients), and i t  will be shown below that 
they must be taken into account in the analysis of the 
nonadiabatic corrections to the phonon spectrum and 
in the check on the validity of the adiabatic approxima- 
tion in impurity metals. We note that cancellation of 
these contributions corresponds in the static approxima- 
tion to the requirement that the total force acting on any 
ion at equilibrium be zero. 

3. NONADIABATIC CORRECTIONS TO THE PHONON 
SPECTRUM OF AN IMPURITY METAL 

The nonadiabatic (dynamic) corrections to the spec- 
trum of adiabatic phonons in a metal a re  due to the lag 
of the electrons in the vibrational motion of the ions, a s  
a result of which transitions between different states 
of the electron subsystem of the metal become possible. 
In quasiparticle language this corresponds to the scat- 
tering of electrons by phonons. In the Hamiltonian (2) 
this process i s  described by the "dynamicv electron- 
ion interaction operator. Since we have already taken 
into account, in the calculation of the spectrum of the 
adiabatic phonons, the static energy (3) of the electron 
subsystem, we must now, when calculating the dynamic 
corrections, use this effective Hamiltonian (2). This 
means that, gathering together the contributions made 
to the polarization operator n(q, w) a t  finite frequencies 
(w # 0), we must then subtract from it the already ac- 
counted for static part n(q, 0), i. e. ,  find the difference 

Since the problem of nonadiabatic corrections to the 
phonon spectrum in regular metals has already been 
analyzed in detail we shall dwell here only on 
the impurity contributions. It is necessary first  of all 
to consider the corrections corresponding to diagrams 
a and b of Fig. 1. Diagram b of Fig. 1,  by virtue of i ts  
structure, is independent of the frequency w ,  so that i t  
suffices to consider diagram a of Fig. 1. Then, con- 
fining ourselves for simplicity to the random-phase ap- 
proximation, we obtain with the aid of (11) 

i m i  
6~,(k)----- 

2 MtO' 71, ' 

where 
1 dQ.dQ,. 
- - N (o$ ---;- 6~ (P-p2)( i  - eos Q ( p p f ) [  i-V., (p-p')  n (p-p' )I--'. 
71, (4n) 

The integration with respect to the angles of the vectors 
p and p' is carried out over the Fermi surface, m is the 
electron mass,  and N(0) is the density of the electronic 
states on the Fermi surface. The correction (12) is 
small  to the extent that the ratio of the electron and ion 
masses  is small (m/M(O'=v2 <<I), but i t  does not de- 
pend on the phonon quasimomentilm k, and does not 
vanish a s  k -0 when the frequency of the acoustic pho- 
nons vanishes, w,(k) - 0. In the long-wave limit 

(v is the Fermi  velocity) this correction can therefore 
become equal to o r  even exceed, in absolute value, the 
frequency of the corresponding adiabatic acoustic pho- 
non. 

Thils, if we were to confine ourselves to the approxi- 
mation (12), we would obtain in an impurity metal 
strongly damped phonons, i. e. , unstable long-wave 
phonons. Inelastic scattering of electrons by defects 
(Fig. la) ,  which gives r ise  to the correction (12) to the 
spectrum of the adiabatic phonons, leads also to the 
appearance of a term proportional to cT2 in the temper- 
ature-dependent part of the resistivity of the pure 
metal. lo From the foregoing arguments it follows that 
the temperature region of applicability of this law is 
bounded from below, since a t  T -0 the main contribu- 
tion is made by processes in which long-wave phonons 
participate (k - T/s, s i s  speed of sound), and these 
processes a r e  themselves poorly defined in this case. 

Indeed, a s  shown in Refs. 9 and 17, in the long-wave 
limit, ( A  > TU) an important role is assumed by various 
interference processes with participation of the follow- 
ing elementary interactions: scattering of electrons by 
"pure" phonons and by vibrating and static impurities. 
All these processes lead jointly to cancellation of the 
term cT2 in the resistivity of the impurity metal. We 
shall show below that these processes ensure a small 
damping of the long-wave acoustic phonons and, by the 
same token, the applicability of the adiabatic approxi- 
mation in an impurity metal. 

The interaction of electrons with long-wave phonons 
is quite complicated: During the interaction with the 
phonon wave the electron manages to be scattered many 
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FIG. 2. 

times from static fields. As a result, the amplitude 
of the interaction of the electron with a pure phonon is 
diffusely amplified, and besides the usual "bare" vertex 
of the electron-ion interaction there appears a vertex 
"clothedn by a ladder of impurity dahsed l ined7 (see 
also Ref. 12). In the bare vertex we have already 
taken into account some impurity corrections, using Z 
in place of z'", i. e . ,  the pure phonons were taken to 
mean the phonons of the virtual crystal. When account 
is taken of the renormalization of the polarization 
operator we obtain fo r  the effective vertex of the elec- 
tron-phonon interaction 

where 

E-t+il, t= [arctg ( r k v f z o )  +arctg ( zkv -TU)]  /2rkv, 

0 ( x )  is the Heaviside function, and 1/r is determined by 
the same integral a s  l/r,, but without the factor 
1 - cos * (pp') in the integrand. To simplify the devia- 
tion we assumed a contact electron-impurity interac- 
tion potential, and 1/r = I/?,,. 

Thus, a t  rkv, rw << 1 and I & (< [ w 1 /2 the pure electron- 
phonon vertex is anomalously enhanced, and this by it- 
self could lead to the appearance of instability of the 
phonon spectrum in the long-wave limit. However, be- 
sides the processes (14)-(16) considered in Ref. 17, i t  
is necessary also to take into account the impurity ver- 
tex (Fig. 2)9*12 

which also undergoes a diffuse enhancement of the type 
(14) and leads to an effective interaction 

ikpvl (rkv)? (16) 

In the derivation of (16) we took into account only the 
f i rs t  term in (15). In addition, we have retained in 
(14) and (16) only the leading terms in the small para- 
meter k2/x2 ( l / x  is the Debye screening length). 

Figure 3 shows various contributions made to the 
electron energy with participation of the processes (14) 

and (16). The shaded triangular vertex corresponds to 
the interaction (14), while the vertex with the shaded 
circle corresponds to the interaction (16). Diagrams 
a-e of Fig. 3 correspond jointly to the nonadiabatic cor- 
rection to the phonon spectrum of the impurity metal 

which causes no instabilities whatever in the entire 
range of values of the parameters rkv and rw, and con- 
sequently cannot cancel out the singular contribution (12). 
All that we have for i ts  cancellation i s  the single dia- 
gram f of Fig. 3, in which there is not a single trans- 
verse dashed line. (Strictly speaking, to obtain the 
correct  results in the case of a general-form electron- 
impurity potential i t  is necessary in this case to re-  
normalize diagram f of Fig. 3 by ladders of impurity 
dashed lines. It can be verifiedg that in this case it 
will be necessary to retain, in the limit rkv >> 1, only 
the contribution of the p-amplitude of the electron- 
impurity interaction, which will lead in a number of 
places to replacement of 1/r by I/?,,). The expres- 
sion corresponding to diagram of Fig. 3 yields, jointly 
with (12), 

In the upshot we obtain from (17) and (18) the nonadia- 
batic corrections to the phonon spectrum, in the form 

i m (rkv)' 
6 s . ( k )  =- -- [fo (k ,  s. ( k )  + 

2r M'O' 
h ( k ,  o. ( k )  ) cos2 Q ( e . (k ) .  k) ] . 

(19) 
from which follows, in the limits rkv << 1 and rkv >> 1, 
Pippard's phenomenological formula" for the damping 
of longitudinal ultrasound oscillations. At rkv << 1, the 
decisive term in (19) is the first. In this case 

and the nonadiabatic processes lead not only to damping 
of the phonons, but also to  a renormalization of the 
speed of sound 6s = -rns(O)/2 M, which depends neither 
on the phonon wavelength nor on the defect density. 
These dependences manifest themselves in the fact that 
the wavelength region in which this renormalization 
takes place is bounded by the condition X > rv .  Such a 
specific concentration and frequency dependence can 
help separate the quantity 6s when an attempt is  made 
to observe it experimentally against the background of 
the renormalizations connected with other mechanisms. 
The latter vary a s  a rule linearly with the defect den- 
sity, and a r e  practically independent of frequency. The 
value of 6s/s for most metals is of the order of 

If i t  is recognized, however, that the electron 
mass in 6s should in fact be taken to be the effective 
mass, suitably averaged over the Fermi surface, one 
can hope to find among the light elements metals for 
which the ratio 6s/s is noticeably larger; thus, for 
beryllium we have apparently 6s/s - 10%. 

We note also that Eqs. (18) and (20) contain no de- 
pendence on the phonon polarization vector, and con- FIG. 3. 
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FIG. 4. 

sequently take the same form for longitudinal a s  well a s  
transverse modes. At X <  r1?'/3s we can put everywhere 
w,(k) = 0, s o  that the angular dependence in (19) can be 
due only to the second term, which is proportional to 
cos2 r (e(k), k), and vanishes for purely transverse 
modes. In a real  crystal, separation of the purely 
longitudinal and transverse modes a t  an arbitrary direc- 
tion of the vector k is impossible and the angle between 
the vectors e(k) and k changes when k is rotated. The 
second term in (19) becomes of the same order a s  
the first  only i f  X -TV, and exceeds i t  a t  X<ru .  In this 
region, the senior term of the expansion (19) in X/rv 
corresponds to phonon damping in a pure metal. 

Besides the diagrams considered above with impurity 
renormalizations in the "diffusion" channel, there i s  al- 
so  a class of diagrams where a singular behavior ap- 
pears a s  a result of impurity renormalizations in the 
"Cooper'' channel. These singularities a r e  essential, 
e.  g . ,  in the frequency dependence of the residual re-  
sistivity of metals,18 and become enhanced in quasi- 
two-dimensional and quasi-one-dimensional systems. 
Figure 4 shows several diagrams of this type, whose 
individual contributions to the dynamic matrix a re  pro- 
portional in the three dimensional case to W312. In the 
sum however, they cancel each other in such a way that 
the pole responsible for the appearance of the singu- 
larity is eliminated from the integrand. The same can 
be stated also concerning other diagrams not presented 
here. Thus, processes with singularities in the "Coo- 
per" channel must be completely excluded from conside- 
ration when the phonon spectrum i s  calculated. We 
emphasize that this statement i s  valid for systems of 
any dimensionality. This makes i t  possible to extend 
the results of the present paper to two-dimensional and 
one-dimensional systems, in which an essential role is 
played by localization effects (see the discussion a t  the 
end of the article). 

It remains for 11s to consider the contribution due to 
the second term in the vertex (15). Leaving out the 
description of the rather cumbersome calculations, we 
present only the final result. Although this term is 
similar in structure to the pure electron-phonon ver- 
tex, it makes no contribution to any "staticw diagrams. 
Participating, however, in the "dynamicw diagrams, 
this vertex can undergo diffuse enhancement of the type 
(14) and lead in turn to an instability of the long-wave 
phonons. Since this vertex already contains the factor 
1/r ,  cancellation of its contribution calls for the use of 
diagrams of type (15), but with one more impurity 
dashed line added. As a result we obtain phonon-spec- 
trum corrections similar to (I?'), but containing an ad- 

ditional smallness in the defect density c. In this case 
the contribution due to the vertex proportional to 
k/r(7cp) is not cancelled out. To cancel i t  we must 
already resort  to processes of third order in c. Thus, 
we a r e  dealing with an hierarchy of cancellations, in 
which to cancel out terms of order n in c i t  is necessary 
to invoke part of the processes of order n + 1, the re- 
maining processes of order n+ 1 a r e  cancelled by part 
of the processes of order n + 2, etc. 

Since operations with impurity diagrams of high or- 
der  a r e  extremely complicated, owing to the need for 
taking into account corrections that eliminate the multi- 
ple occupation of one and the same site (see, e.  g. , the 
review by Elliott et a1. l5 and the references therein), i t  
is possible to track this cancellation in each order in c. 
This cancellation follows of necessity, however, from 
the lack of divergences in the final result, which in 
turn stems from the general properties of closed dia- 
grams averaged over impurity configurations. We can 
use here the analysis used in Ref. 9 to prove the can- 
cellation of phonon contributions to the resistivity of an 
impurity metal. It suffices only to replace the function 
R(k, kt), in Ref. 9 by the expression for the total energy 
of the electron-ion system. By repeating the reasoning 
of Ref. 9 we can verify that the dynamic corrections 
a r e  proportional to rw2 o r  to ~ ( rkv) ' .  

4. ANHARMONIC INTERACTION OF PHONONS IN AN 
IMPURITY METAL 

Just a s  in the harmonic case, for a correct  descrip- 
tion of the anharmonic interaction in a metal i t  is neces- 
sary to take into account the contribution due to the 
energy of the electronic subsystem. In this case all 
the "static" diagrams must be taken into account even 
in the zeroth approximation when formulating the adia- 
batic part of the anharmonic interaction, after which 
the "dynamic" diagrams should lead to small  nonadia- 
batic corrections. In the analysis of the anharmonic 
interaction in impurity metals we encounter the same 
problems with the long-wave phonons a s  in the harmonic 
case. Here we consider this problem in general form 
and indicate an algorithm for eliminating the "dange- 
rous" diagrams. 

The static contribution of nth order in the electron- 
ion interaction to the total energy of the impurity metal 

1 
m m 

E!,*'= - ' y j  ...j -j-...--;j daq d3q, ... jdt i . . .  
Nn(n-l)! (R,, (2n) ( 2 4  -- -- 

can be represented in the form of a closed diagram with 
n electron-ion interaction free vertices, with the factor 
l/(n - I ) !  canceled out. We separate the impurity parts 
6vei,,'(qi) of a certain number of vertices and take the 
jth variation of the energy (21) with respect to the dis- 
placements of the ions relative to the equilibrium posi- 
tion, after which we average over the impurity configu- 
rations. Pure equilibrium vertices renormalize the 
electron spectrum, transforming plane waves into 
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FIG. 5. 

Bloch waves, while independently averaged equili- 
brium impurity vertices, renormalized the energy of 
the ground state of the system (see, e.  g., Ref. 16). 
For  this reason we need retain in the skeleton diagrams 
only the vertices from which at least one line emerges- 
an impurity dashed line o r  a phonon line. 

Any diagram containing a vertex with one wavy and . 

one dashed line, corresponding to electron scattering 
by vibrating impurities, leads to the apperance of a 
gap in the spectrum of the acoustic phonons a s  k -0, 
since, in contrast to a pure vertex, i t  does not contain 
the small factor k. In fact, however, there a r e  always 
several diagrams that add up to zero, thereby prevent- 
ing the appearance of a gap. The prescription for find- 
ing such canceling diagrams is clear from the example 
considered in Sec. 3 (Fig. 1): It is necessary to con- 
sider all  the diagrams that differ only in permutation 
of the phonon tails. An example for third-order anhar- 
monicity is shown in Fig. 5, where the sawtooth denotes 
Coulomb interaction. 

We shall show that in the general case the sum of 
such "dangerous" diagrams vanishes in the statistical 
limit. Consider a diagram containing j pure and m im- 
purity vertices. Such a diagram occurs when anhar- 
monicity of order not lower than j is considered. In the 
case of anharmonicity of order j ,  all j phonon lines a r e  
connected to pure vertices: one line only to each vertex. 
To obtain the corresponding contribution to the anhar- 
monicity of order j + 1, i t  is necessary to  connect one 
more phonon line in turn to a l l  the vertices, both pure 
and impurity, of this diagram. It is easy to  verify that 
the aggregate of diagrams obtained in this case adds up 
to zero, inasmuch a s  in the coordinate representation 
this proeedure corresponds to taking the derivative in 
(21) with respect to all  a/aR,, in succession, which 
leads to the appearance of the factor C,J,;'"qi =O.  

Thus, when calculating the energy (21) we must r e -  
tain only the diagrams in which the impurity vertices, 
connected by dashed lines, must of necessity be in 
equilibrium, while one and only one phonon line enters 
in a p l re  vertex. The pure vertices must be taken to 
mean in the virtual-crystal approximation. As a result, 
the only diagrams preserved a r e  those whose contribu- 
tion to the anharmonicity of order j is proportional to 
fit, k,, where k, a r e  the external phonon momenta, 
thereby ensuring "correct" behavior of the acoustic 
phonons in the long-wave limit. 

The situation with the nonadiabatic corrections to the 
anharmonic processes is perfectly analogous to the har- 
monic case. Here, too, we encounter a large number 
of diagrams that diverge in the long-wave limit and in 
final analysis a r e  mutually cancelled out. Since the 
concrete calculation of the nonadiabatic corrections to 

the anharmonic processes is in itself of no interest, it 
suffices for us to verify that they a r e  always small  and 
cannot cause any unpleasantness whatever. Even by 
virtue of their definition, which is analogous to ( l l ) ,  
they contain the small factor w/&,, and the absence of 
any divergences from the final result follows from the 
analysis given a t  the end of the preceding section (see 
also Ref. 9). 

5. OPTICAL PHONONS 

We consider now impurity renormalizations of optical 
phonons, assuming that, despite the introduction of 
impurities, the polyatomic structure of the unit cell of 
the crystal lattice on the whole is preserved. The 
foregoing analysis can be directly transferred also to 
this case-it suffices to take into account in Eqs. 
(5)-(8) the fact that the unit cell contains many atoms 
and that additional branches of the vibrational spectrum 
appear. On the whole this does not change the system 
of statements made above, and the differences a r e  due 
only to the fact that the frequency of the optical phonons 
tends a s  k -- 0 not to zero  but to a finite optical fre- 
quency 51 close in value to the Debye frequency 0. 

In the case of optical phonons, just a s  in the case of 
acoustic phonons, diagrams a and b of Fig. 1 cancel 
each other thereby excluding the corresponding renor- 
malization of the optical frequency 51. Real renormal- 
izations can be obtained in the virtual-crystal approxi- 
mation o r  in more complicated approximations (see, 
e.  g. , Ref. 15). 

Of greatest interest in this case a r e  the nonadiabatic 
renormalizations of the spectrum. They a r e  deter- 
mined by the same equations (I?)-(20) a s  the renormal- 
izations of the spectrum of the acoustic phonons. How- 
ever, since the optical frequency is finite, the picture 
is different. Two cases can be singled out. 

We consider f irst  the case of relatively pure metals, 
in which the defect density satisfies the condition 
c < WE, ( T S E >  1). In the long-wave limit rkv < 751, i. e. , 
A >2acF/S1, where a is the lattice constant, we have 
then 

and the renormalizations (17) a r e  small, in which case 
the decisive renormalization is (12). It corresponds to 
finite damping of the optical phonons y:: = m/rM. The 
principal role in the damping of shorter-wavelength 
phonons (A~2aF/51)  i s  played by processes of pure 
electronic interaction 

n I (e. (k) k) l'mu 
T P ~  - 6 kM 

[the limit of Eq. (17) a t  rkv>l] .  

We turn now to the case of dirty metals. Since the 
ratio 51/&, is small, satisfaction of the condition 
c >a/&, (752 < 1) can still be reached at relatively low 
defect densities. An important role is then assumed 
in the wavelength region k >rv, besides the scattering 
of the electrons by the vibrating impurities (12), also 
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by the entire aggregate of the processes considered in 
Sec. 3. The phonon renormalizations a r e  obtained 
from (20), i. e . ,  the damping of the optical phonons in 
this region takes the form 

and the renormalization of the optical frequency is 
6 0 =  0m/M. This form is preserved down to wave- 
lengths h -rv. For  shorter wavelength phonons the 
damping is determined by the pure electron-phonon in- 
teraction y,,, and the renormalization of the optical fre- 
quency vanishes. A substantial contribution to the 
damping of the optical phonons is made also by the an- 
harmonic interaction. It is characterized, however, 
by an entirely different concentration behavior, and i t  
is this which raises hopes of separating these pro- 
cesses in experiment. 

We emphasized that in dirty metals the contribution 
of the electron-phonon interaction to the damping of 
long-wave phonons is smaller than in pure ones (y&) 
>y!Z,')! This result, paradoxical a t  f irst  glance, is  in 
fact easy to understand physically. The cancellation of 
the different contributions to the renormalization of the 
phonons takes place when they a r e  scattered not by in- 
dividual defects independently, but coherently by a 
large number of impurities. In this case we a r e  deal- 
ing in fact with motion of a wave of oscillations in a 
certain "averaged" crystal. For  the scattering to be 
coherent i t  is necessary to satisfy simultaneously two 
conditions: The wavelength and the period of the phonon 
oscillations must be larger than the mean free path and 
the lifetime of the electron, respectively. In the case of 
acoustic phonons, whose oscillation period i s  connected 
with the wavelength, both conditions a r e  satisfied simul- 
taneously at X>rv. For optical phonons there i s  no 
such connection, and simultaneous satisfaction of the 
two coherence conditions can be reached only in suffi- 
ciently dirty metals (c >a/&,), in which the lifetime of 
the electron becomes less than the period of the optical 
oscillations. 

6. CONCLUDING REMARKS 

The analysis performed in this study enabled us to 
verify that the adiabatic approximation is applicable 
with very good accuracy to an impurity metal. It i s  
ensured by a subtle balance between individually di- 
verging contributions of a large number of different 
elementary processes. In the adiabatic approximation 
all  these give a strictly zero contribution, but they play 
a fundamental role in different nonadiabatic phenomena, 
some of which were considered above. In fact, this is 
a consequence of a simple physical requirement: The 
only low-frequency excitations permissible in an elec- 
tron-ion system a r e  those which do not violate strongly 
the local electroneutrality. What actually take place a re  
only small (since the nonadiabaticity parameter is 
small) violations of the electroneutrality, which cause 

a renormalization of the speed of sound and damping of 
the long-wave phonons. 

It must be emphasized that the main statements of 
the present paper a r e  qualitatively valid in all  orders 
in the defect density, i. e . ,  the region of applicability 
of the presented analysis coincides with the region of 
applicability of perturbation theory in the impurity den- 
sity. Its parameter is the quantity l/r&,, and conse- 
quently, a qualitatively new situation can ar ise  only i f  
rc, - 1. It i s  known that in the lat ter  case the ground 
state is altered by the Anderson localization and a fun- 
damentally different approach is required, not connected 
with averaging over the impurity configurations. 

In the investigation of the resistivity of two-dimen- 
sional and one-dimensional metals, the approach to the 
metal-insulator transition from the metal side can be 
realized by using the procedure proposed in Ref. 18. 
However, a s  noted in Sec. 3 of the present paper, the 
diagrams that lead to the appearance of singularities 
in the resistivity18 do not participate in the formation 
of the phonon spectrum. This seems to indicate that 
the adiabatic approximation remains most readily valid 
also in the case of localization, although the final 
answer to this question calls for further analysis. 
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