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It is shown that the structure of the charged surface of helium is determined by the joint action of the flexural 
nonlinearity due to the finite deviation of the surface from horizontal, and the charge instability due to the 
onset of surface sections free of electric charge. In the limit of low average charge density, rT<E,, and low 
supercriticality of the clamping field IE - E, I <E, (E, is the threshold field at which a plane surface becomes 
unstable), the sizes of the uncharged regions, the energy of the restructured surface, and the period of the 
structure are obtained as functions of n and E - E,. It is shown that a hexagonal restructuring is favored 
over other types of stucture. The field interval in which a connective charge distribution exists is estimated. 

PACS numbers: 68.10. - m 

The investigation of the  p roper t i es  of a charged heli- 
um surface h a s  drawn part icular  interest  following the 
experiments of Le idere r  and Wanner,' who have shown 
that an electr ic  field pushes the e lec t rons  to the s u r -  
face produces on the la t t e r  a s t ruc ture  with hexagonal 
symmetry.  T h i s  phenomenon w a s  theoretically pre-  
dicted e a r l i e r  by Gor'kov and Chernikova.' 

It w a s  noted in our e a r l i e r  paper3 that in the l imit  of 
low charge density the main nonlinearity of the charged 
surface is due to formation of sect ions f r e e  of charge.  
The system i s  then described by l inear  equations fo r  the 
deformation of the surface [ ( r )  and the charge  density 
n(r) ( r  i s  the coordinate on the sur face) ,  and the nonlin- 
ear i ty  of the problem s t e m s  f r o m  the condition that 
n(r)  2 0 be non-negative. The c o r r e c t  solution i s  de te r -  
mined by the minimum of the energy under the addition- 
a l  condition n(r)  2 0. In addition to  a hexagonal s t ruc-  
tu re ,  other  equilibrium configurations a r e  possible. In 
Ref. 4 we have calculated numerically a sur face  s ta te  
such that the e lec t rons  a r e  gathered in a single dimple. 
Dimples a r e  investigated in experiment  by optical 
methods,' and we therefore calculated in  Ref. 4 a l so  the 
intensity of the light refracted by the dimple. 

In the present  a r t i c le  we study the res t ruc tur ing  of a 
weakly charged helium sur face  with formation of a two- 
dimensional periodic s t ruc ture  (such a s t r u c t u r e  i s  
analogous to  some degree  to  a c rys ta l  made up of dim- 
ples). The direction of the evolution of the instability 
and the energy of the reconstructed surface,  if the ho- 
mogeneous distribution is not excessively dis tor ted,  
a r e  determined by the nonlinearity due to  the finite 
amplitude of the flexure of the surface.' (We shall cal l  
this  "flexural nonlinearity. ") With increasing amplitude 
of the produced charge-density wave (CDW), charge-  
f r e e  sections a r e  p r ~ d u c e d , ~  and what will  be r e f e r r e d  
t o  below a s  charge nonlinearity c o m e s  into play. It  is 
under the influence of these mechanism that the final 
restructured surface takes shape. 

1. ONSET OF INSTABILITY OF THE HOMOGENEOUS 
STATE 

The  instability of the homogeneous s ta te  of a charged 
sur face  w a s  investigated by Gor'kov and Chernikova2 by 
analyzing the ripplon spec t rum.  Here  we consider  the 
instability onset by s ta r t ing  f r o m  energy considerations. 

The field E and the charge  density n ( r )  a r e  given 
throughout in (crpg~"4 units,  the coordinate r on the un- 
perturbed sur face  and the vert ical  deflection of the sur -  
face ((r)  in ( c ~ / p g ) " ~  units,  and the energy in crL/pg 
units,  where  0 and p a r e  the surface-tension coefficient 
and the density of the helium, and g is the free-fal l  ac- 
celerat ion.  Detailed numerical  es t imates  of the c o r r e -  
sponding quantities w e r e  given ear l i e r .4  

The sur face  energy is given in the genera l  c a s e  by 

where I c ( r ,  5 )  is the three-dimensional coordinate of a 
point on the surface. 

At smal l  deformations of a weakly charged surface,  
when I V< I << 1 and n ( r )  << 1 ,  it suffices t o  retain in (1) 
only the t e r m s  quadratic in ((r)  and n(r):  

The homogeneous s ta te  is stable  a t  field va lues  such 
that the contribution to the energy (2) f r o m  the inhomo- 
geneity of ((Y) and n(r)  is positive-definite. In the Fou- 
r i e r  representat ion 

the energy (2) p e r  unit a r e a  t akes  the fo rm 
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where we have left out the infinite te rm corresponding 
to the energy of a uniformly charge plane surface. 

The functional (3) i s  positive-definite if the condition 
that the integrand quadratic form be positive, namely 

i s  satisfied at  all k.  

The minimum value of the right-hand side of the in- 
equality i s  equal to 4n and is reached at  k = 1. The cri-  
tical field value i s  therefore2 E,= ( 4 ~ ) ~ ' ~ .  At E < E ,  the 
energy functional i s  positive-definite and the system i s  
stable. At E > E,  the stability i s  lost, since energywise 
favored perturbations of the homogeneous states appear. 
In the case  E = E,  the system is in an  indifferent equi- 
librium with respect  to perturbations with a unity wave 
vector. 

To analyze the inhomogeneous state that results  from 
the development of instability of such waves, account 
must be taken of the nonlinear interactions. In the next 
section we consider in detail the flexural n ~ n l i n e a r i t y . ~  
In Secs. 3-7 we study the effect of the charge nonlin- 
earity and show, in particular, that the result  proved 
in Ref. 2 with only flexural nonlinearity taken into ac- 
count, namely that a hexagonal s tructure is energywise 
favored, remains in force also under conditions when 
the charge nonlinearity is substantial. In Sec. 8 we in- 
vestigate a hexagonal s tructure made up of widely 
spaced individual dimples. 

2. FLEXURAL NONLINEARITY 

As shown in Ref. 2, at  the instability threshold the 
surface energy decreases  upon appearance, against the 
background of a homogeneous charge distribution n(r) 
= F, of a CDW with hexagonal symmetry of the form 

n"(r) =ii[cos xf  cos (~/2+3"~y/2) +cos (s/2-3"y/2) 1, f (r) ='/,Eii(r). (5) 

Calculation of the energy (1) with t e rms  of fourth o r -  
der  in ii and ; inclusive leads to the following for  the 
energy of the CDW (7) per  unit surface 

where E, = [4n - ( ~ n i i ) ~ ] " ~  i s  the critical field for  the 
onset of instability at  a finite charge density n. 

The relatively simple expression (6) permits  a com- 
plete investigation of the effect of the flexural instability 
on the stability and the structure of the surface near 
the threshold, when ( E  - E,) -Z2. 

It is seen from (6) that A = 0 corresponds to a local 
minimum of the energy s o  Long a s  E < E,. At E = E,, a 
CDW of finite amplitude appears jumpwise: 

ii=3ii/y=3.16 ii. (7) 

The cubic t e rm in the energy (6) leads not only to the 
amplitude jump (71, but also to hysteresis   effect^.^ 
Thus, the condition for  the extremum of the energy (6) 
is of the form 

It follows from this that 

n"= [3Ef (9E2+87A/n) '"1 12.1 

Substitution of (9) in (6) shows that the formation of a 
CDW i s  energywise favored in fields E > E ,  - 5.58F2. 
In the field range E,  - 6.62K2 < E < C ,  - 5.58K2 a CDW of 
finite amplitude can exist a s  a metastable surface state. 
At the metastability boundary we have 2 =  1.58E. These 
resul t s  a r e  illustrated by the g(E) curves for different 
E in Fig. 1. 

We note that our resul t s  agree  with those of Gor'kov 
and C h e r n i k o ~ a ~ * ~  but differ from the results  of Ikezi.' 

3. CHARGE NONLINEARITY 

We turn now to the charge nonlinearity due to the 
presence of regions with ze ro  charge density (ZCR). 
The alternating part  of the charge density (5) l ies  in the 
range (-3E/2,32). If the amplitude of the CDW is in the 
range (-E/3,2E/3), the charge density n(r) = F+ 2(r )  i s  
everywhere positive and there a r e  no ZCR. They ap- 
pear when E reaches the indicated l imits .  Thus, at  E 
= E, the flexural instability s t r ives  to increase 2 t o  a 
value 3ii/7, but at  the value 2 = 2n/3, which i s  approx- 
imately five t imes smal ler ,  the charge-nonlinearity 
mechanism goes into operation. In Fig. 1, the region of 
action of the charge nonlinearity is located to the right 
of the dashed straight line. It i s  seen that all the hy- 
s t e r e s i s  effects due to the flexural nonlinearity lie in 
this region. Consideration of these effects cal ls  there- 
fore  for  simultaneous allowance for  both nonlinearity 
mechanisms. 

It i s  important in what follows that the flexural non- 
linearity i s  small  in t e rms  of the parameter  E2. At the 
same time, so long a s  the s ize  of the ZCR is small ,  
the charge nonlinearity i s  small  but contains no other 
small parameters.  It must therefore be concluded that 
at  the instability threshold ( A =  U) the development of the 
CDW should terminate a t  E= 2K/3 a s  a result of forma- 
tion of ZCR with dimensions that a r e  small  to the extent 
that? is small. In the limit a s Z + O  the value of 2 at 
the threshold i s  exactly 2K/3 and the charge density 
takes the form 

FIG. 1. Relative energy g/?i4 [see (6) J a s  a function of the  
re la t ive  CDW amplitude jr/E for different & =  ( E  - E , ) / E ~  with- 
out allowance for  the res t r ic t ion  n (r) 2 0. Reading upward: 
E =  5, & = 0  (thick line), ~ = - r ~ ' ~ y - '  -5.58 (at the energy 
minimum %=0);  ~=-9r~'~/@'z -6. 62 ( the minimum vanishes,  
the a r r o w  indicates the  inflection point a t  G/E= 3/2yrs: 1.58);  
&=-lo. T o  the  r igh t  of the dashed l ine G/%= 2/3 the condition 
n (r) 2 0 is violated. 
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The ZCR is reduced then to a honeycomb-like a r r a y  
of points with coordinates  

where n and m a r e  integers .  

We wr i te  down now the equations that de te rmine  the 
equilibrium s t ruc ture  of the sur face  a t  A > 0 in the limit 
a s  E - 0, when the flexural instability can  be neglected 
compared with the charge instability. T h i s  l imit  cor-  
responds to the quadrat ic  energy functional (2), which 
must be minimized with account taken of the additional 
condition that the charge is constant on the surface:  

n ( r )  dZr=Sii ,  (12) 

where S is the surface energy a n d 3  is the average 
charge density. Multiplying the left-hand s ide  of (12) 
by the Lagrange multiplier A, adding the resu l t  to  ( a ) ,  
and varying the resul tant  expression with respec t  to  5 
and n, we obtain the equations 

Obviously, A is the electrostat ic  potential in  the r e -  
gion occup~ed  by the electrons,  reckoned f rom the po- 
tential of the unperturbed sur face ,  while Eq. (13b) holds 
only f o r  r such that n(r) > 0.3 The sys tem (13) i s  s o  
written that the volume of the liquid be constant ( 5  = O), 
and the average  electrostat ic  potential of the sur face  i s  
zero. 

F o r  small  deviations of n(r l  f rom E,  s o  long a s  n(r) 
> 0 at  a l l  r, integration of the left-hand s ide of (13b) 
with respec t  to r yields ze ro ,  f r o m  which it follows that 
h =  0. Under th i s  condition, the sys tem (13) is valid on 
the en t i re  sur face  and i s  l inear .  Nonlinearity of (13b) 
on account of h#O s e t s  in only in the p resence  of ZCR. 
The ZCR configuration i s  determined in th i s  c a s e  f r o m  
two nonlinear conditions: positiveness of n(r) in the 
charged region, and absence of divergence of n(r) a t  the 
ZCR b ~ u n d a r y . ~  The potential X is determined f rom 
condition (12). 

4. SIZES OF UNCHARGED REGIONS 

The generalized forces  acting on a CDW of the type 
(5) i s  given by the derivat ive 

The effective t ranscri t ical i ty  that de te rmines  the s ize  
of the ZCR i s  equal to the expression in the square  
brackets  of (14), taken a t  2 =  2K/3, namely, 

At a finite charge density iT, a distribution of the f o r m  
(10) with the ZCR degenerating into points takes place 
a t  6 =  0. Near  each of the points (11) a t  which n(r) 
vanishes we have 

where p is the distance f r o m  the indicated point. 

At finite but smal l  dimensions of the ZCR, expres -  
sion (16) remains  valid a t  p that a r e  l a rge  compared 

with the s ize  of the ZCR, but smal l  compared with unity. 
It follows there fore  that in the principal approximation 
in 5<< 1 i t  can be assumed that the ZCR a r e  c i r c l e s  of 
rad ius  R << 1 with c e n t e r s  a t  the points ( l l ) ,  and n(r)  a t  
R << p<< 1 is given as before by expression (16), which 
mus t  in th i s  c a s e  be used a s  the boundary condition. A 
schematic  arrangement  of the ZCR i s  shown in Fig. 2. 

We descr ibe  now a n  approach that makes  calculation 
of R(6) possible. We use f o r  th i s  purpose the sys tem 
(13), extending Eq. (13b) over  the en t i re  sur face  by r e -  
placing A with A +  d r ) ,  where  the electrostat ic  potential 
p ( r )  d i f fe r s  f r o m  z e r o  only in the ZCR. Of course ,  fo r  
points of the ZCR the relat ion (5) is no longer an equa- 
tion but a definition of the  function cp(r). We shall 
nevertheless  r e g a r d  cp(r) as a n  independent function, 
and find i t s  connection with n(r)  l a t e r .  

We change to a F o u r i e r  representat ion in accord with 
the relat ion 

F (r) = Fr eos (kr), 

where  the summation i s  over  a t r iangular  reciprocal  
la t t ice  with wave vec tors  k ( k , ,  k,) = (m + ix, 31i2n/2) 
(m and n a r e  integers) .  Cut of each pa i r  of vec tors ,  
which a r e  equivalent with respec t  to  the t ransformation 
k---k, we choose only one. 

The  unit-cell a r e a  ( s e e  Fig. 2) i s  equal to S,= 8 n 2 / f l  
( th i s  a r e a  subtends one charge-density maximum and 
two ZCR). Calculation of the  F o u r i e r  components of the 
function p ( r )  in  the l imit  R << 1 yields  

where  Jo is a B e s s e l  function and r, is the coordinate of 
any of the points of the la t t ice  (11). 

The  sys tem (13) reduces  in the F o u r i e r  representa-  
tion, a f te r  elimination of <, t o  a single equation 

F o r  our  purposes i t  suff ices  to  use  (18) a t  Ik l=  1 ,  
when the coefficient of n,= 2 in  the left-hand s ide of (18) 
is -2aA, i.e., smal l  a t  1 A l < < l .  A s  shown e a r l i e r ,  in  
the principal approximation in A we have 8 = 2 d 3 .  F o r  
the chosen f o r m  of the CDW, cos(k-r , )  is equal to -1/2, 
and Jo(kp) under the integral  sign in (18) mus t  be r e -  
placed by unity, s ince R << 1. We take immediate  ac- 

FIG. 2.  Schematic representation of the ZCR at low trans- 
criticality 6<< 1 (circles) and at  6=65 (triangles). The in- 
c r ease  of the period at  6 > O  is  not shown. The dashed lines 
delineate the unit cell. 
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count of the flexural nonlinearity by replacing A with 
the effective transcriticality 6, defined in accord with 
(15). In the upshot we get 

Substituting here  the value of cp(r) calculated for the 
given R, we obtain upon integration the sought connec- 
tion between 6 and R. 

We propose now, and shall verify later ,  that cp(r) i s  
determined by the solution of the electrostatic problem 
for a conducting plane with a hold of radius R ,  and with 
the boundary condition that the charge density f a r  from 
the hole i s  given by (16). In other words, the integral 
equation (13b) will be solved neglecting the t e rm EE, 
after  which it will be shown that the contribution of E (  
to q(r) i s  small  in t e rms  of the parameter  R << 1. 

In practice i t  is convenient to solve not the integral 
equation (5) at E (  = 0, but an equivalent Laplace equa- 
tion with corresponding boundary conditions. 

To  solve the electrostatic problem, we make the sub- 
stitution (p, z)  '(Rp, Rz) , s o  that the boundary of the 
ZCR corresponds to p =  1 and z = 0, and change over to 
oblate ellipsoidal coordinates (o, T) in accord with the 
relations 

a== [(rl-1) z/4+z2]'b+(r2-i)/2, 

rZ=[ (r'-1)z/41 z'] 'Is- (r2-1)/2, r2=pz+zz. 

The Laplace equation takes then the form 

Near the plane z = 0, the coordinates (a, T )  a r e  given 
by the expressions 

F rom the equipotentiality condition 9 = const at z = 0 
and p > l ,  and from the zero-charge condition a@/az = 0 
a t  z = 0 and p < 1, we must choose solutions of (20) in 
the form 

where P,,, i s  a Legendre polynomial and Qzn+l is a Le- 
gendre function of the second kind. The solution we 
need is a linear combination of the following functions: 

Qo=r[aarctgo+ 11, 

@,= (rS-3~15) [ (03+3015) arctg a-oZ+'l,,]. 

F o r  the potential and for  the charge density at  z = 0 
this yields 

In the equilibrium situation, there should be no singu- 
larity of n(p) on the ZCR boundary, i.e., a s  p - 1  (Ref. 
4). In conjunction with condition (16) this  allows us  to 
determine the correct  linear combination of no(p) and 
n,(p). For  the potential we obtain ultimately 

where we have returned to the previous unit of length. 
Substitution of (22) in (19) yields 

The appearance of a la rge  numerical factor s eems  to 
indicate that the region in which the expansion of R in 
powers of 6 is applicable i s  narrow. 

We estimate now the correction that must be intro- 
duced in dr), to account for  the t e rm E[ in (l3b). Im- 
mediately at  the threshold, the entire surface has  a 
constant ze ro  potential, i.e., E( i s  exactly cancelled 
out by the potential produced by the surface charge. A 
contribution to cp(r) i s  made therefore only by the 
change of ( on account of the onset of ZCR of finite di- 
mensions. The change of the charge density upon for- 
mation of the ZCR is of the o rde r  of ER2 and is concen- 
trated in a region -R. Equation ( l3a)  re la tes  az(/ap2 
with n(r) ,  so  that the change of [ over distances of the 
order R under the influence of the change of the charge 
density i s  of the order  of ZR4. Cn the other hand, ac- 
cording to (21) we have cp-%~' ,  therefore the contribu- 
tion of E (  to the ZCR electrostatic potential has  a rela-  
tive smallness -R << 1, thereby justifying the neglect of 
the t e rm E (  in the solution of Eq. (13b). 

To conclude this  section, we present the b-depend- 
ence of the  quantity 4 0 )  that characterizes the inhomo- 
geneity of the electrostatic potential over the surface, 
and of the potential A in the charged region. These de- 
pendences follow directly from expression (23) for 
R(6) and from the condition that the average potential 
on the surface be zero: 

5. ENERGY OF RESTRUCTURED SURFACE 

We begin with the calculation of the amplitude of the 
principal harmonic of i ,  corresponding to  I k l=  1 ,  on 
the effective transcriticality 6. To this  end we express  
the condition n(ro) = 0 in t e r m s  of the Fourier  compo- 
nents nk. It i s  important that the contributions from 5 
and from the harmonics with k -R' >> 1 must be taken 
into account separately. Fo r  the lat ter  we obtain from 
Eq. (18), neglecting the t e r m s  -k-' - R << 1, that nk 
= kcpk/2n. Calculations of cpk by substituting (22) in (17) 
yields 

q r =  (8/3n) '" cos(kr,) RSJa,,(kR) (kR) -'/'. 

The contribution of cp, to the charge density n(ro) is 
given by 

where account i s  taken in the summation of the fact that 
the mean value of cos2(k.ro) a t  the lattice points k i s  
equal to 1/2, and on going from summation to integra- 
tion we introduced the factor l/a because the summa- 
tion covers half the k plane, while the a r e a  per  recipro- 
cal-lattice point i s  a / 2 .  
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F o r  the fundamental harmonic we have cos(k.ro)  
= -1/2, and the number of equivalent waves  is three.  
With allowance for  (24) we obtain then 

n (r,) =ii-3,i/2+iiR2/6=0, 

whence 

T h i s  resu l t  defines the h(6) dependence in t e r m s  of 
the previously obtained R(6) dependence (23). 

These  r e s u l t s  a r e  sufficient f o r  the calculation of two 
t e r m s  in the dependence of the energy on 6. It is ne- 
cessary  to  find separately the contributions of the  fun- 
damental harmonic and of the harmonics  with k -It-' 
>> 1. The contribution of the fundamental harmonic i s  
obtained by substituting (25) in (6). The  constant par t  
E =  2513 makes  in th i s  c a s e  the main contribution to the 
lowering of the energy: 

The change of E ( = R ~  6)) makes  according to (25) the con- 
tribution 

The contribution of the higher harmonics  i s  given by 

We now es t imate  the o r d e r  of magnitude of these con- 
tributions to the surface energy. The principal t e r m  
(26) is of the o r d e r  6F2 [it contains A andi i2 in a com- 
bination different than 6 (15), but of the s a m e  order].  
The additional lowering of the energy (27), due to  the 
increase of h at  6 > 0 ,  i s  of the o r d e r  of 67/5ii2 and i s  
partially offset by the increase  of the Coulomb energy 
(28) when the ZCR i s  produced. Adding the  contribu- 
tions (16)-(28), we  obtain f o r  the energy per  unit a r e a  

Expression (29) allows u s  to  investigate hys te res i s  
phenomena in the near-threshold region. When the field 
reaches  from below a cr i t i ca l  value E,( A = O), the sys -  
t em becomes unstable, the CDW appears  abruptly with 
E = 2F/3, and the energy becomes negative 

a,=,=- (4.47+13.8rZ'/s),i" 

[according to (15) it is necessary  to substitute in  (27) 
6 =  41 - 2r/9)K2]. When the field i s  now decreased ,  the 
surface r e m a i n s  res t ruc tured  down to A =  -n( l  - 2 r /  
9)K2. At th i s  point 6 =  0 and the local minimum of the 
function g(h) i s  lost.  In the region 0 < 6 < (0.344 
- 0.875K415)F2 the energy is positive, i.e., the sur face  
is in a metastable state. The energy maximum i s  

z,=,=o.7i7n1. 

When the field d e c r e a s e s  beyond the point 6 =  0, the 
surface becomes plane jumpwise, and the charge d i s -  
tribution becomes homogeneous. The relat ive value of 
the hys te res i s  is 

We shall show now that the nontrivial contribution to 
the energy (29), of the o r d e r  of fill5, can be obtained 
a l so  by another method. In analogy with the approach 
developed f o r  the solution of the problem of the multi- 
e lectron dimple, we consider  the energy g(6,  R) fo r  the 
situation when the ZCR is maintained artificially a t  
s o m e  value of R that is generally speaking not equal to  
R(6). J u s t  a s  in  Ref. 4, the point R = R(6) is special  be- 
cause  it i s  the re  that the singularity of n(r) a s  p-R + 0 
vanishes,  a s  d o  the derivat ives ag/~/aR and a2g/aR2. 
Assume that g ( 6 , R )  is a quadrat ic  t r inomial  of the form 

F r o m  the condition that the f i r s t  and second deriva- 
t ives  of th i s  expression vanish at  R = R(6), we can  ex- 
p r e s s  B and C in t e r m s  A. Calculation of A is then suf- 
ficient to  reconstruct  the function g(6,  R) .  

We calculate f i r s t  A =  I ( 0 , R ) .  In this c a s e  the left- 
hand s ide of (19) is zero ,  and to reduce the right-hand 
s ide  to z e r o  we must  add to the potential (21) a potential 
of the fo rm (RZ - $) ' I3  multiplied by an appropriate  co- 
efficient [see (2111. A s  a resu l t  we obtain 

o r ,  taking the F o u r i e r  t rans form,  

The  energy is calculated as in the c a s e  of (28), and 
the resu l t  i s  

The  total function g(6 ,  R) is thus  of the fo rm 

It is easy to verify that the f i r s t  and second derivs-  
t ives  of th i s  expression with respec t  to  R v-anish at  R 
= 1, and the expression itself coincides a t  R = 1 with 
the third t e r m  of (29). The  las t  agreement  w a s  not af- 
fected by adjusting the  coefficients and should be r e -  
garded as proof of the c o r r e c t n e s s  of the function 
0 ( 6 , R )  chosen by us. 

6. OTHER TYPES OF SURFACE RESTRUCTURING 

We have investigated above in detai l  the s t ruc ture  of a 
sur face  with hexagonal symmetry .  Other  s t r u c t u r e s  a r e  
a l s o  possible in  principle. We shal l  calculate their  en- 
e r g i e s  accurate  to  t e r m s  A? and ?i4, and show that the 
energywise favoring of the hexagonal s t ruc ture ,  proved 
ear l i e r2  with only the flexural nonlinearity taken into 
account, is preserved  when the f lexural  and charge 
nonlineari t ies  a r e  taken into account simultaneously. 
A s  shown in Sec. 5, to  calculate  at  the indicated accu- 
racy  the d e c r e a s e  of the surface energy upon res t ruc-  
turing, it  suffices to use the c h a r g e  density c o r r e -  
sponding to a ZCR of z e r o  s ize.  

F o r  a one-dimensional s t ruc ture  we have 

n(r) =ii(l+cos x), 8=- ('/,nA-"lsLnzi?)Z2=- (1.57A-0.7712)Z. 

In the c a s e  of quadratic symmetry  
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In addition to the already considered hexagonal struc- 
ture,  a s tructure of the type (5) with ii = -TI3 i s  possi- 
ble; this corresponds to an interchange of the maxima 
and minima of n(r). For  such a structure 

The energy of the hexagonal s tructure considered in the 
preceding section of the art icle i s ,  according to (26), 

and l ies  lower than the energies of the other structures. 
Thus, the honeycomb arrangement of the ZCR i s  energy 
favored both at AS%', when simultaneous account must 
be taken of the flexural and charge nonlinearities, and 
a t  A>>??, when the influence of the flexural nonlinearity 
can be neglected. 

7. PERIOD OF STRUCTURE AND CONNECTIVITY OF 
CHARGE DISTRIBUTION 

We have shown earl ier3 that the connectivity of the 
charge distribution a t  small  t ranscri t ical i t ies  makes it 
possible for the period of the structure to change with 
the field, thereby ensuring an energy minimum. To 
find this  dependence a t  small  A and Z we must mini- 
mize, with respect to the wave vector k of a CDW of 
type (5), the principal te rm in t he  expression for  the 
energy, a te rm equal to 

[this expression goes over into (6) a t  k = 11. The period 
a of the structure i s  connected with the period k of the 
reciprocal lattice by the relation ak = 4 n / m .  Minimiz- 
ation of (31) with respect to k with substitution of the 
threshold value 5 = 2E/3 yields for  k the expansion 

Here, just a s  in (26), A and n2 enter in a combination 
different from 6 [see (15)l. Expression (31) shows that 
the period of the structure increases  with increasing 
field and with increasing average charge density, and 
the value of the period at  the instability threshold is 
determined by E. We note that there is no need to take 
into account the difference between k and unity when 
the size of the ZCR and the energy a r e  calculated, 
since this difference leads to t e rms  of order higher 
than accounted for here. 

We attempt now to estimate the range of the clamping 
fields and charge densities in which the charge distri- 
bution remains connective, i.e., to find the values of E 
and E a t  which the ZCR a r e  joined and the period of the 
structure becomes fixed (see Ref. 3). 

The instant of joining i s  determined in principle by 
the competition between the growth of the ZCR dimen- 
sions and the growth of the lattice constant a. At small  
A and 5 t h e i r  values a r e  given by the asymptotic rela- 

tions (23) and (321, but a t  the instant of joining the 
shape of the ZCR i s  certainly not circular ,  so  that the 
use of the asymptotic form (23) i s  difficult. 

We shall estimate the region of connectivity of the 
charge distribution in the following manner. We note 
that if we discard the higher harmonics in the charge 
density n(r)  , leaving only the CDW (5), we get regions 
with negative charge density in those places where ZCR 
a r e  located in the r ea l  charge distribution. At ii - 2K/3 
<< ii these regions a r e  c i rc les  of radius Rf2  = 6(3ii/2K 
- 1). Using for ii the expansion (25), we obtain Rf  
= R ( b ) ,  i.e., in the limit a s  6-0 the regions with nega- 
tive charge density in the distribution n f ( r )  = Z+ k(r) 
coincide with the ZCR in the rea l  distribution n(r) .  As- 
suming that this correspondence i s  approximately pre-  
served also at finite values of 6, when the shape of the 
ZCR differs  from circular ,  we find that the joining of 
the ZCR and the fixing of the period of the structure 
take place a t  ii = E [at 5/T= 1 the joining regions nf(r) 
< 0 have at  that instant a triangular shape ( s ee  Fig. 2)]. 
This  value of ii i s  reached, according to the expansion 
(251, a t  

The region where a connective charge distribution 
exists  can be  characterized by two quantities: the field 
Ef a t  which the ZCR a r e  joined in the limit a s  E-0  
(this field was  introduced in Ref. 3) ,  and the density Ef 
at  which the ZCR a r e  joined directly at  the threshold 
(at E =B, ) .  From (33) and (15) we have 

E,ci ,045Ec,  ii'~0.19. * (34) 
This result ,  obtained by extrapolating the expansions 

in the small  parameters  A and 5, is only an estimate.') 
It follows from it that the range of a and T in which the 
charge distribution is connective i s  perfectly noticeable, 
albeit narrow. In particular, by the instant of joining 
of the ZCR the wave vector k decreases  by 10% at E 
= Ef and E- 0, and by 5% at  E = E, and E=  nf, compared 
with the value k = 1 at  E = E, and 5- 0. The correspond- 
ing increase of the period of the structure can be noted 
in experiment under conditions of a sufficiently large 
a r ea  of the experimental cell. 

8. LIMIT OF WEAKLY INTERACTING DIMPLES 

So f a r  we have considered clamping fields that a r e  
close to the critical E,, i .e.,  A<< 1. We consider now, 
neglecting the flexural nonlinearity, the region of fields 
close to Eo=  4.0612= 1 . 1 5 E c ( ~ = 0 . 3 1 ) ,  at which the ex- 
istence of a single multielectron dimple becomes ener-  
gywise favored.* 

Let us  investigate the field dependence of the charge 
distribution in a state corresponding to an absolute 
minimum of the functional (2). Such s ta tes  will be 
called stable for  brevity. Since the dimple energy is 
proportional to the square of i t s  charge, a t  E >Eo all 
the electrons present on the surface should be gathered 
into a dimple of finite radius. Assume that the transi- 
tion to this  state proceeds continuously a s  the field E 
increases to the value E, (the calculation that follows 
will confirm this  assumption). In the considered limit, 
the charge distribution should then constitute a widely 

1104 Sov. Phys. JETP 55(6), June 1982 V. I. Mel'nikov and S. V. Meshkov 1 104 



spaced (with period a>> 1) triangular lattice of weakly 
interacting dimples whose charge equals Q = f lna2/4 
and increases with increase of the period. 

The surface energy consists of the energies of the in- 
dividual dimples in the clamping field and the dimple- 
interaction energy. According to our  calculation^,^ the 
energy of a single dimple with charge Q,  at  a small  de- 
viation of the field from Eo, i s  linear in E and i s  equal 
to 

In the calculation of the interaction energy of dimples 
with large distances between them the dimples can be 
regarded a s  point charges,  and the interaction pure 
Coulomb. In a triangular lattice, the energy per charge, 
according to Ref. 8, i s  

The total surface energy per unit a r e a  i s  

Minimization with respect  to a yields 

We see  that the period of the structure indeed diverges 
a s  E -Eo, i.e., the assumption that the transition to the 
single-dimple limit i s  continuous i s  confirmed. 

The foregoing reasoning leads to two conclusions. 
F i r s t ,  the field region in which a stable periodic struc- 
ture exists  i s  bounded from below and above. The be- 
havior of the energy and of the period of the structure 
near the boundaries E, and Eo of this  region a r e  de- 
scribed by Eqs. (20), (32), and (35), respectively. 

Second, the divergence of the period of the structure 
at  finite dimensions of the individual dimples4 means 
that at  a certain E <Eo the connectivity of the charge 
distribution must break. Since a stable state of the 
system for which this statement i s  valid i s  indeed 
realized so long a s  the distribution i s  connective, i.e., 
up to the joining of the ZCR, we have for the field Ef 
corresponding to this instant the rigorous inequality 

We have by the same token obtained a proof that does 
not follow in principle from the rough estimate (341, 
that the field Ef indeed exists. 

After breaking up the charge distribution into indi- 
vidual dimples, it becomes impossible to obtain an ab- 
solute minimum of the energy, and various metastable 
states,  i.e., corresponding to local energy minima, 
should be realized.') The surface configuration i s  de- 
termined in this  case  not only by the value of the field, 
but also by the prior history. It appears that a s  the 
field i s  gradually increased the structure undergoes a 
number of jumplike restructurings due to the coales- 
cence of neighboring dimples. As a result,  the period 
of the structure on the whole will increase,  but in ac- 
cordance with a law different from (35). When the field 
is decreased, the reverse  takes place, but the suc- 
cessive jumplike breakups of the dimples will take 

place only in fields weaker than the value E D  at which 
a single dimple becomes unstable. 

9. EXPERIMENTAL SITUATION 

At the present time a hexagonal restructuring of the 
surface and individual dimples a r e  reliably observed 
by optical m e t h ~ d s , ~ * ~ * ' ~  and the interferograms of the 
surface make it possible to measure directly the shape 
of the restructured surface. We now discuss the possi- 
bility of observing the effects discussed in the present 
art icle.  

The near-threshold hysteresis  investigated in Sec. 5 
has  apparently already been observed by Leiderer  and 
Ebner,' although the accuracy of the measurements i s  
a s  yet insufficient for  comparison with the calculation. 
At the rat io of the charge density to the saturation val- 
ue n/n,, = 0.08, indicated in Ref. 7, the calculated hy- 
s t e r e s i s  (30) amounts to 0.13%, a s  against 0.5% in Ref. 
7. We note that measurement of the hysteresis  ca l l s  
for  a very high homogeneity of the field, which has not 
been attained s o  far .  

The much stronger temperature-dependent hysteresis  
observed in Ref. 9 i s  due apparently to some extraneous 
mechanism outside the scope of the model considered 
by us (Sec. 1) and stabilizes the surface structure at 
T 2  3.7 K. In particular, this  mechanism makes viable 
the strip-like periodic structure that i s  certainly not 
favored energywise ( s ee  Sec. 6). 

The growth of the ZCR with increasing field, and 
their  shapes, a r e  difficult to observe directly, since the 
refracting ability of the surface a t  the ZCR boundary i s  

An important result  would be an experimental de- 
termination of the field E, at which the ZCR a r e  joined; 
this can be observed by determining the period and also, 
probably by determining the change of the spectrum of 
the long-wave plasma oscillations of the surface elec- 
t rons and of the capillary waves because of the res t r ic -  
tion of the region of oscillations of the electrons by the 
individual dimples. 

It would be of interest  to observe the hysteresis  
phenomena that occur in fields exceeding Ef and a r e  due 
to the onset of instability of the structure with respect  
to joining of neighboring dimples a s  the field i s  gradu- 
ally increased,  and to the breakup of each dimple into 
several  in the reverse  process  ( s ee  Sec. 8). Among the 
f i r s t  and foremost problems i s ,  in particular, the mea- 
surement of the field ED, calculated in Ref. 4 and cor- 
responding to the stability limit of a single dimple. 
This field exceeds E, by 4.4% and can be readily mea- 
sured. 

We note that to observe these effects it i s  necessary 
to experiment with low charge densities, to prevent the 
dimples with the ever increasing charge from vanishing 
into the helium. 

It i s  also possible to investigate in the same field 
range the behavior of the system when the field i s  
changed abruptly, and also when the field i s  weakened 
for  a brief instant and then returned to i t s  previous val- 
ue. In the lat ter  case the electrons, which have high 
mobility at low temperatures,  become capable of jump- 
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ing f rom dimple to dimple, but the shape of the surface 
will change little. When such a "connectivity" of the 
charge density se ts  in, it becomes possible to vary 
smoothly the period of the structure,  in analogy with i t s  
variation in the region E < E f .  

In conclusion, we consider the general question of the 
applicability of the results  of the theoretical analysis of 
an infinite charged surface in a homogeneous clamping 
field to experimental facilities of finite size. The con- 
dition that the distance between the surface and the 
field-producing electron be large compared with the 
period of the structure i s  usually satisfied and i s  fur- 
thermore of no importance in principle, since the in- 
teraction with the electrodes can be accounted for  in the 
calculation. 

Since some of the investigated phenomena take place 
at very small  changes of the clamping field, the lat ter  
must satisfy very stringent intensity-homogeneity re-  
quirements. In experiments with low charge density 
the field must a l so  be highly homogeneous in direction, 
otherwise the entire charge will be gathered in the r e -  
gion where the electron energy is a minimum. 

Our last  r emark  concerns the experimental observa- 
tion of a smooth change of the period a s  a function of the 
field. In contrast to an  infinite surface, the period can 
be changed in practice only by vanishing and appear- 
ance of dimples on the boundary of a charged region, 
and in the general  case  entails the surmounting of an 
energy bar r ie r  of the order  of the dimple energy. This 
leads to a unique edge effects that makes measurement 
of the period difficult. I t s  influence does not weaken 
with inereasing surface area,  and depends only on the 

width and the character  of the boundary region. A 
strong edge effect can make a smooth variation of the 
period utterly impossible. 

')It should b e  noted that  the maximum attainable charge  den- 
si ty on  t h e  sur face  i s  %,,,,,= 1 / 6 ~  0 . 4 1 ,  s o  that  when est i-  
matingKf it 's apparently necessary  to  take into account the  
f lexural  nonlinearity m o r e  r igorously.  It m a y  turn  out in 
part icular  that t h e r e  i s  no joining of ZCR direct ly a t  E = E ,  
a l l  the  way to the value K=Kf a t  which the charges  vanish in 
t h e  helium after  t h e  s u r f a c e  stabil i ty i s  los t  ( s e e  Ref. 7) .  

')The tempera ture  effects that  lead t o  e lec t ron  exchange be- 
tween dimples have been es t imated  in Ref. 4 to  b e  negligibly 
s m a l l ,  s o  that  metastable s ta tes  a r e  a s  viable a s  the s tab le  
ones. 
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