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The influence of an external magnetic field H on the trapping of 29 cm-' acoustic phonons multiply scattered 
resonantly in electronic E-Qtransitions in the metastable state of Cr3+ ions in ruby is investigated in detail. 
An anomalous nonmonotonic dependence of the degree of trapping on H is observed. It is attributed to 
inelastic scattering of the phonons with production (absorption) of a Zeeman E-level quantum (resonant 
Raman scattering of phonons with spin flip). A theory of multiple resonant Raman scattering of phonons in a 
magnetic field is developed, and the probabilities of the E-M-transitions with and without spin flip are 
determined by comparing this theory with ex-periment. 
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Resonant trapping of acoustic 29 cm" (0.87 THz) 
phonons in crystals  of optically excited ruby A1203 : Cr3+  
has been actively investigated the last  few years.  The 
trapping of the phonons i s  due to a multiple resonant 
scattering by Cr3+ ions in the metastable W E )  state;  
the scattering i s  due to the resonant interaction of the 
29 cm" phonons with the pair of electron levels E and 
2z .  The phonon trapping in ruby i s  of great  general 
interest, and its mechanism4."' differs in principle 
from the known mechanism of radiation trapping in 
gases. ' 9 ' '  

In experiments on optical detection of phonons2-5 the 
degree of trapping of the phonons i s  registered by means 
of the radiation in the R, line of ruby. The kinetics of 
the R, radiation is  investigated in nonstationary experi- 
ments,2,' and i ts  intensity in stationary ones.3 The 
resonant scattering of the 29 cm-' phonons takes place 
in the optically excited volume of the crystal. The 
nonequilibrium phonons a r e  injected into this volume 
either from the outside (in experiments with thermal 
pulses2) o r  "from within" (in the 2A-I3 relaxation fol- 
lowing optical excitation of the ions3.'). 

Experiments with thermal pulses" have revealed, for 
the f i r s t  time ever, a shortening of the phonon trapping 
t ime in the excited volume under the influence of an 
external magnetic field. The effect was attributed to 
Zeeman splitting of the Kramers  levels E and 211, which 
leads to splitting of the line of the E-2A, which leads to 
splitting of the line of the E - f i  phonon transition and 
accordingly to a decrease of the spectral  c ros s  section 
for  the scattering. Phonon trapping in a magnetic field 
was subsequently investigated both under nonstation- 
ary8*'0 and s t a t i ~ n a r ~ ~ l ~ * ' ~  experimental conditions. In 
addition to the already mentioned "bleaching" of the 
volume in the field, the "spectral diffusion" of the phon- 
ons was also considered. 3,6s13 

going through a threshold value H=O. 6 kOe, enhance- 
ment of the trapping s e t s  in, s o  that on the whole the de- 
pendence of the degree of imprisonment on the field in- 
tensity i s  nonmonotonic. The interpretation of the 
phenomenon is  based on a development of an  ear l ie r  
theory617 of trapping of resonant phonons in ruby (Sec. 
3). Anomalous trapping in a magnetic field is  attributed 
to the influence of inelastic phonon scattering with pro- 
duction (absorption) of the  E-level Zeeman quantum [re- 
sonant Raman scattering (RRS) of the  phonons with spin 
flip; Sec. 31. A phonon-multiple-scattering theory that 
takes into account elastic resonant scat tering and RRS 
i s  considered and used a s  a basis  for  a quanitative ex- 
planation of the resul t s  (Sec. 4). From a comparison 
of the theory with experiment we determine a number 
of microparameters of the sys tem,  including the rat io 
of the  probabilities of the E - s  phonon transitions with 
and without spin flip (Sec. 5). The Appendix deals with 
the  decisive ro l e  of the  RRS of the phonons in the Or-  
bach-Aminov spin r e l a ~ a t i o n ' ~ . ' ~  of the E level at  low 
temperatures (Sec. 6). 

1. EXPERIMENTAL PART 

We used a stationary-luminescence method3 wherein 
the relat ive intensity q =R,/Rl of ruby-radiation R lines 
is  measured a t  different powers W of stationary optical 
excitation (i. e . ,  at  different densities N* of the chrom- 
ium ions in the metastable E state) .  We used moderate 
pumping powers W,  at  which the density N* did not ex- 
ceed 10" ~ m - ~ .  Under these conditions, the nonequili- 
brium 29 cm-' phonons a r e  produced mainly in s - E  
transitions in the course of relaxation of the Cr3+ ions 
following their optical excitation to high-energy states. 
The value of 77 i s  governed by the emission of the opti- 
c a l  R, photons (with probability in rescatter  ing 
of the phonons in the excited volume, a s  well a s  by the 
hot and equilibrium R, luminescence. 3*4 It follows f rom 

In the present study (see also the brief communica- balance consider ations that 
t i ~ n s ' ~ ~ ' ' )  we have observed and investigated in detail 
the anomalous dependence of the 29 cm-' phonon trap- q =- p -  ( l + M ) + n o  , : [ T:, I (1) 
ping on the external magnetic field (Sec. 1). The anom- 
aly consists in the fact that with increasing field, on where f, /f, i s  the rat io of the oscillator strengths of the 
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lines R, and R, in the given experimental geometry; T 
is the lifetime of the fl level relative to spontaneous 
decay 2K-B with emission of 29 cm-' phonons (-1 nsec); 
rRl is  the radiative lifetime of the E level (-4 msec); 
,!3=Aza/(Azx + Az) is branching coefficient of the pump- 
ing of the levels s and E upon relaxation from the high- 
e r  states; iio = (e4'/* - I)-' is  the occupation number of 
the equilibrium 29 cm" phonons at the crystal tempera- 
ture T; M is the number of rescatterings of the relaxa- 
tion 29 cm-', averaged over the volume and over the 
spectral contour of the phonon fl-I7 line during the time 
of the phonon stay in the excited volume. Since the 
observed quantity q depends explicitly on M,, i t  serves 
as a quantitative measure of the degree of imprison- 
ment of the 29 cm-' phonons. 

The measurements were made on an oriented single 
crystal of A1,0, : 0.02% Cr3+ measuring 2 x 3 x 10 mm 
at temperatures 1.8 and 4.2 K. The samplewas in a 
homogeneous magnetic field HI1 C, (C, is  the trigonal 
axis of the crystal) of a superconducting solenoid (Fig. 
la) .  The field intensity ranged from zero to 3.5 m e .  
The optical excitation was produced by a "Spectra Phy- 
sics" argon laser ,  model 164-05, with beam diameter 
d = 1.3 mm and power up to 1 W in the 514.5 nm line. 
The beam was directed in the sample perpendicular to 
C,. The laser-excited ruby radiation was extracted 
from the cryostat with a light pipe and projected on 
the slit of a DFS-24 grating double monochromator, 
which separated the R, and R, luminescence lines. The 
detector was an FEU-79 photomultiplier in the photon 
counting regime, followed by amplification and discrim- 
ination of the single-electron pulses. Since q ranged 
from to lo4, depending on the laser power W, the 
radiation was attenuated with calibrated neutral filters. 

The dependence of q on the field was investigated at 
pump powers W corresponding to variation of N* in the 
interval 10'5-10'7 cm-,. Figure 1 shows the measured 
field dependence, normalized to H=O, of the intensity 
of R,(H)/R,(o) of the R, line. At T = 1.8 K and a small 
excitation power W =O.  05 W (curve 1 )  one observes, 

in accord with Refs. 3 and 4, a monotonic decrease of 
R,(H)/R,(O) with the field, down to a level ~ 0 . 2 5  in 
strong fields. The value q = O .  8x10-' observed at W 
= 0.05 W exceeds slightly the equilibrium value Z,, = 10-lo 
at T = 1.8 K, and consequently [see (1 )] the value of 77 is  
completely governed by the trapping of the nonequili- 
brium phonons. 

On curve 2 of Fig. 1, which corresponds to a high 
power W = 1 W, a clearly pronounced anomaly is ob- 
served, namely R$ increases in fields'' H > 600 o e .  
In addition, it is  seen that curve 2 decreases more 
steeply than curve 1 ,  i. e. , with increasing W the ob- 
served R,(H) "contour" becomes narrower. A similar 
tendency was observed in Ref. 13 (in a certain region of 
W). 

Curve 3 of Fig. 1 was obtained at values T=4.2 K and 
W=0.02 W. Under these conditions, the quantity 5i, 
= 5  prevails over the first term in ( I ) ,  due to the 
trapping of the phonons, and the experimental R,(H)/ 
R,(O) dependence (curve 3) turns out to be entirely dif- 
ferent than at T =  1.8 K (curves 1 and 2). The ob- 
served increase of R,(H) of the equilibrium luminescenc e 
with saturation in fields H > 2 kOe is due to the decrease 
of the reabsorption of the optical radiation of the R, line 
following its Zeeman splitting." Corrections for free 
absorption were introduced both in curves 1 and 2 of 
Fig. 1 and in all the succeeding results. 

The points in Fig. 2 show the measurement results 
in the field region H 2 100 Oe of the anomalous field de- 
pendence of q(H) at different pumps W = 0.1-1 W. The 
results a r e  presented in the form of the ratio q(H)/q(H 
= 3.5 m e ) .  Normalization to the value of q in the min- 
imum field H=3.5 kOe, at which the plots approach sat- 
uration (Fig. I ) ,  was chosen for convenience in the 
comparison with the theoretical calculations (see Sec. 
4 below). With this normalization, the curves for dif- 
ferent pump powers W do not intersect (in contrast to 
Fig. 1). 

It is seen from Fig. 2 that with increasing W the 
"depth" of the anomaly q(0.6)/q(3.5) increases, while 
its minimum retains its position at H = O .  6 m e .  The 
quantitative dependence of q(0.6)/q(3.5) on the pump W 
is shown in Fig. 3 (by dark circles). 

FIG 1. Dependence of the R2-line intensity, normalized to 
H= 0, on the magnetic field: 1-T= 1 .8 ,  W =  0.05; 2-T= 1.8, 
W =  1; 3-T= 4 . 2  K,  W =  0.02 W. Inset: experimental geome- 
try. 

FIG. 2. Dependence of the ratio q= R2/R,, normalized to 
H =  3.5  kOe, on the magnetic field at various pump powers W: 
(0-1; 0-0.6; 0-0.4; m-0.2; A-0. 1 w). Solid lines- 
calculation. 
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FIG. 3. Dependence of the relative values of r )  on the pump 
power. Points-experiment, line-calculation. Dark circles 
(left-hand ordinate)-~(0.6)/ ~(3 .5) ;  light circles (ordinate on 
the right)--7(0)/q(3. 5). Calculated curves for H,,,=15 Oe 
(dash-dot) and H,,,=40 Oe (dashed). 

Figure 3 shows also (light circles) the W dependence 
of the relative value q(O)/q(3.5) of q in a zero external 
field. This quantity characterizes the decrease of the 
trapping in a maximum field compared with zero, and 
depends monotonically on W.19 At small W (small N*)  
the magnetic field exerts practically no influence and 
q(O)/q(3.5) r;r 1. With increasing W, the field effect in- 
creases rapidly and the ratio 77(0)/q(3.5) reaches a max- 
imum value =4 (Refs. 3 and 4). With further increase 
of W, this ratio decreases to =2. 

Figure 4 shows experimental plots of the absolute val- 
ue of 77 vs W in fields H=0 .6  kOe (position of the mini- 
mum) and H = 3.5 kOe ("saturating" maximum field). 
These data in conjunction with the relative values of q 
shown in Figs. 1-3 provide a sufficiently complete pic- 
ture  of the dependence of 77 on the magnetic field in the 
interval 0 < H G3.5 lrOe at different pumping powers W. 

2. TRAPPING OF RESONANT FLUORESCENCE AND 
DIFFUSION OF 29 cm-' PHONONS 

The laws governing the trapping of 29 cm" phonons in 
multiple resonant scattering a r e  determined by the 

FIG. 4. Dependence of v on the pump power in fields H =  0 
(triangles), H= 0.6 kOe (dark circles). Calculated curves in 
fields H= 0.6 kOe and 3.5 kOe (solid lines), at H,,,=15 Oe 
(dash-dot), and HI,,= 40 Oe (dashed). 

FIG. 5. Scheme of Zeeman splitting of the i? and 2K levels, 
of the resonant transitions, and of the scattering process. 

elementary act of phonon scattering by excited Cr3+ 
ions. We consider f irst  the case  H=O, when there a r e  
two levels, E and fl, separated by an energy 4 = 2 9  
cm-' [Fig. 5(a)]. The cross  section for the resonant 
scattering of the phonons by a two-level system can be 
represented in the form20*21 

Here w, and w a r e  the frequencies of the incident and 
scattered phonons; r = r,, + r,, r,, = T-' is the reciprocal 
lifetime of the a state (longitudinal width of the line), 
and r, is the ra te  of phase relaxation (transverse width 
of the field). The latter takes into account the influence 
exerted on the resonant elastic scattering of 29 cm-' 
phonons by other channels in the scattering of phonons 
through the 2A and E states. The quantity I?, can de- 
pend on the frequency w ,  or  w .  The first  term in the 
square brackets of (2) corresponds to the elastic pro- 
cess  of resonant f l u o r e ~ c e n c e , 2 ~ * ~ ~  and the second to the 
inelastic process, which can be called (in contrast to 
the first)  phonon luminescence. Luminescence is  sec- 
ondary emission from the "prepared" state 2x and i s  
characterized by absence of phase memory. The reson- 
ant fluorescence is  the usual resonant scattering via 
the intermediate quasistationary state 22 ,  and it pro- 
ceeds with a definite delay of the phase of the scattered 
wave; in this sense it is a coherent process. 

The trapping mechanism depends essentially on the 
ratio of the probabilities of the longitudinal (rII) and 
transverse (I?,) relaxation. In the case r,>> r,, the scat- 
tering act comprises, according to (2), stepwise (un- 
correlated) absorption and luminescence, in which case 
the Holstein-Biberman trapping mechanism is effec- 
t i ~ e ~ ~ ' ~  and leads to the line self-reversal of the typical, 
e. g. , of radiation transport in gases. 

The opposite situation r,<< r,, , when the phase relaxa- 
tion can be neglected, holds for 29 cm" in In 
particular, no role is played by the relaxation r, due to 
two-phonon Raman (nonresonant scattering processes, 
which a r e  responsible for the temperature broadening of 
the ruby R-linesz4: extrapolation of the data of Ref. 24 
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on the R-line width yields at T =2 K a value r, = 1 sec-l. 
In weakly doped ruby at not too strong trapping (see Sec. 
5 below), other phase relaxation mechanisms also be- 
come insignificant, particularly those connected with 
ion-ion interaction, a s  is  confirmed, e. g. , by the data 
of Ref. 25. 

Thus, for 29 cm" phonons at T = 2 K the scattering 
(2) on the E-2Z transition is  practically purely elastic 
(w=wo) (case of resonant fluorescence). The theory of 
trapping of resonant fluorescence was developed in- 
dependently by Levinson6 and by Malyshev and one of 
us; and the so-called spectral transport equations for 
resonant quanta in crystals were formulated there. 
Under certain conditions these equations reduce to 
spatial diffusion of the energy of the electronic excita- 
tions and of the phonons. The diffusion coefficient con- 
nected with the time delay of the phonons in the scat- 
tering and with their ballistic delay between the scatter- 
ing acts is 

D,=l/,T,- 'k-Z(o),  T,=T+ [vk  ( o ) ]  -', 

where k-'(w ) i s  the phonon mean free path in resonant 
scattering, and v is the phonon velocity. The coeffic- 
ient Dl comes into play when the trapping time is mea- 
sured in nonstationary experiments. The diffusion coef- 
ficient of the fi excitations (more accurately speaking, 
of the phonons in the scattering state) i s  

The coefficient Do manifests itself in measurements of 
the degree of trapping in stationary experiments (see 
also Ref. 26). 

It must be emphasized that the diffusion of the reson- 
ant phonon fluorescence has in principle important fea- 
tures that distinguish it as a special quantum phenomen- 
on, in which classical kinetic and quantum wave proper- 
ties a r e  organically combined. The phenomenon is 
unique because both the quantum states of the normal 
crystal vibrations (phonons) and the local purely elec- 
tronic a state manifest themselves in the multiple scat- 
tering process a s  virtual states. Thus, in particular, 
no real  population of the level takes place in the el- 
ementary act of resonant fluorescence. For a consis- 
tent interpretation of the trapping it is  important to 
take into account the fact that the "resonant quanta" per- 
tain in the spectral transport theoryas7 not to purely el- 
ectronic states o r  to phonons a s  normal lattice vi- 
brations, but to 2Z states as phonon-scattering states 
and to phonons a s  asymptotic scattering states. The 
latter a r e  described in the theory of trapping of reson- 
ant by a Wigner density matrix in the 
Keldysh representation2' and a r e  spec if ic packets of nor- 
mal vibrations. The time [vk(w)]-' for such packets has 
the meaning of the free-path time. On the other hand, 
the total delay time T, takes into account both the delay 
of the phonons in the E- 2K resonant fluorecence and 
their delay due to the group velocity of the resonance 
phonons." The time T, turns out to be numerically 
equal to the sum of the lifetime T of the electronic 2A 
state and the time [vk(w)]-', where v i s  the phonon vel- 
ocity in the unexcited (nonresonant) region of the cry- 
stal. '3.7.26 

In light of the foregoing, the heuristic notion that the 
delay time in scattering is the "lifetime T of a reson- 
ant quantum in the form of an electronic excitation" 
is  incorrect. The free-path time [vk(w)]-' is likewise 
not the real  "time that the resonant quantum stays a s  
a crystal phonon. " In the latter case we would have a 
spectral broadening of the resonant diffusing quantum, 
due to the uncertainty of the energy of the crystal vi- 
brations Wvk(w), whereas the spatial diffusion of the 
resonant fluorescence i s  due to elastic scattering and 
takes place without a change of frequency. In addition, 
the group velocity of the phonons in a resonant volume 
differs from v. The equality T, = T + [vk(o)]-' should 
therefore beunderstood a s  a theoretically deduced relation 
between the two quantities T, and {T + [vk(w)]-'1, whose 
physical definitions a r e  by far not the same. The same 
remark holds also for the equality T o  = T. With these 
remarks taken into account, the detailed balancing prin- 
ciple, which establishes the connection between the 
spectral densities of the electronic excitations and of the 
ph~nons," '~  also assumes a different character under 
conditions of resonant -fluorescence trapping. 

The distinguishing features of the scattering of 29 
cm-' phonons in ruby a r e  reflected also in the proper- 
ties of the optical R, radiation, which under conditions 
of trapping of nonequilibrium phonons cannot be legiti- 
mately regarded a s  luminescence, i. e .  , a s  emission 
from a "prepared" state (221). Under these conditions 
the frequency of the R, line is equal to the sum of the 
frequencies of the phonon and of the transition E-4A2, 
which differs in principle from the frequency of the 2A - 4A, transition. The detected R2 radiation is con- 
sequently the result of a sort  of phonon-phonon scatter- 
ing via the virtual 221 state. 

The theory of diffusion of resonant f luore~cence,6*~ 
was confirmed in experiments on the trapping of 29 
cm-' phonons in ruby. In particular, the quadratic con- 
centration dependence 11 - N*' observed in weak trap- 

is  a direct reflection of the diffusion mechanism 
of the emergence of 29 cm-' phonons from the volume. 
Taking the foregoing into account, we neglect in the next 
section the transverse relaxation, assuming2' I', = O .  

3. RESONANT RAMAN SCATTERING OF PHONONS 
IN A MAGNETIC FIELD AND QUALITATIVE 
INTERPRETATION OF THE EXPERIMENT 

When a magnetic field HIIC, is turned on, the Kramers 
doublets E and 221 a r e  split, with respective g-factors'.28 
g, =2.445 and g, = 1.5. As a result, the form factor of 
the 2A-I3 transition i s  transformed into a quartet [Fig. 
5(b)] that has resonances at the frequencies A* (6,* 6,)/ 
2, where 6 , , ,  =glS2pBH. The more intense internal lines 
of the quartet correspond to transitions without spin 
flip, and the outer lines correspond to spin flip. For 
experiments in a magnetic field, the most important is  
the spectral characteristic of the scattering, and we 
confine outselves here therefore to an isotropic approxi- 
mation (the influence of the anisotropic scattering of 29 
cm-' p h o n o n ~ ' ~ . ~ ~  is discussed in Secs. 4 and 5 below). 

In contrast to resonant fluorescence of a two-level 
system [Fig. 5(a)], a system of four Zeeman levels 
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[Fig. 5(b)] admits, besides elastic scattering, also in- 
elastic scattering with change of the phonon frequency 
by an amount i6,. This i s  resonant Raman scattering 
(RRS) of phonons. Its distinguishing feature in this 
case is that a local magnon 6, =g,p,H is produced (or 
vanishes) in the electron system (Cr3+ ions). The cor- 
responding differential scattering cross  sections can be 
easily obtained by perturbation theory for second-order 
processes with allowance for the damping of the inter- 
mediate states (see, e. g. , Refs. 17 and 20): 

The partial cross  sections uaa and a,, (respectively "-" 
and "+" in [3(a)] correspond to elastic channels in scat- 
tering, while o, and u,, [" -" and "+" in (3b)] corre- 
spond to inelastic channels of RRS with spin flip in the 

state. By u0 in [3(a), (b)] is  denoted the cross  section 
for scattering at the line center (wo= A) at H=O; pa 
and p, a r e  the populations of the Kramers B,, , sublevels 
(pa + p ,  = 1);  r ' and r - a r e  theprobabilities, per unit time, 
of spontaneous 2A-E transitions without and with spin 
flip, respectively, and I?' + r-= I? = ? ' - I .  It is  known 
from Ref. 1 that l/rf + l/r-= 15 .lo-' sec,  and there 
a r e  also estimates r =  (1-3)x 109 sec-' (Refs. 31,32) 
and r - / r + - 1 / 6 0  (Ref. 31). 

Figure 5(c) shows schematically the scattering pro- 
cesses corresponding to individual partial cross  sec- 
tions in (3). For the sake of clarity, the example il- 
lustrated in the figure pertains to the case  when the 
Zeeman splittings exceed the line width (6,,, > r), and 
the frequency w of the incident phonon is at resonance 
with one of the spin-allowed transitions (a-a'). In fact, 
both upper intermediate states (a' and b') contribute to 
each of the four partial cross  sections. 

We consider now qualitatively the phonon trapping in a 
magnetic field. Since the RRS i s  connected with spin- 
flip transitions, its cross  section is of the order of 
smallness r-/r+ relative to the elastic scattering. For 
this reason, in the case of weak trapping (small M) the 
main contribution is  made by elastic scattering. In this 
case a characteristic monotonic decrease of q(H) with the 
field takes place, due to the smearing of the resonance 
as a result of the Zeeman splitting of the levels4r13 (see 
curves 1 in Figs. 1 and 6). 

For sufficiently strong trapping (large M), the RRS 
is repeated many times and comes into play despite the 
smallness of r-/r+. Since the change of the phonon fre- 
quency i6, in each RRS act i s  equally probable (at pa 
= p , ) ,  repeated scattering in a weak field (b,<< r) causes 

FIG. 6 .  Calculated dependence of the ratio .r) = R 2 / R I ,  nor- 
malized to H = 3 . 5  kOe, on the magnetic field for different 
values of r-/r+ : 1-0; 2-0.02; 3-0.05; 4-1. 

spectral diffusion of the phonons. "he frequency dis- 
continuities 16,l increase with increasing field, there- 
fore the decrease of q(H) in the field becomes steeper 
[narrowing of the "resonant contour" q(H),Ref. 131. 

Of fundamental interest is the strong-field case,  when 
the function q(H) changes qualitatively. In this situation 
( 6 , 3  r) the spectral distribution of the trapped phonons 
is concentrated in the region of the quartet of resonant 
frequencies A i  (6, + 6,)/2 [see Fig. 7(c) below]. Let us 
note some important properties of the inelastic scatter- 
ing of phonons in this case, using as  an example Fig. 
5(c), where the frequency w, of the incident phonon i s  
a t  resonance with the transition a-a' [do = A + (61 - 6,)/2]. 
In the Stokes process [q, in Fig. 5(c)] there appears a 
phonon with frequency w,  - 6, , which is a t  resonance with 
another transition (b - a ' )  and consequently can be again 
effectively scattered. Similar RRS processes contribute 

FIG. 7. Spectral functions at k,L= 720, ypL/v= 0.05; a- 
loga ( w )  in a field H =  0.6 kOe at  r-/r+= 0. 05 (solid line) 
and r-/ I?+= 1 (dashed); b-p(w) in a field H =  0.6 kOe at 
r-/r+ = 0.05 (the dashed line shows the form factor of the 
B -  2.Z transition); c-p(w) in a field H = 3 . 5  kOe at  r-/r+ 
= 0.05.  The spectral functions can be symmetrically continued 
into the frequency region w < A  (it was assumed that pa =pb). 
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to equalization of the phonon density among the reson- 
ances. On the other hand, in the anti-Stokes process 
uba, an "off-resonance" phonon w, + 6, appears, with a 
frequency that exceeds the maximum resonant frequency 
of the Zeeman quartet. This phonon has a high probab- 
ility of leaving the excited volume without rescattering. 
The inelastic processes with production of phonons w, 
* 6,, one of which can leave the volume freely and the 
other is  effectively scattered in it, take place for each 
of the four resonant frequencies (w,= A *  (6,*6,)/2). 
Off -resonance phonons can appear here (depending on 
the position of oo) in Stokes or  anti-Stokes inelastic 
scattering. It is obvious that scattering processes with 
production of off-resonance phonons should decrease the 
trapping efficiency greatly. If r- and I'+ a r e  unequal, 
the trapping efficiency is decreased also by processes 
of the first type. 

We consider now the magnetic-field dependence of the 
partial cross sections for phonon scattering. Let, e. g., 
wo= A +  (6, - 6,)/2 [Fig. 5(c)]. It i s  seen from [3(a), (b)] 
that the cross  sections qa and u,, for the elastic proces- 
ses ,  as well as o,, for the inelastic process that leads 
to a redistribution of the density of the phonons within 
the quartet, a r e  decreased by a factor of two when 6, 
increases from 0 to 6,>> l?. The cross section Uba for 
the inelastic Raman process behaves differently and 
leads to the appearance of off-resonance phonons. In 
strong fields (6,, 6,>7 r) (the cross section o tends to 

b4' zero like H-'. This is  a manifestation of the reson- 
ance" defect d =  6, - 6, which is the characteristic of 
RRS [see Fig. 5(c)] and increases with increasing H. 
A similar dependence (aH-') is  exhibited in strong fields 
by the cross  sections for inelastic scattering with ap- 
pearance of off-resonance phonons, and in the spectral 
region of the remaining three transitions ( b  - b ', a - b', 
b -a') .  Since these processes undoubtedly lower the 
degree TJ of the trapping, their suppression (n H-') with 
increasing H should increase q in the corresponding re-  
gion of H. This is the qualitative explanation of the ex- 
perimentally observed nonmonotinic q(H) dependence. 

4. TRANSPORT EQUATIONS UNDER CONDITIONS 
OF MULTIPLE RESONANT RAMAN SCATTERING OF 
29 cm-' PHONONS 

The physical interpretation of the theory of resonant 
dragging, given in Sec. 2, leads to kinetic premises in 
the derivation of the equation that governs the process. 
This classical approach to the theory of multiple scat- 
tering from a weakly bound system i s  well known33 and 
is justified if the scatterer density is  low enough. In 
contrast to equations of the Boltzmann type, the depar- 
ture term in the equation for the radiant transport of 
electronic excitation is connected exclusively with the 
natural lifetime T, and this is the distinguishing feature 
of the collision integral in this equation. The corre- 
sponding balance equation takes the form 

~ ( r ,  o ,  t)=-I'(D(r, o ,  t ) + S ( r ,  o ,  t ) + A ( r ,  O ,  t ) ,  (4al 

where @(r, w ,  t )  is  the spectral density of the 2;4 excita- 
tions: or  more accurately speaking the density of the 
phonons in the scattering state. This function has the 
meaning of a source of phonons of frequency w , scatter - 

ed by ions at the macroscopic point r at the instant of 
time t ,  and can be normalized the local density of the 2A 
excitations 

J @ ( r ,  o , t ) d o = n ( r , t ) ,  

which is directly connected with the measured integrat- 
ed intensity of the R, line: 

Rz - n  (r ,  t )  d3r. 

The function ~ ( r ,  w, t )  is the spectral density of the phon- 
on pumping, and is connected in this case with the form 
factor I(w) of the a - E  transition. The collision inte- 
gral S(r,  w,t) is  due to rescattering, by the ions at the 
macroscopic point r of the phonons that were scattered 
by all the remaining ions at the instants of time pre- 
ceding t :  

In this expression, the Bouguer exponential factor takes 
into account the extinction of the phonons between the 
scattering acts, a s  a result of both the resonant scat- 
tering 

and of the anharmonic damping with the time constant 
y;'; the 6 function takes into account the retardation of 
the phonons; o(w ', w)/4rr Ir - r ' I i s  the impact solid 
angle a t  which the cross  section u(w ', w )  at the point r 
is seen from the point r'. Following Sec. 3 ,  we have 
confined ourselves in [4(a), (b)] to the case of isotropic 
scattering. 

Expressions [4(a), (b)] give the sought transport 
equation. In the presence of RRS in a field H t 0, this 
equation agrees with the relations, obtained in Ref. 6, 
between the spectral densities of the phonons and the 
electronic excitations, and can be derived in this case 
from these relations (see the Appendix). The region of 
applicability of (4) i s  limited by the condition k ( o ) i  
<< 1 (Ref. 7) o r ,  equivalently, I n(w) - 1 I<< 1, where 
n(w) is the complex re f~ac t ive  index of the resonant 
medium. Since h-80 A, 0,-0.5 .lo-l3 cm2, this limits 
the density to N * << loz0 ~ m - ~ .  In this approximation we 
neglect, in particular, the interference of the phonons 
scattered by different ions (the so-called scattering by 
a weakly bound system33). In addition, no due allow- 
ance is made in (4) for the temporal dispersion of the 
spectra ~ ( w ' ,  w )  and k ( w l ) ,  which is connected with the 
dynamics of the elementary scattering acts. 26 This re- 
mark is significant for pulsed experiments. In the 
stationary regime d=O and Eq. (4) i s  valid for an ar- 
bitrary form of the resonant-scattering cross  sections 
u(w ', w). In particular, it is valid also in the presence 
of phase relaxation r, #O.  If u(w ', o) = o(w ')Z(w), then 
the variables r and w in (4) separate with a correspond- 
ing factorization of the function 

o ,  t ) = n ( r ,  t ) I ( o ) ,  

with the local density n(r,t) satisfying the Holstein equa- 
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tion: which is  thus a particular case of (4). For pure 
elastic scattering 

Eq. (4) coincides with the equation obtained in Ref. 7 for 
the trapping of resonant fluorescence. 

As applied to the conditions of this experiment, Eq. 
(4) was considered in the regime of stationary homo- 
geneous pumping A(r , w , t )  = l?I(w). The cross  section 
(3), which includes the RRS, was used for o(w1,w). 
Since the degree of trapping is  determined by the small- 
est linear dimension of the excited volume, this vol- 
ume, in the form of a cylinder of diameter d 3 1.3 mm 
and length 3 mm, was approximated by a flat layer of 
thickness L (the influence of the shape of the volume at 
k&>> 1 i s  not connected with the RRS channels, i. e. , 
it i s  the same as  in the ordinary diffusion problem3'). 
The L-containing parameters koL and y&/v were chosen 
by comparison with experiment. Thus, we arr ive  from 
(4) at the equation 

L 

0 ( z ,  0 )  = I ( O )  + j d ~ '  jamf 0 ( z ' ,  o , ) K ( z ~ - z ,  o r ,  0 )  (5a) 
a 

with an integral-exponential kernel 

In the case of elastic scattering it coincides formally 
with the inhomogeneous Milne equation. Equation (5) 
was solved numerically with a computer. At a normal- 
ization l(w)dw = 1, the function 9 ( z ,  w )  in [5(a)] i s  
Co~eCted  with the number M in (1) by 

We have considered also the transport equation with 
allowance for the anisotropic resonant scattering of 
longitudinal phonons in ruby. 4 9 3 0 * 3 6  In the assumed ex- 
perimental geometry (see Fig. I),  multiple resonant 
scattering leads to emission of longitudinal 29 cm-' 
phonons from the volume in a narrow cone along the C, 
axis. 4*29 TO ascertain the role of the anisotropic trap- 
ping in experiments in a magnetic field, we considered 
Eq. (5a) with a kernel 

(5c) 
corresponding to the case of "dipole" directivity pattern 
(sinz(?) of the phonon scattering near the C3 axis.36 

Account was also taken in the calculations of the in- 
homogeneity of the distribution of the excited Cr3+ ions 
in the volume of the beam and in its vicinity (the light 
halo), which acts a s  a surface layer that reflects the 
phonons into the interior of the volume. In the numer- 
ical solution of (5) we solved a specially selected factor 
(Y in the relation 

that corresponds to the boundary condition of the differ- 
ential diffusion problem. The coefficient cu was chosen 
to fit the dependence of q(0.6)/q(3.5) on W (Fig. 3), 

which is sensitive to its value in the region of medium 
and small W. Satisfactory agreement with experiment 
i s  obtained at a = 0.6 0.2 (theoretic ally, in the case of 
an abrupt boundary and a uniform distribution we have 
CY = 1.4). The parameter l?-/rt is  not very sensitive to 
the choice of a ( a  f 0 within certain limits), since it is 
connected mainly with the nonmonotonic behavior of 
q(H) (Fig. 6), which at large W is practically indepen- 
dent of a. The boundary conditions that take into ac- 
count the inhomogeneity of N*(r) make it possible thus 
to obtain agreement between the family of the calculated 
q(H)/q(3.5) curves with the experimental ones (Fig. 2) 
in a wider interval of 'W. We note that in experiments 
with very weak pumping (see footnote 5 below) a linear 
q(N*) dependence was observed, corresponding to (Y 

30.8. In light of the foregoing, an attempt to take into 
account the shape of the volume would be an exaggera- 
tion of the accuracy, since the inhomogeneity of N* i s  
a more substantial factor. 

5. COMPARISON OF CALCULATION WITH 
EXPERIMENT. DISCUSSION 

The results of the calculations of the value of q and 
of other quantities that characterize the multiple scat- 
tering a r e  shown in Figs. 2-4, 6, and 7. In these cal- 
culations we obtained o r  used the concrete values of the 
physical parameters r - / r t ,  T, y , , p , , , ,  a s  well a s  
k,,L (ko = N*oo). 

Figure 6 shows the theoretical plot of q(H)/q(3.5) at 
different values of I?-/l?'. At r - = 0  the scattering is 
elastic4' and the corresponding q(H) takes the form of a 
resonance contour (curve 1 of Fig. 6). An q(H) depen- 
dence of this type i s  observed in experiment in the case 
of weak trapping, when the influence of the RRS is min- 
imal (Fig. 1, curve 1). With increasing l?-/r+, the 
shape of the calculated q(H) curve changes, a minimum 
appears at H=0 .6  kOe, and the nonmonotonic behavior 
of q(H) is  pronounced stronger the larger the ratio l?-/ 
I?'. Thus, the solution of the transport equation that 
takes into account multiple RRS of the phonons confirms 
the qualitative interpretat ion, discussed in Sec. 3,  of 
the phenomenon. 

Figure 2 shows theoretical plots of q(H)/q(3.5) at l?-/ 
r ' = 0.05 and at different values of the parameter koL, 
corresponding to the given laser power. The calculated 
curves agree with the experimental ones. Satisfactory 
agreement is  obtained also for the dependence of the 
depth of the anomaly q(O.6)/q(3.5) on W (Fig. 3). The 
theoretical and experimental dependences of q(W) in a 
fixed field (sufficiently strong: H = 0.6 and 3.5 kOe) 
a r e  also in agreement (Fig. 4). 

In a zero external field (H=O), however, there is a 
noticeable discrepancy between theory and experiment 
both for the function q(W) (Fig. 4) and for the ratio 17(0)/ 
q(3.5) (Fig. 3) . We note that in the calculation of the 
properties of trapping in a zero magnetic field we took 
into account the presence of internal local magnetic 
fields HI,, = 15 Oe (Ref. 1). Figures 3 and 4 show the 
calculated curves for H,,, = 15 Oe (dash-dot), a s  well 
as  for the value H ,,., =40 Oe (dashed). Although the last 
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variant agrees best with experiment, the value H,,, uration of q(H) (Figs. 2 and 61, the densities p of both 
= 40 Oe is apparently not realistic. resonances become equalized and in addition the over- 

tones vanish almost completely. This is due to the sup- 
A possible cause of the disagreement with the calcula- 

pression (mH-'), in a strong magnetic field, of the cross  
tion at H = 0  is the neglect, in the scattering, of the in- 

section for scattering with production of off -resonance 
terference due to the Kramers degeneracy of the a phonons. Equalization of the phonon density in the spec- 
level. In the case of multiple scattering, in interference 

t ra l  region of the spin-allowed and and spin-forbidden 
leads to diffusion of the ~ o h e r e n c e , ~ ~  and under mul- 

transitions takes place only in the case of strong trap tiple-scattering conditions it influences, in addition, the 
contribution of the RRS and the efficiency of the spectral ping and is  caused according to [3(b)] by the equality of 

diffusion. In this sense, the trapping mechanism turns the cross  sections of the corresponding RRS channels. 

out to be simpler in strong fields (where coherence in The experimental and theoretical relations (Figs. 2, 
the a state i s  violated) than at H =O.  The quantity 3, and 4) agree a t  definite values of the parameters that 
q(H), in particular, i s  therefore normalized to the value enter in the calculated formulas. The ratio of the prob- 
in a strong field H = 3.5 W e  (Fig. 2). abilities of the 22-E transitions with and without spin 

The agreement between theory and experiment (Fig. 
2) in region H 2 0.5 W e ,  which covers the section where 
q(H) is anomalous and nonmonotonic , confirms con- 
vincingly the decisive role of the RRS of the phonons in 
trapping in a magnetic field. The multiple RRS results 
in a substantial redistribution of the phonons over the 
frequencies, and is  this which i s  responsible for the 
anomalous behavior of q(H) (Fig. 2). The latter is an 
integrated characteristic of the distribution function. 
The spectral functions cakulated directly under con- 
ditions of multiple RRS a r e  shown in Figs. 7(a), (b), (c). 

flip turned out to be I?-/J?+=O. 05, which is three times 
larger than the theoretical value. Using the obtained 
ratio r-/l?+ and the h o w n  value l / r +  + l / r - =  15 nsec 
(Ref. I ) ,  we get r + = 1 . 4 x 1 0 9  sec-', r-=0.07x109 sec-', 
and a 2z-level lifetime T = ( r +  + r-)-' = 0.7  nsec (kine- 
tic e ~ p e r i r n e n t s ~ ~  yielded T = I. 1 nsec). From the ex- 
pressions' for qo at T = 0.7 nsec and 7Rl = 4-5 msec we 
estimate the pumping branching coefficient at Pz0.5 ,  
which agrees approximately with the data32 obtained at 
X,,,=580 nm. In the estimate we chose for the ratio 
of the oscillator strengths of the lines R, and R, the 
ratio f2 /f, = 1, which was measured by us in the experi- 

The function a(w) [Fig. 7(a)] is defined in terms of the mental geometry (Fig. 1). 
average number of scattering acts by 

From a comparison of the experiment and the calcula- 

M =  S ~ , ( w ) a ( o ) l ( o ) d o ,  
tion we estimated also the width Av of the phonon line 
of the 2z-E transition, which turned out to be uniquely 

where M,(w) is the number of scatterings of a mono- connected with the position of the minimum H = O .  6 kOe 

chromatic phonon of frequency w in pure elastic scat- of the q(H)/q(3.5) dependence (see Fig. 2). The ob- 

tering. The function a(w) is connected in a definite tained value Av=0.012 cm-' agrees with the result of a 

manner with the solution of Eq. (5) and takes into ac- direct measurement of the form factor of the E-2A tran- 

count the influence of the inelastic scattering channels. sition. 3B The =-level lifetime T = 0.7 nsec corre- 

It provides a clear representation of the phonon fre- sponds to the homogeneous width of the 0.008 cm-' lev- 

quency distribution. In the frequency region where el, and correspondingly its inhomogeneous width6) is  ap- 

a(w) < 1, the spectral density decreases a s  a result of proximately equal to 0.01 cm-'. 

inelastic scattering, while in the region where a(w) 
> 1 it increases; on the other hand if l"-=O,i.e., there 
is no inelastic scattering, then a(w) = 1. Figure ?(a) 
shows a plot of loga(w) calculated for H = O .  6 W e  at  
two values of rq/r+=O. 5 and 1. It is seen that the 
multiple RRS produces effectively nonresonant phonons 
corresponding to "overtones" at frequencies separated 
from the resonant frequencies by amounts that a r e  mul- 
tiplies of 6,. In the resonance region, the spectral den- 
sity decreases (loga < 0). At r-/r+= 1 it comes into 
play at the frequencies of both transitions (a-a' and a- 
b ' )  and is due exclusively to the transfer into the region 
of the overtones. At r - / r e = 0 . 0 5 ,  where there is an 
additional redistribution of the phonons among the spin- 
allowed and spin-forbidden resonances, we have a < 1 
only in the region of the allowed a-a' transition. 

As for the parameter y&/v connected with the anhar- 
monic decay of the phonons, it was found that its in- 
fluence on the properties of the trapping in the magne- 
tic field, in the interval 0 < y,< (4 psec)-', can be com- 
pensated by a suitable choice of the parameter k& 
= o$\r*L, which is  likewise not known beforehand with 
the required accuracy (see footnote 8 in this connec- 
tion). For example, k,,L is  found to equal 540 at y, 
= O  (W=1 W). On the other hand if we put y,J/v=0.05, 
where v = O .  7 x 1 0 ~  cm/sec and L = 1.3  mm, and y, 
= (4 ~.~sec)-' , then koL is equal to 720 a t  W = 1 W. In 
both cases,  the agreement with experiment is satis- 
factory (the calculated curves shown in all the figures 
pertain to the case y&/v = 0.05 and k& = 720 at W 
= 1 W). In both cases satisfactory agreement with ex- 
periment is obtained (the calculated curves shown in all  

Figures 7(b) and 7(c) show the volume-averaged spec- the figures pertain to the case y,  L / v  = 0.05 and ko L = 720 a t  
tral  distribution of the trapped phonons for r-/r+ W = 1 W). Plots of q(H) and q(W) identical to those ob- 
=0.05. It is seen that in a field H = O .  6 m e ,  corre- served a r e  obtained also in calculations that take aniso- 
sponding to the minimum of q(H) (Fig. 2), the phonon tropic effects into account, even though the values of 
densities in the region of both resonances and the over- q calculated from (5a) and (5b) for the same values of 
tones a r e  comparable in value [Fig. 7(b)]. In a strong koL differ by an approximate factor of 2. The last c i r -  
field H =  3.5 kOe [Fig. 7(c)], which corresponds to sat- cumstance agrees with Refs. 4 and 30, where special 
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investigations were made of the anisotropic properties 
in the trapping of 29 cm-' phonons. Thus, since we do 
not know accurately the correspondence between the 
scales of W and k&, it is impossible to draw on the 
basis of experiments in a magnetic field unambiguous 
conclusions concerning the value of the anharmonic con- 
stant?) y,, nor concerning the influence of the aniso- 
tropy of the scattering. In these experiments, a s  al- 
ready noted, it is primarily and characteristically that 
the frequency dependences of the cross  section mani- 
fests itself. The value of the parameter koL obtained 
with allowance for the anisotropy in accord with (5c) 
seems to be the most correct. At O< y,< (4 psec)-' 
it turns out to equal (1-1.5)x103 (at W = 1  W). There- 
fore at8) N =  (1-3)x1017 cm-3 and L = 1.3 mm we obtain 
the estimate 0, = (0.3-1.0) x 10-l3 cm2. It agrees with 
the expression 0, = k 2 r / 2 ~ A v  for the cross  section for 
resonant scattering at an average wavelength A = 80 A 
of the 29 cm-' phonon. 

We have also undertaken calculations of the q(H) de- 
pendence under conditions of Holstein trapping;.l0 when 
o(r~,, w)  = o(w,)I(w). In this case the value of q was found 
to be practically independent of the field in the region 
H < 0.5 m e ,  to increase slightly to a level q(H)/q(0) 
= 1.1 at H =2  m e ,  and to fall off in very strong fields, 
3-6 m e ,  to the level 0.7-0.5 (which depends on r-/r+). 
The large value of the field, which decreases substan- 
tially (and increases with N*), is connected with the 
Holstein-trapping characteristic frequency w* by the 
condition k(w*)L = 1. In the case of strong trapping 
(large N * )  the frequency w* lies far on the line wing, 
s o  that the corresponding field is strong. The described 
calculated behavior of g(H) differs greatly from the ob- 
served behavior (Figs. 1 and 2). 

Thus, the experiments performed in a magnetic field 
confirm convincingly that in ruby with low chromium 
density the trapping of the 29 cm" phonons a t  T =2  K 
and under moderate excitation (N* < lo'? cmm3) is due to 
multiple scattering of the type of resonant fluorescence 
and RRS. This is  caused by the negligibly low rate of 
phase relaxation in the 'E state of Cr3' under these con- 
ditions. The phonon-trapping picture can, however, 
change with increasing temperature, with increasing 
ra te  of phase relaxation, as  well a s  with the increasing 
density N* of the excited ions. In the latter case,  the 
width of the E level, due to the same multiple scatter- 
ing of the 29 cm-' phonons, increases. This width i s  
connected with the probability of the phonon-induced E-  
2A transition, which is equal to I'q 5 10' M.  The result 
is  inelastic Holstein scattering of the phonons, of the 
luminescence type, in (2). This mechanism of phase 
relaxation of the l? level is  probably the cause of the 
broadening of the q(H) "contour" with increasing N* 
in the case of strong trapping. 3p13 

6. RRS OF 29 crn-' PHONONS AND SPIN-LATTICE 
RELAXATION IN  THE ,!?(2 E) STATE OF cr3' IONS 
IN RUBY 

The spin-lattice relaxation in the E state of the Cr3' 
ions in ruby a t  low temperatures i s  due to the Orbach- 

Aminov rne~hanisrn, '~~'? which is  connected with the 
presence of the nearby fl level.' The RRS of 29 cm-' 
phonons with spin flip in the E state (q, , oba) a r e  the 
elementary acts of this relaxation. It follows thus from 
the results of the present paper that the Orbach-Aminov 
relaxation in ruby a t  T = 1.8  K i s  a two-phonon RRS, 
rather than the ?.?,,,-2A one-phonon process of absorp- 
tion of a 29 cm-' phonon followed by the decay fl-Ea, ,  
(Refs. 1 and 31). In the latter case,  the Holstein-Bi- 
berman trapping mechanism would be in action. 

Strongly dependent on the spin relaxation is  the pop- 
ulation ratio pdp, of the Kramers E,,,  sublevels that 
influence the scattering c ross  section (3) and the degree 
of phonon trapping. The populations pa and p, can differ 
in magnitude. The reason is the unequal Boltzmann 
population of the Zeeman sublevels *1/2 and * 3/2 of the 
ground state 4A,, which leads to unequal pumping of the 
Ea,, subleveIs because of the spin-memory effect41 and, 
in addition, to a difference between their radiative 
times on account of optical reabsorption. 42 The trap- 
ping of the 29 cm-' phonons is  accompanied by spin re -  
laxation in the l? state and contributes therefore to the 
equalization of pa and p,.' In the general case,  the 
problem of finding the values of p,  and p, consists of 
obtaining a self-consistent solution of the corresponding 
balance equations for the Ea,,sublevels and for the phon- 
on transport equation under conditions of multiple reson- 
ant scattering. In our experiments, however, which 
were performed in moderate fields (H c 3 . 5  m e ) ,  the 
Boltzmann factor does not manifest itself in the 4A2 
state. This is  seen, in particular, from the observed 
invariance of q(W2 0.1 W) when the crystal temperature 
is  raised from 1.5 to 3 K. This is  also confirmed by an 
estimate of the spin-relaxation time T;' " 4 r - r + q / r ,  
which is numerically equal to the radiative time 7,' of 
the B level at q =lo-'. On the other hand, if q>> 
as is the case in the present study, the spin manages to 
"flip9' many times during the lifetime of the E level. 
The population equality pa =p, is  then established, a s  
was indeed assumed in all  the calculations. 

We consider now qualitatively the question of trapping 
under conditions when p, #p,. The form factor of the 
23-73 transition is then transformed into an asymme- 
tr ical  quartet. In weak fields (6,, 6,<< r) a directed 
spectral transfer of the phonons ar ises  in this case. It 
proceeds more rapidly than "ordinary" spectral dif- 
fusion. In a strong field, a larger role i s  assumed by 
inelastic scattering with redistribution of the phonons 
among the resonances. In this case (since the phonons 
a r e  transferred to a weakly absorbed resonance) the 
degree of trapping can decrease noticeably, a s  observed 
in experiment. 14*15 In Ref. 43, an appreciable devia- 
tion of  pa/p, from unity was directly observed in very 
strong fields (H = 30 m e ) .  It appears that an important 
ro le  was played in the experiments of Ref. 43 by the al- 
ready mentioned mechanism of accelerated release of 
the phonons a s  a result of inelastic scattering. It leads 
to a decrease of q and consequently of the r a t e  of spin 
relaxation Ti', thereby contributing to preservation of 
the inequality pa #p, under conditions of a strong Zeeman 
splitting of the 4A, state and of the spin memory when 
pumped. 
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APPENDIX 

In the derivation of the integral transport equation 
from the relations of Ref. 6 it is convenient to change 
over to the spectral balance relation (3.20) of Ref. 6 
to the space-time Fourier transform: 

I - i~+ iuxk+y ,+uk(o )  ] s ( o ,  q, k ,  a) 
A ( o  4)  @ ( o )  A ( o  9 )  = @ ( k ,  o )  --i-+ A ( k ,  o r ,  a )  w ( o f ,  o ) d o t .  

(Al) 
P O  60 PO 

Here A(k,w',G) and s(w,q,k,3) a r e  the Fourier trans- 
forms of the spectral density of the 2A excitations and 
of the phonons of the mode @, which were introduced in 
Ref. 6: 

A (k ,  o',  a)=@ (or)  Jd3r  J dt e i ' t - i k * ~ ( ~ ,  o', t ) ,  (A2a) 

s (a, q, k ,  a )  = J d3r Jdt  e'"-"'s ( o ,  q, r, t ) .  (A2 b) 

In (Al) the unit vector i s  ~ = q / ~ ;  the quantities Y:, 
vk(w),P, T=r-' a r e  designated in (6) by ~,,,y*(w),~), T 

respectively; the function w(wl, w)  in (All i s  the nor- 
malized scattering spectrum o(wl, w)/o(wf), which i s  
expressed in terms of the quantity R(wf, w )  of Ref. 6 
in the following manner 

(A31 
Using (Al) a s  well a s  the spectral relation (3.16) of 
Ref. 6, we arr ive  at the following integro-differential 
equation: 

r 1 = 6  t - -  exp -r k ( o ) + L  - ( ) [ u I } * n e .  

This is the kernel usually encountered in the theory of 
multiple scattering [see, in particular, (36) of Ref. 71. 
It is obviously connected with the diverging radial wave 
of the scattered particles (in this case,  phonons) with 
account taken of their extinction, but without allowance 
for the delay due to scattering and to the change of the 
group velocity of the phonons in the dispersive medium 
(resonant volume). Equation (A4) i s  therefore mean- 
ingful, strictly speaking, only under stationary con- 
ditions, when the delay in scattering is  insignificant 
[just as  the delay factor 6(t - r /v)  in (A5)]. This re- 
striction is  due to the fact that the Laplace transform 

velocity. '% elastic and inelastic phonon scattering 
in the case of a weak magnetic field, when 6,, 6,<< r , 
the use of the kernel (A5) is  justified,z6 a s  is  therefore 
the change from Eq. (34) to (35)-(40) in Ref. 7, There- 
fore the equations of the spectral diffusion of the phon- 
ons6 a r e  therefore also valid under stationary as  well 
a s  nonstationary experimental conditions. 

For the kinetics of multiple multichannel scattering of 
the RRS type of 29 cm-' phonons in a strong magnetic 
field (6 ,z  I?), Eq. (A4) with kernel (A5) does not hold, 
for the reason given above (this constitutes the sin- 
gularity of the gross-structure time scale in multiple 
resonant scatteringz6). But this equation is valid for 
the stationary experiment reported in the present paper, 
a s  a r e  also Eqs. (4a) and (4b), which were written for 
simplicity without allowance for the retardation of the 
phonons in the coherent and incoherent phonon scatter- 
ing events: the latter can be rewritten, using (A5), in 
the form 

x ~ ( w ' )  ID (r', o r ,  t')K.r(r-r', t - t ' )  w ( o ' ,  0 )  (A6) 

[the dynamic function @(r, w, t )  must not be confused with 
the form factor @(w) of Ref. 61. We note that the func- 
t ionA(r ,w, t )=@(w)F(r ,w, t )  of Ref. 6 and @(r ,w , t )  in 
(A6), which determined the spectral density of the 2A 
excitations with respect to absorption and scattering of 
phonons, respectively, a r e  connected a s  follows: 

(A7a) 
A (r ,  o ,  t )  =I'k ( a )  j e-r'f-"'J dt" J d3r' dt' (D ( P I ,  o ,  t ' )  K ,  (I-r' ,  tn- t ' ) ,  

c 

@ (r, o ,  t )  = J e-"'-'"' A( r ,  o, t") dt" + A (r, (v)', t )  w (o l ,  O )  do' 
-- 

From this we can show that Eqs. (A4) and (A6) a r e  
equivalent, and the ratio of the pumps in these equations 
is given by 

where @(w)/6w =I(w); the spectrum @(w) was normal- 
ized in accordance with Ref. 6 at the center of the line 
@ ( w = A ) = l .  

The equations given in the Appendix enable us to trace 
the connection between two approaches in the theory of 
multiple resonant scattering. One of them6 is based on 
the spectral balance relations of the electronic excita- 
tions and of the radiation, derived by the Keldysh meth- 
od. In the second approach7 multiple scattering is  r e -  
garded a s  a many-body problem, the bodies being coup- 
led by a two-particle pseudopotential (optical in the case 
of resonant scatterine: in Ref. 7). This method was - 

j e - s tKw(r ,  t ,d t  transferred to the theory of multiple potential scatter- 
O ing (see Ref. 33) from the many-body problem (the 

Brueckner-particle pseudopotential). 
corresponds to the square of a two-particle pseudopo- 
tentia17 only if we neglect in the latter the temporal dis- 
persion of the cross  sections for coherent forward "on one of the curves of Ref. 13 one can note a similar non- 

monotonicity, but it  is  very weak and is  not discussed by 
scattering and incoherent scattering [see expressions the authors. 
(33) and (34b) of Ref. 71. This dispersion i s  respon- "we shall return in Sec. 5 to the question of transverse relaxa- 
sible for the delay in scattering and for the retardation tion of the levels E and2A in light of the results of experi- 
(or advance, if 1 w - A l < r / 2 )  connected with the group ments in a magnetic field. 
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A similar equation was considered in the theory of trapping 
of optical secondary e m i s ~ i o n ? ~  

"isotropic elastic scattering leads t o  spatial diffusion of the 
phonons if yp= 0. Then the number M i s  equal to  
M=J' M(w)l(w)dw, M(w) - L'~'(w). Therefore q(3.5)/t)(0) 
= 0.25, as i s  in fact observed for  weak trapping (Fig. 3). We 
note in this connection the fas ter  than l inear increase of 
q(W) a t  H= 3.5 kOe (Fig. 4). This seems to  point to  a mani- 
festation of spatial diffusion under conditions when the con- 
tribution of the RRS i s  suppressed in a magnetic field. This 
i s  a lso  evidence of a sufficiently large anharmonic lifetime 
of the phonons (see footnote 7 below). The linearity of q ( W )  
a t  H =  0 is explained qualitatively, if not quantitatively, by 
the spectral  diffusion due to local 

5'We used in the calculations the value R2/Rl =vo for  hot R2 
luminescence; this value was specially measured by us  under 
extremely weak excitation, when there i s  no trapping [M= 0 
and q O =  f Z P T / l ~ R l  in Eq. (111. The measurements yielded 
qo = 0.8 lo-'. 

 he inhomogeneous broadening enters  in the theory via the 
I(w) spectrum, and a lso  via the absorption and scattering 
c ros s  sections dw')  and u(w'. w), which a r e  averaged over 
the inhomogeneous distribution. The fo rms  df Eqs. (4) and 
(5) a r e  not changed thereby. 

''1n light of the resul ts  of experiments on the damping of bal- 
l ist ic 29 cm-' phonons in rubyS3$ which point to  a long t ime 
~ : > 4  psec, the ro le  of the anharmonic damping of the phonons 
seems to  be overestimated in the discussion of Refs. 4, 12, 
and 40. 

8)~heore t ica l ly  N* = 5 x 10'' cm-3 a t  W = 1 W, d =  1 .3  mm, and 
A=514 nm. The loss  to reflection decreases N *  by almost 
one-half. Therefore N*  can be estimated only a t  (1-3) 
x1017 ~ m - ~ .  The values on the N* scale of Fig. 6 of Ref. 4 
a r e  too high (in the W scale,  the curve on Fig. 6 of Ref. 4 
coincides with the data on Fig. 4 of the present paper). 
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