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Heat transport in "dirty" dielectrics, in which thermal phonons with o =. T are more strongly scattered by 
static defects than by one another, has been studied. Under these conditions, as has already been shown [R. 
Peierls, Ann. Phys. (Leipzig), 3, 1055 (1929)l heat flow is determined by subthermal phonons with w ( T ,  as a 
result of which heat conduction is nonlocal and is related to the transfer of energy through the phonon 
spectrum. Since the properties of longitudinal and transverse subthermal phonons are very different, the 
existence of various branches of the spectrum changes the phonon kinetics and has a strong influence on the 
nature of the heat conduction. 

PACS numbers: 66.70. + f 

It was shown previously1 that thermal conductivity r e -  men dimensions L . As a resul t ,  a thermal conduc- 
sulting from Rayleigh scattering of phonons by defects tivity x dependent on L i s  obtained. 
is highly specific; it i s  nonlocal and is  connected with 
the t ransfer  of energy through the spectrum (from the One cannot accept this  procedure a s  being faultless :." 

in particular because the kinetic equation does not yield region of thermal frequencies w = T ,  where the energy 
for  x an expression in t e rms  of (7) with allowance for  is  s tored,  to regions of low subthermal frequencies t 

<< T where it i s  transported spatially). Two assump- phonon-phonon interactions. Besides, with a different 

tions were made there: it was considered that the kine- form of averaging, for example substituting 

tic equation for  ; phonons could be replaced by a dif- <T)+(T-'>-', 

fusion equation and that al l  phonons belong to a single 
isotropic branch which was such that (; phonons can be 
scattered by thermal phonons . Both these assumptions 
a r e  only valid for sufficiently "dirty" crystals ,  when 
scattering by defects predominates over phonon-phonon 
even a t  the ; level, and longitudinal ; phonons, for 
which interaction with thermal phonons is forbidden, 
t ransform sufficiently rapidly, as a result  of scat ter  - 
ing by defects with mode conversion, into transverse 
phonons for which this interaction is allowed. 

the divergence disappears. This shows that it is  pre-  
ferable to evaluate x not by resort ing to an a priori ap- 
proximation scheme, but by start ing from the kinetic 
equation. It should also be pointed out that scattering by 
defects with mode conversion was not taken into ac- 
count in the works quoted above. Yet such processes,  
which transform into one another subthermal phonons 
having different behaviors with respect  to phonon-phon- 
on interactions, a r e  extremely important. 

The purpose of the present work is to study the non- 
local heat conduction in cleaner crystals  where ; phon- 

1. STATEMENT OF THE PROBLEM 

ons can propagate not diffusively but ballistically and We consider an unbounded dielectric a t  low tempera- 
one must take account of the different nature of phonon- tures ,  when umklapp processes can be neglected, s o  
phonon scattering processes for longitudinal and trans-  that the so le  dissipative mechanism fo r  the momentum 
verse  subthermal phonons . of the phonon system i s  Rayleigh scattering by defects. 

We assume that the departure of the crystal  from ther-  
The physical reason for  the nonlocal nature of the heat modynamic equilibrium (with temperature is small 

conduction is the increase in phonon mean f ree  path a s  
and can be described by the local temperature T =  To 

w - 0 (this applies equally to scattering by defects and + bT(r, t) .  The small  departure from equilibrium im- 
to phonon-phonon scattering). peierls2 was the f i r s t  to plies that the phonon distribution i s  of the form 
point out the difficulty in heat conduction theory which 
a r i s e s  f rom this. A number of authors have subsequent- n.(q, I, t )  =nr.(o. ,)+6n.(q,  1, t ) ,  (1 ) 
ly considered the special ro le  of low-frequency phonons where bn i s  small. Here q is  the phonon momentum, 
(see Ziman3 and Gurevich4), and ~ o m e r a n c  huk' car r ied  

o its polarization, and nT the Planck distribution at  
out a more  thorough analysis. It was assumed in all temperature T. 
cases  that the thermal conductivity n could be expressed 
in t e rms  of (T), where 7 i s  the relaxation t ime o f t h e  On the assumption that the energy fLow w is borne 
"test" phonon due to scattering by defects and to phon- by subthermal phonons with w<< To, the anisotropic 
on-phonon scattering, with averaging over the Planck part  6n' of the correction 6n can be neglected; on the 
distribution. The integral over w which gives (7) di- other hand, the assumption of the existence of a local 
verges a s  w - 0; it i s  therefore cut off at  a frequency temperature implies that the isotropic part  of this co r -  
where the mean f r ee  path V T  is  of the order  of the speci- rection, 6n0 has at  w = To the fo rm 
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In particular, the energy density, which i s  determined 
by the thermal phonons, is  

where c, is  the equilibrium density and c ,  the heat cap- 
acity. The correction 6n in the low frequency region 
has to be found from the kinetic equation 

where v,, i s  the phonon velocity and I, and So a r e  the 
collision te rms for defects and three-phonon processes 
respectively, linearized in 6n. The f i r s t  of these can 
be written: 

Here T*(w) is  the time of scattering by defects, aver-  
aged over the angles and polarizations, with the angular 
and polarization dependences taken into account by fac- 
tors  of the order of unity, a, and a,,,,; e is  the unit vec- 
tor  in the direction of the phonon momentum in the solid- 
angle element dS2. For Rayleigh scattering by defects, 

1 l o '  

W = ? ( E ) .  
The phonon-phonon interaction t e r m s  a r e  very differ- 

ent for t ransverse  and longitudinal phonons. We shall 
f i rs t  examine the isotropic model. Transverse  sub- 
thermal phonons interact mainly with thermal phonons 
interact mainly with thermal phonons; using Eq. (2) in 
the linearization, we can obtain for  w<< To: 

The time T,(w) here  is the t ime for  attenuation of t rans-  
verse  sound; it i s  simultaneously the t ime for establish- 
ing the Planck equilibrium in the low-frequency region 
by scattering from an equilibrium thermal phonons. It 
can be written in the following form: 

Interaction between subthermal longitudinal phonons and 
thermal phonons i s  forbidden by the energy and momen- 
tum conservation laws, s o  that S, has a different form: 

1 
~ , (o ,e )= - -  [hi (u,  e) 

TI ( 0 )  
dQ' do' 

- j,jT6n.,(o',e')~.*($ I er+e)] . (9) 

The main frequency dependence enters  in the longitudin- 
al-sound attenuation t ime,  which can conveniently be 
written in the form: 

while the functions B,* (of the order of unity) a r e  so  con- 
structed that on integrating over frequency we have w' 

sw. Comparison of S, and St  shows that phonon-phonon 
processes for subthermal longitudinal phonons take 
place appreciably more  slowly than for  t ransverse phon- 
ons. In addition, S, unlike S t  does not contain 6T [the 
collision integral Eq. (9) does not lead to the establish- 
ment of equilibrium]. 

If we go over to an  isotropic model of the spectrum, 
then the form of St does not change considerably; the 
difference is  just that bt depends on e .  However, S, 
can change appreciably on going over to an anisotropic 
model. In part icular ,  thanks to the anisotropy, the 
prohibition on the interaction between longitudinal and 
thermal  phonons can be lifted. S ,  will then have a form 
analogous to Eq. (71, namely 

1 
Sl (a ,  e) = - --- 6T 

[6n,(m,e)---], 
7, (o, e) 

where 

where the exponent m depends on the type of crystal. '  
It i s  important, however, that m 2 2; in the anisotropic, 
as in the isotropic model. Therefore,  phonon-phonon 
processes for longitudinal phonons go more  slowly than 
for t ransverse phonons (although the difference may not 
be so  great). 

Substituting the expressions for  I, and So into Eq. (4) 
we obtain a system in ~ h i c h  the t e rms  in 6T must be r e -  
garded a s  inhomogeneities and a solution 6n propor- 
tional to bT must be found. Having found bn, the current  
can be calculated 

Obviously w i s  a linear functional w{} of 6T(r ,  T ) ;  sub- 
stituting it into the energy conservation law, we obtain 
the final equation required for determining the tempera- 
ture: 

By solving Eq. (14), the validity can be verified of the 
assumptions made that a local temperature exists and 
that the current  i s  ca r r i ed  by subthermal phonons. A 
local temperature i s  established by sufficiently rapid 
normal phonon-phonon interactions in the thermal-fre- 
quency range, i. e. , if the inequalities 

a r e  valid. Here t is the characterist ic  time of the pro- 
ce s s  and T, the phonon-phonon interaction t ime !or 
thermal phonons, L i s  a macroscopic dimension (for 
example, the s i ze  of the disturbed region) and I, i s  the 
distance through which a thermal phonon moves during 
a t ime 7,. The exact meaning of I ,  depends on the rela-  
tion between and the scattering t ime T,+ for thermal 
phonons by defects. If T,+>> T, ( a p u r e  crystal) ,  then a 
thermal phonon moves without collision during time 
T,, s o  that l , = v ~ , .  If, however, T$<< T~ (a dirty crys-  
tal) ,  then a thermal phonon undergoes many collisions 
with defects during t ime 7, so  that lo= (D,T,)"~, where 
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Do = 1/3v27,* is  the diffusion coefficient for thermal phon- 
ons. It is not necessary to distinguish between longi- 
tudinal and transverse phonons in the parameters 7, and 
I, since for thermal phonons all  differences reduce to 
factors of the order of unity. By evaluating the current 
w ,  it can be seen which phonons &, a r e  important in en- 
ergy transport. The assumptions made above a r e  valid 
if 

i3,a~~. (16) 

When solving the system of Eq. (4) it can be consid- 
ered, as before,' that energy transport takes place 
quasistationarily , i. e. , that the distribution bn in the 
low-frequency region follows a slowly varying tempera- 
ture b T .  The justification for this assumption is  the in- 
equality 

t B z a ( o ) ,  r , ( o )  ( o = a . ) .  (1 7) 

It i s  convenient to solve Eq. (4) by making the Fourier 
transformation r - k, after which it takes the form 

ikv,,6n,=I.+S0. (18) 

We write the Fourier component of the energy flux in the 
form 

m=-ikx6T.  (19) 

If the heat conduction is nonlocal, x depends on k. 

2. SEMIQUANTITATIVE ANALYSIS OF THE 
KINETIC EQUATION 

We use the following means to assess range of the 
parameters in which various collision and drift terms 
a r e  important. We choose Eq. (11) for S ,  and neglect 
all angular dependences of the coefficients a and b in 
Eqs. (5) and (11). The bn, from Eq. (4) can be ex- 
pressed linearly in terms of 6T and of the isotropic 
parts of the corrections 6n:. By integrating these re -  
lations over the angles, we obtain a system of linear 
equations for bnz and an expression for 6n: in terms of 
b T .  Substituting them into the above expression for 
bn, in terms of 6ni and 6 T ,  we finally obtain bn, pro- 
portional to 62'. Knowing On, we can evaluate the fluxes 
w ,  and find which frequencies and polarizations trans- 
port energy, thereby verifying the inequality Eq. (16). 
Knowing the fluxes, the characteristic time t for a pro- 
cess can be found and inequalities (15) and (17) verified. 
As such an analysis shows, the simultaneous satisfac- 
tion of inequalities (15) and (16) imposes a definite limit 
on L =k-'. It i s  convenient to represent it in the plane 
of the parameters L / V T ~  and 6 = T ~ T , *  (see Fig. 2 in 
Levinson'). The form of the region in which inequal- 
ities (15) and (16) a r e  satisfied depends on how effective 
phonon-phonon processes a r e  for longitudinal phonons. 
In the isotropic model, which corresponds to m =4 ,  the 
region sought is bounded by the inequalities 

FIG. 1 .  Regions for values of the parameters where the ener- 
gy i s  transported by subthermal phonons: (a) isotropic medi- 
um; (b) a cubic Oh c lass  crystal. The shaded area shows 
where heat conduction i s  nonlocal. 

portant i s  smaller [the region to the right of the thick 
lines in Fig. l(b)]. It is bounded by the inequalities 

The thin lines in the figure show the subdivisions of the 
regions in which different terms of the kinetic equation 
a r e  important and in which the thermal conductivity H. 
has different dependences on k . 

For both the isotropic model and for a cubic crystal 
there a r e  three regions, of which region I coincides with 
the region studied before.' In region I longitudinal and 
transverse phonons give identical contributions to the 
current, and the frequencies of interest ;, = 6, = G a r e  
such that for them 

i. e. , the diffusion length during the time for attenua- 
tion by the "thermostat" of thermal phonons is of the 
order of the dimensions of the disturbed region. The 
times for the frequencies of interest a r e  in the order 

The coefficient of thermal conductivity is 

where c,  i s  a numerical coefficient of order unity, x, 
= c,%v2 - To1 is  the "nominal" thermal conductivity, and 
g = k u ~ " .  The result in Eq. (24) is  the same a s  that ob- 
tained earlier: where one phonon branch with the prop- 
erties of transverse phonons was studied. This is not 
surprising since the fastest processes in region I a r e  
scattering by defects, and mix not only the direction of 
propagation but also the polarization. Longitudinal 
phonons in region I relax to equilibrium by conversion 
into transverse through scattering by defects. The term 
S ,  can therefore be discarded and its choice in the form 
of Eq. (11) rather than Eq. (9) has no effect. As we 
will show below (taking other regions a s  examples), 
the angular dependence of the coefficients a and b only 

Llur,>G-' if 6 < l ,  
(20) 

affects the magnitude of the coefficient c,. 
L/vzaB6-" if 6 B 1 .  In regions I1 and 111, i. e. , in purer crystals, the cur- 

It is situated to the right of the thick lines in Fig. l(a) .  rent is determined only by longitudinal phonons, for 
In cubic crystals, which correspond to m = 2 ,  and where which it is  easier to destroy the quasi-equilibrium dis- 
phonon-phonon processes for longitudinal phonons a r e  tribution, since anharmonic processes a r e  weaker for 
stronger, the region where subthermal phonons a r e  im- them. Transverse phonons in regions I1 and 111 can be 

11 16 Sov. Phys. JETP 55(6), June 1982 N.  M. ~ u s e m o v  and I .  B. Levinson 11 16 



regarded a s  being in quasi-equilibrium, i. e. , 

Transverse phonons form a thermostat for longitudinal 
phonons; there a r e  two interaction mechanisms between 
the longitudinal-phonon system and the transverse-phon- 
on system: scattering by defects with mode conversion 
and phonon-phonon interactions. In region I1 the ener- 
gy is transported by transverse phonons with a mean 
free path for impurities of the order of the macroscopic 
dimensions: 

Here 

so  that the interaction of longitudinal phonons with the 
transverse-phonon thermostat takes place by mode con- 
version on scattering by defects. The term S ,  can thus 
be discarded a s  in region I, and the difference between 
an isotropic medium and a cubic crystal reduces to 
negligible angular dependences of the coefficients a 
and b .  The thermal conductivity is  determined by the 
express ion 

where N i s  the defect concentration; the thermal con- 
ductivity [Eq. (28)] does not depend on To .  

The collision term S, must be taken into account in 
region I11 so that the properties of an isotropic medium 
and of a cubic crystal a r e  different. In the first case 
longitudinal phonons carry  the current and their mean 
free path for phonon-phonon scattering i s  of the order 
of L: 

The inequality (27) is  then reversed: 

and the thermal conductivity 

does not depend on the defect concentration since the 
interaction between longitudinal phonons and the thermo- 
stat of the transverse phonons i s  entirely determined by 
phonon-phonon scattering. This agrees with the fact 
that for an isotropic medium region 111 corresponds to 
pure crystals with 6<< 1. The nonlocal conductivity (31) 
becomes equal on the left-hand boundary of region 111 to 
the usual local thermal conductivity 

which obtains in pure specimens where a displaced 
Planck distribution is established4.' and the thermal 
conductivity is  determined by the mean ( 1 / ~ )  and not by 
the mean (7).  

In a cubic crystal the energy is transported by lon- 
gitudinal phonons in region 111 for which 

i. e. , they have a noticeable probability of being scat- 
tered by transverse phonons. Then 

This thermal conductivity i s  local but it depends not only 
on r,* but also on rO .  This means that spectral trans- 
port takes place in the process of heat transport, which 
is unavoidable if subthermal phonons transport the en- 
ergy. At the left-hand boundary of region 111 the ther- 
mal conductivity of Eq. (34) joins on to Eq. (32). 

Equation (28) for the thermal conductivity in region 
111 for an isotropic medium agrees with Pomeranchuk's 
results. In this connection we note that on the low 
temperature side o r  for "cleaner" crystals the Casimir 
region of thermal conductivity, X - L T ;  borders on re -  
gion I1 in Pomeranchuk's works (where the mean free 
path of longitudinal phonons is limited by the specimen 
dimensions) and not region I with thermal conductivity 
(24). This comes about by Pomeranchuk's neglect of 
scakt ering by defects with conversion of longitudinal into 
transverse phonons. 

3. ALLOWANCE FOR THE EXACT FORM OF THE 
COLLISION TERMS 

We now show that taking account of the angular depen- 
dences of the coefficients a and b ,  and also the choice 
of the correct form of the collision term S, , do not in- 
fluence the values and power dependence~ given in the 
previous section. We first  carry  this out taking a s  an 
example region I11 for an isotropic medium. We sup- 
pose, a s  in the semiquantitative analysis, that impur- 
ities a r e  unimportant and that transverse phonons a r e  in 
quasiequilibrium. Then, substituting Eq. (25) into Eq. 
(9), we obtain the following equation: 

4 
ikv, cos 86n1 (a, e) = - - 

71 (0) 

dQ' do' 
- ~ z ~ T 6 n l ( o f , e f ) ~ l ( ~ ~ e ' + e )  - : E ~ ] ,  (35) 

where B is  the angle between e and k, and 

All the important parameters can be eliminated from 
this equation; for this purpose Eq. (10) must be sub- 
stituted into it and 

We then obtain for F the equation 

All the parameters in it a r e  of the order of unity; s o  
is  the function F. Calculating the flux w, with the help 
of the distribution (37), we come to Eq. (31), where c, 
is  some integral of F. The use of the correct collision 
term S ,  in the form (9) and not in the form of (111, a s  in 
the semiquantitative analysis of the kinetic equation, 
had thus no important influence on the results. 

We now consider a cubic crystal. In agreement with 
the results of the semiquantitative analysis, we can take 
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6n , (o ,  e )  =67'/11)t 6n, ' (o ,  e ) ,  (39) 

where the anisotropic addition is small. If such a dis- 
tribution and Eq. (25) a r e  substituted into I,, all terms 
in 6T cancel. The same takes place on substitution into 
S , ,  which must now be chosen in the form of Eq. (11). 
As a result we obtain the equation 

iku, (e) - sT = - - b1 Gn,' ( a ,  e) 
a ( o )  

It can already be seen from this that the current is  
local, since bn; is proportional to k.  To separate the 
dependence of current on 6, we make the substitution 

6T 0 
6nIf(o,  e) = - t 8F(b ,  e ) ,  E=GK - 

o To (41 

and substitute Eq. (12) with m = 2 and Eq. (6) in Eq. 
(40). It i s  easy to confirm that the equation obtained for 
F contains only parameters of order unity and that the 
flux (34) is  obtgined from the distribution (41). 

4. THE ROLE OF HIGHER-ORDER ANHARMONIC 
PROCESSES 

The prohibition of interaction between subthermal lon- 
gitudinal phonons with thermal phonons can even be lift- 
ed within the framework of the isotropic model. For 
this, either four phonon processesg must be taken into 
account, o r  else it must be assumed that in a three- 
phonon almost collinear process in which three longi- 
tudinal phonons take part the energy conservation law 
is relaxed because of the finite lifetime of a thermal 
phonon (the Simons mechanismlo). Such mechanisms 
naturally lead to a local thermal conductivity and this 

was calculated by Gurzhi and Maksimov" for the Simons 
mechanism. They a r e  important for large dimensions 
L and relatively high temperatures To. Appropriate 
cri teria a r e  not difficult to write down for all the r e -  
gions considered, if it is  taken into account that the 
time for four-phonon processes for subthermal phon- 
ons i s  calculated in the following wayQ: 

(To, o D ) ' ,  (42 

where w, is  the Debye frequency and y = W , / M V ~  i s  the 
square of the adiabatic parameter ( M  is  the mass of a 
unit cell), while the prohibition on three-phonon proc- 
cesses is completely lifted for1' 

o ( T o / o D ) Z ~ l i ~ , + l / ~ ~ .  (43) 
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