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The shift and splitting of a shallow electron level, induced by extraneous magnetically polarized particles, are 
computed. In a magnetic field this interaction leads to a change in the magnitude of the Zeeman splitting. The 
helium-vapor-induced shift of the spectrum of electron states above the surface of liquid helium, a shift which 
explains a number of experimental data, is determined. The influence of point defects on the spectra of the 
shallow impurity levels and the Wannier-Mott excitons in a semiconductor is investigated. It is shown that 
the action of the plasma background on a radiating ion leads to appreciable shifts and the disappearance of 
certain spectral lines in a dense plasma. Thermodynamic instabilities, magnetic phase transitions, specific 
high-frequency oscillations, and the appearance of a new EPR frequency in the investigated systems are 
considered. 

PACS numbers: 71.70.Ej, 71.50. + t, 67.20. + k, 52.25.P~ 

The spectroscopy of the localized electron states in and diagnostics. 
condensed media depends essentially on the properties 
of these media. Even a rarefied gaseous medium 
changes quite appreciably the energy levels of a bound 
electron a s  compared with the spectrum in a vacuum, 
up to the point of complete disappearance of localized 
discrete states. In the present paper we study the shift 
of a shallow electron level under the action of an ex- 
ternal s y s b m  of extraneous scattering centers. If for 
some reasons the medium is magnetically polarized, 
then the interaction of the electron with the medium 
lifts the spin degeneracy, and the energy level i s  split 
(even in the absence of a magnetic field!). In an ex- 
ternal magnetic field the quantum refraction of the 
bound electron on the particles of the medium changes 
the mutual disposition of the Zeeman lines in the spec- 
trum. 

Besides the change in the depth of the level, caused by 
the direct interaction of the localized electron with the 
medium, a substantial contribution to the energy shift 
is made also by the screening by the medium mole- 
cules of the interaction between the electron and the 
center attracting it. The shift and splitting of a shallow 
electron level by a neutral medium a r e  computed in the 
particular cases of the spectroscopy of highly excited 
atoms in an extraneous-gas atmosphere, electrons 
localized above the surface of liquid helium, and bound 
electron states of large radius (impurity levels, Wan- 
nier-Mott excitons) in semiconductors with point de- 
fects. Everywhere in the computations we consider 
only elastic scattering, i.e., we assume the velocities 
to be sufficiently low, so that the internal structure of 
the particles does not change during their collisions. 
We also carry  out numerical estimates and a compari- 
son with the available experimental data. 

The case in which the medium, although quasineutral, 
consists of charged particles is  considered, using a s  
an example the interaction of a hydrogenlike ion with a 
surrounding plasma background in an ionized gas. The 
resulting effects turn out to be very significant a t  suf- 
ficiently high densities of the ionized gas, and should 
be taken into account in dense-plasma spectroscopy 

It i s  interesting that not only does the medium affect 
the energy spectrum of the bound electron, but the pres- 
ence in the medium of a definite number of shallow dis- 
crete levels can cardinally change the macroscopic 
properties of the system a s  a whole. In the final part 
of the paper we consider in connection with the earl ier  
investigated objects such phenomena, due to the pres- 
ence in the medium of shallow bound states, as  mag- 
netic phase transitions, the thermodynamic instability 
of the gaseous phase, zero-sound vibrations and spin 
waves, the appearance of a second EPR frequency, and 
homogeneous antiferromagnetic resonance. Some of 
these effects can be observed by means of present-day 
experimental techniques. 

1. LEVEL SHIFT AND SPLITTING 

Let us consider a shallow localized electron state with 
characteristic localization extent P. Let us now place 
such a bound electron in a rarefied medium of extra- 
neous scattering centers with molecular density N such 
that 

where I? is the amplitude of the electron scattering by a 
center. For definiteness, we shall now speak of a high- 
ly excited atom in a gas of neutral spin-& particles. 
The role of the characteristic dimension P is then 
played by the mean distance from the excited electron 
to the center of the atom (it i s  assumed that F i s  con- 
siderably greater than the radius of the atomic core). 
As usual,' let us introduce the effective potential 
Ui, , , (r )  for the interaction of the electron with an ex- 
traneous-gas particle in such a way that i t  allows the 
application of perturbation theory and satisfies the re- 
normalization condition: 

where m i s  the electron mass, (I, 0 and F ,  v a r e  the 
spin indices for the electron and the extraneous par- 
ticle, and r,,,,,(O) i s  the forward-scattering ampli- 
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tude. Although we shall neglect the relativistic cor- 
rections stemming from the spin-orbit and spin-spin 
interactions, because of the exchange effects, the 
pseudopotential U,,,,, (like the scattering amplitude 
I',,,,,) depends on the spins of the colliding particles, 
more exactly, on their total spin. 

We shall be interested not only in the shift due to the 
quantum refraction of the electron by the atoms of the 
extraneous gas, but also in the level splitting (i.e., in 
the lifting of the spin degeneracy), produced by the 
same causes when the spin system of the scattering 
centers i s  magnetically polarized for some reason (an 
external magnetic field, a ferromagnetic phase transi- 
tion, the injection of a polarized beam, optical 
pumping, etc.). Accordingly, we shall describe the gas 
of extraneous atoms by a polarization density matrix 
n,,(p) that i s  a linear function of the Pauli matrices 
@a,: 

nap ( p )  ='/ , (n++n-) 6 .p+1/ , (n+-n- )a ,BA,  (1.3) 

where 312 is the unit vector in the direction of the 
macroscopic magnetic moment of the gas; n' and n- a r e  
the Fermi occupation numbers for the extraneous par- 
ticles with spins oriented along and oppositely to the 
direction of the magnetic polarization 3R: 

n * ( ~ ) = ' / ~ ( l - t h [ ( e - p , ) / 2 T ] ) ,  ~=p'/2df. (1.4) 

Here T i s  the temperature, M i s  the mass of a gas par- 
ticle, and the quantities p* a r e  given by the normaliza- 
tion conditions: 

where N, and N -  a r e  the concentrations of the gas atoms 
with spins oriented parallel and antiparallel to m. The 
values of N, and N -  give the degree CY of polarization of 
the gas: 

N+-N-=aN,  N++N-=N. (1.6) 

The electron-scattering center interaction Hamil- 
tonian has the form 

2 = J ( t , )  + ( t f )  U a  - t ,  r r  t '  (1.7) 

where g,', g, a re  the Heisenberg operators for the 
electron, &:, 6, a re  the corresponding operators for 
the atoms of the extraneous gas, and summation is im- 
plied over repeated indices. On account of (1.1) the de 
Broglie wavelength of the electron i s  much greater than 
the electron-extraneous particle interaction range, 
i.e., there occurs low-energy scattering. Therefore, 
in the leading-in II ' l /F << 1-approximation the scat- 
tering amplitude i s  a rea l  quantity, an energy-indepen- 
dent constant, i.e., 

The contribution made by the interaction (1.7) to the 
electron Green function i s  then determined by only one 
loop diagram ( ~ i g .  1). The wavy lines in the figure cor- 
respond to the electron Green functions, and the contin- 
uous loop pertains to the atoms of the extraneous gas. 
Using the relation (1.2), we obtain for the self-energy 
function C,, the expression 

0 I 

A 

FIG. 1. 

The s -scattering length a,,, ,, can be expressed in 
terms of the singlet and triplet scattering lengths, a,, 
and a,, respectively, in the usual fashion: 

Performing the summation over the spins in (1.8), we 
finally find that 

The first  term in (1.10), which describes the shift of 
the upper atomic level in the extraneous gas, was de- 
rived by ~ ~ r m i '  (see also Firsov's paper3). More gen- 
e ra l  expressions for the spectral-line shift, which take 
account of the contribution from the scattering involving 
nonzero spins, were found by Alekseev and S~bel ' rnan.~ 
The second term in (1.10) corresponds to the shifted- 
electron-level splitting, which occurs a s  a result of the 
exchange interaction during the coherent refraction of 
the electron by the atoms of the extraneous spin-polar- 
ized gas. 

The correction (1.10) to the energy does not, how- 
ever, account for the whole change in the depth of the 
shallow level in an excited atom placed in an extraneous 
gas, since the presence of the gas also changes the 
basic Hamiltonian corresponding to the interaction of 
the atomic core with the electron. Indeed, since the 
sphere of radius T has macroscopic dimensions, and 
contains a large number of atoms of the extraneous gas, 
the atomic core's electric field acting on the electron 
under consideration differs from its value in the ab- 
sence of the extraneous gas by the factor l/&, where & 

is the permittivity, which can be determined from the 
Clausius-Mossotti formula: 

where H. i s  the polarizability of the gas. 

Since we a r e  dealing with a highly excited state of the 
atom, when the electron is  on the average located at 
large distances from the atomic core, we can classify 
the energy levels of the electron in the atomic core's 
field (which a t  distances of the order of 7 can, with a 
high degree of accuracy, be  consider to be a Coulomb 
field) with the aid of the hydrogenic spectrum with the 
Rydberg correction A, ( ~ e f .  1): 

where n is the principal quantum number and e i s  the 
electron charge. The correction A, does not depend on 
N, since i t  i s  determined by the deviation of the field 
from the Coulomb field a t  distances small compared to 
7 and N-' 13, where the extraneous gas has no screening 
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effect. In the approximation linear in N, we find from 
(1.11) and (1.12) that 

Besides the contributions (1.10) and (1.13) from the 
scattering by the electrons and the dielectric screening, 
the interaction of the particles of the extraneous gas 
with the atomic core also has an effect on the position 
of the level. The corresponding shift due to  the polar- 
ization of the extraneous particles in the field of the 
atomic core turns out in the quasistatic approximation, 
in which 

(v is the extraneous-gas-particle velocity) to be pro- 
portional to N ~ "  (Refs. 2-4), and we shall neglect it in 
the linear approximation. Let us note that, in the case 
of elastic scattering of ultraslow foreign particles, 
i.e., for 

(b is the atomic dimension and M * is the reduced mass  
of the atomic core and a foreign particle), we can use 
for the level shift the formula (1.10) with the appropri- 
a te  s-scattering-length value and the additional small  
factor m/M * << 1. In the impact approximation, in 
which X << 1, the polarization-induced shift i s  linear4 in 
N: 

Thus, at sufficiently low temperatures and not too low 
foreign-gas densities the unperturbed shallow level I 
= - g, shifts, and splits up-in proportion to the spin 
polarization of the foreign particles-into two levels 
with energies given by the formulas (1.10) and (1.13): 

The expression (1.15) i s  the f i r s t  te rm in the expansion 
of the level energy in powers of the density of the polar- 
ized foreign gas. The contribution (1.13) of the screen- 
ing turns out to be of the order of the magnitude of the 
shift (1.10) when n - 10, but decreases with increasing 
n. Under experimental conditions,516 the contribution 
(1.13) to the level shift constitutes about 10% of (1.10) 
when n = 30. At higher temperatures, the linear-in N -  
polarization-induced shift (1.14) should be  added to the 
level energy (1.15). 

Let us discuss in greater detail the magnitude of the 
level splitting in a spin-polarized gas. Since the time 
7, required for the establishment of the spin equilib- 
rium i s  determined by the weak relativistic interac- 
tions, 7, >> 7, where 7 i s  the time required for the 
establishment of the momentum equilibrium. There- 
fore, if a beam of spin-polarized atoms is  injected into 
an unpolarized medium, the beam particles will become 
Maxwellian over a time period 7, >> t >> 7, but will retain 
their total magnetic moment, and we shall have a t  our 
disposal a magnetically polarized quasiequilibrium gas. 
The characteristic t imes 7, a r e  usually quite long, and 
a r e  sufficient for experiments to be carried out, The 
magnetic polarization of the gas of foreign atoms can be 
achieved by means of other dynamical methods. The 

magnitude of the level splitting i s  proportional to the 
degree a of polarization, i.e., 

A b =  (nfiZ/m) N 1 a, (a, (1.16) 

and i s  of the order of the level shift in a completely 
polarized gas, i.e., when a-1. The study of the t ime 
dependence of the splitting A%' at t z ?  will enable us to 
investigate the dynamics of the magnetization relaxation 
in a polarized gas. 

If the spin polarization in the foreign gas i s  achieved 
simply by switching on an external magnetic field H, 
then to the level energy must be added the Zeeman 
term 

SZ,~=-$U,BH, (1.17) 

where 13 i s  the magnetic moment of the electron (we as- 
sume for simplicity that the atomic core does not pos- 
s e s s  a magnetic moment). Then there appear in the 
formula (1.15) for the split level the corrections *pH, 
respectively, and cy = tanh@H/T). In a rea l  experimen- 
tal  situation PH << T. Making allowance for this, we ob- 
tain for the magnitude of the level splitting in a mag- 
netic field the formula 

A8=2$H(1-nhzNa,/2mT). (1.18) 

Thus, the exchange interaction of the valence electron 
with the atoms of the foreign gas in a constant magnetic 
field leads, depending on the sign of the exchange scat- 
tering amplitude a,, to an increase o r  decrease in the 
distance between the components of the Zeeman doublet. 
Under the conditions of Mazing and Serapinas's experi- 
ment6 on the investigation of absorption lines for the 
purpose of exciting the high-lying (n = 15-50) states of 
C s  atoms in a C s  atmosphere and K atoms in a K vapor, 
for . 

N= (1.2-4.8) . iO"~rn-~ ,  T= (360-520)' C 

the relative increase in the Zeeman splitting will, in 
order of magnitude, be 0.1% [for Cs  we have the values 
a,, = - 4.04aB, a,, = - 25.3aB, while for K we have a,, 
= -  15a,, a,,=0.45aB (Ref. 7), where a, i s  the Bohr 
radius]. For H - 100 kOe this increase A% - 2PH -0.1 
cm, which l ies a t  the limits of experimental e r ror .  
Higher foreign-gas densities a r e  apparently required 
for a reliable detection of the effect. 

2. ELECTRON STATES ABOVE THE SURFACE OF 
LIQUID HELIUM 

As i s  well known, a one-dimensional localized elec- 
tron state with a small binding energy i s  formed near 
the surface of liquid He and other dielectrics with a 
smal l  c - 1 value.8 Let us use the results  obtained in 
the preceding section to investigate the effect of the 
atoms of the He vapor on the localized-electron spec- 
trum. If the vapor density N i s  sufficiently high, so  that 
the mean distance of the electron from the helium sur-  
face i s  significantly greater  than N - ' ~ ~ ,  then the poten- 
tial for the interaction of the electron with the interface 
between the two different dielectric phases of He i s  de- 
termined by the electrostatic-image forces, and i s  
equal to9 
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where E~ i s  the permittivity of the liquid phase, c ,  
= 1 + 47rN u i s  the permittivity of gaseous He, and the 
z axis is oriented along the normal to the surface. The 
eigenvalues of the Schrodinger equation with the poten- 
tial (2.1) and the energy correction (1.10) due to the ef- 
fects of the quantum refraction of the electrons by the 
vapor atoms determine the electron-energy spectrum 
near the liquid-helium surface: 

where a = a1/4 = 0.62 A (Refs. 7, 8, and 10) i s  the elec- 
tron-helium atom s-scattering length and f i ,  i s  the elec- 
tron momentum in the plane parallel to the surface. 
The mean distances from the surface of the electron in 
the states with n =  1, 2, and 3 a r e  respectively 
equal to8 (z), = 144 A ,  (z), = 456 A, and (z ) ,  = 1026 A.  
Therefore, a t  relatively high temperatures T (> 1.5 A 
for 4 ~ e ) ,  when the vapor density i s  quite high, i.e., 
when N 2 loz0 ~ m ' ~ ,  we find that even in the ground 
state (z), >> N-"~, and a l l  the electron levels  a r e  de- 
scribed by the formula (2.2) with a high degree of ac- 
curacy (the higher the value of n, the better  the de- 
scription). The change, due to the presence of the 
vapor atoms, in the transition frequencies between 
states with different n i s  determined in this case  only 
by the n-dependent t e rm in (2.2): 

For N = 10'' (T -3.3 K) we have v,,, - 108 GHz, 
which differs from the v,,, value a t  low vapor densi- 
ties (see below) by 14.2%. Thus, a significant decrease 
in the photoresonance transition frequencies should oc- 
cur at  sufficiently high temperatures and vapor densi- 
ties. 

On the other hand, the condition ( z ) ,  >>N-I/, i s  by no 
means fulfilled for each electron state a t  low tempera- 
tures  and sufficiently low N values. In the s ta tes  for 
which (z),  <<N-"~ the presence of the helium vapor has 
absolute no effect, and the localized-electron spectrum 
is given by the expression (2.2) with N = 0: 

E=-Qme'//2fr2n2+p,'/2m. (2.4) 

Naturally, in the case  in which the electrons move in 
directions parallel to the liquid surface, the collisions 
with the vapor atoms are ,  a s  before, important: i t  i s  
precisely these collisions that determine, together with 
the scattering by the ripplons, the resonance-transi- 
tion line width, which w e  shall not compute in the pres-  
ent paper. But since the thermal electron velocity v,, 
= ( ~ / r n ) ~ ' ~ ,  which characterizes the two-dimensional 
motion, i s  significantly lower than the characterist ic  
velocity v o = ~ e Z / h -  (vTs/vo-0.1 at  T - 1 K) of the electron 
in the potential well, in the leading approximation in 
vTe/vo << 1 the shift of the transition frequency between 
the states I nJ and (n,l in which (z),, >> N-lI3 but (z ) , ,  
<<N-"~ i s  given by the difference between the energies 

(2.2) and (2.4): 

In the presence of gaseous helium with low density N 
the dominant contribution to the frequency increase 
(2.5) i s  made by the interaction of the electron with the 
vapor atoms. For N = lo1' ~ r n - ~  we find from (2.5) the 
values 

which agree  well with the direct  measurements re -  
ported by Grimes et al.": 

The interaction with the vapor atoms can thus explain 
within a definite density (N) range the fact that the ob- 
served values of the transition frequencies v,,, always 
turn out to be  greater  than the computed values in the 
case  when the helium vapor i s  n e g l e ~ t e d . ~  The same  
systematic discrepancy has been observed for  electrons 
localized above the surface of liquid 3 ~ e . 1 2  

3. SHALLOW IMPURITY LEVELS AND EXCITONS OF 
LARGE RADIUS IN SEMICONDUCTORS WITH POINT 
DEFECTS 

Entirely similar  phenomena may prove to be  im- 
portant for bound electron s ta tes  in crystals  in the pres- 
ence in them of point defects. If the defect dimension 
and concentration satisfy the condition (1.1), then the 
defects will play the role of refraction centers  for  the 
slow electron, and will cause the energy of the corre-  
sponding bound s ta te  to shift in proportion to their con- 
centration. If the defect possesses an  electron spin, 
and the defect system is ,  for  some reasons o r  other, 
ferromagnetically ordered (see, for example, Ref. 13 
and Sec. 6 of this paper), then besides the shift in pro- 
portion to the exchange interaction there  will occur a 
splitting of the level. As obtains in semimagnetic semi- 
conductors, deep impurity levels o r  impurity atoms 
with uncompensated electron spin in the inner shells  
can play the ro le  of magnetic defects. 

The presence of defects changes also the permittivity 
c of the crystal  and, consequently, the electr ic  field 
acting on the electron. For a crystal  with cubic sym- 
metry, the problem of determining the bound-state 
spectrum of the electron in the effective-mass approxi- 
mation formally coincides with the problem of finding 
the energy levels of the hydrogen atom. Therefore, 
arguing a s  above, we immediately obtain the shallow- 
impurity-level spectrum 

and the Wannier-Mott exciton energy levels 

where m, and m, a r e  the effective electron and hole 
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masses; Nd i s  the number of defects in a unit volume; 
a!, and 9'2, a r e  the degree of polarization and the unit 
vector in the direction of the magnetic moment of the 
defects; @ *  = m,mh (me+ mh)-' i s  the reduced mass; 
E 'O' i s  the width of the energy gap in the crystal; fZk 
is the quasimomentum of the exciton "as a whole"; 
a,,, a,,, a,,, and a,, a r e  the averaged-similarly to 
(1.9)-lengths characterizing the s scattering of the 
electron and hole on a defecc 0, @ and p ,  v a r e  the spin 
indices for the electron and hole. 

As can be  seen from (3.1) and (3.2), in the presence of 
a magnetically ordered system of point defects, the im- 
purity and exciton levels split up respectively into two 
and four components. The formulas (3.1) and (3.2) a r e  
valid for the states in which T>>N;'I~ i.e., when 

For crystals  with E-10, p*-0.1 m, and Nd -1018 ~ r n - ~ ,  
this condition i s  fulfilled even in the (n = 1) ground 
state. The energy levels of the states in which P 
<<Nilf3 and the presence of the defects is not felt in 
any way a r e  given by the usual expressions [the formu- 
l a s  (3.1) and (3.2) with Nd = 01. The experimental in- 
vestigation of the transitions from such levels to 
levels with sufficiently large n, where T will 
enable us to determine a very important characterist ic  
of the system: the electron-defect scattering ampli- 
tude. The detection of the splitting of the appropriate 
spectral line will enable us  to identify the phase transi- 
tion into the magnetically ordered state in the system of 
magnetic impurities. 

4. THE SHIFT AND DISAPPEARANCE OF SPECTRAL 
LINES IN  A DENSE IONIZED GAS 

Let us  now consider the situation in which an assem- 
blage of charged, and not neutral, particles plays the 
ro le  of the medium in which the bound electron i s  lo- 
cated. Specifically, we shall consider the effect of a 
surrounding plasma background on the spectrum of a 
hydrogenlike ion (or  a hydrogen atom). The  dominant 
contribution to the level shift will then be made by the 
screening of the field of the nucleus of the ion by the 
electrons and ions of the surrounding plasma a s  a re-  
sul t  of the long-range character  of the Coulomb inter- 
action. If the radius 7 of the electron orbit of the unper- 
turbed hydrogenlike ion i s  smaller  than the mean dis- 
tance N2I3  between the electrons of the plasma back- 
ground, i.e., if 

where Z i s  the charge of the ion's nucleus and n and I 
a r e  the principal and orbital quantum numbers, then 
there  will be no collective screening of the nuclear 
charge by the self-consistent field of the plasma, since 
a t  such distances the continuous-medium approximation 
for the plasma in unsuitable and the macroscopic equa- 
tions for the self-consistent field a r e  inapplicable. In 
this situation only a microscopic treatment of the inter- 
action of the individual electrons and ions with the nu- 
cleus and the localized electron makes sense. The en- 
ergy levels and the wave functions of the states for 
which the condition (4.1) i s  fulfilled a r e  consequently 

given by the "unperturbed" expressions 

where the Y,,(O, cp) a r e  the spherical functions and the 
L:(x) a r e  the generalized Leguerre polynomials. 

On the other hand, for the s ta tes  in which F >> N z '  3, 

the screening effect of the plasma background i s  very 
important. Indeed, in this case  the averaging of the 
microscopic fields over smal l  volumes (each of which, 
however, contains a large number of particles) reveals  
the existence in the plasma of a macroscopic electric 
field, which changes t o  a la rge  extent the force field 
acting on the bound electron. In contrast to the local- 
ized-electron state, which i s  described by a wave func- 
tion, the state of the medium i s  specified by assigning 
macroscopic variables: the electron density Ne and the 
number No of ions of the kind a in a unit volume. Let 
u s  place the ion in question a t  the coordinate or ig in  
The presence of the plasma background modifies the 
electric field of the nucleus a t  distances r >> N;'I3 in 
accordance with the Poisson equation: 

where Za i s  the charge of the ion of the kind a. The 
bound electron state in the distorted potential e@ of the 
nucleus i s  given by the solution to the Schrodinger equa- 
tion 

The localized electron cloud a lso  produces a macro- 
scopic electr ic  field cp: 

where cp(0) is finite, while cp(m) = 0. To obtain a closed 
system of equations for the self-consistent field, we 
must further add the relations expressing the concen- 
tration distribution for the particles of the plasma back- 
ground in the electr ic  field of the nucleus and the bound 
electron: 

N.=N., exp [e(qf Q)ITel,  N.=N., exp [-Z.e(q+Q)IT,]. (4.6) 

Here N,, and Nao a r e  t h e  density values obtaining a t  
points infinitely f a r  away f rom the ion in question, and 
satisfying the electrical-neutrality condition 

while Te and Ti a r e  the electron and ion temperatures. 

Equations similar  to (4.3)-(4.6) have been used by 
Skupsky14 to numerically compute the shift of the neon 
Lyman-a! line for N,-loz4 ~ m - ~ .  Let u s  emphasize 
that the results  obtained by Skupsky14 a r e  in fact only 
qualitative, since the s ta tes  considered by him do not 
fulfill the condition 7>>Nzl3 ,  and Eqs. (4.3) and (4.6) 
a r e  valid only when this condition i s  fulfilled. We shall 
investigate the analytic solutions t o  (4.3)-(4.6), using 
natural simplifying circumstances. 
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Owing to the slight nonideality, i.e., because eZN213/T 
<< 1, we can always linearize the equations (4.6). The 
numerical solution, undertaken by Skupsky,14 of the 
exact equations (4.3)-(4.6) goes beyond the required ac- 
curacy, since, a s  shown by Gurevich (see, for example, 
Ref. 15), the expansions of N, and Na may contain 
terms, proportional to (cp + (h)3/2, that a r e  not contained 
in (4.6). Linearizing the expressions (4.6) for N, and 
No, substituting the resulting expressions into Eq. (4.3), 
and using the electrical-neutrality condition, we obtain 
the equation 

where we have introduced the Debye screening distance 
r, : 

If the unperturbed bound-electron state (4.2) i s  such 
that N;:'~ << 7<< r,, i.e., if 

then the level shift due to the electrostatic screening 
can be computed in the form of a perturbation theory 
series in powers of 7/rD << 1. 

Let us make the assumption (to be confirmed by the 
results) that in f irst  order perturbation theory the wave 
function of the localized electron state does not change 
under the action of the plasma background, In this case 
the potential q of the electric field produced by the 
bound electron also does not change, and coincides 
with the unperturbed solution to Eq. (4.5), a solution 
which we shall denote by q(0) [cp(O) i s  the solution to 
Eq. (4.5) with J ,= J,'"]. The solution to the inhomo- 
geneous equation (4.7) i s  given by the convolution of the 
Green function 

of the homogeneous equation with the right member of 
(4.7): 

The correction due to the contribution of the localized 
electron then turns out to be of second order in small- 
ness in @?<< 1, and we finally obtain in the first  ap- 
proximation the natural result 

a (r) =Ze/r-Ze/r,. (4.11) 

Since the perturbation due to the plasma screening 
turns out to be a r-independent constant, all the off- 
diagonal matrix elements a r e  equal to zero, and, a s  
was assumed, the J ,  function of the electron remains 
unchanged up to the second-order terms. The level 
shift i s  linear in @, and does not depend on the quantum 
numbers: 

i.e., the energy levels of al l  the states for which the 
condition (4.9) i s  fulfilled shift by the same amount de- 
termined by the formula (4.12). The frequencies of the 

radiative transitions between these states clearly do 
not change in this approximation. On the other hand, 
the frequencies of the transitions between the states 
(4.9) and the states (4.1), in which the presence of the 
plasma background can be ignored, undergo, according 
to (4.12), a shift toward the blue region of the spectrum: 

where v::!,,, = (E::'- ~::))/2nii i s  the unperturbed transi- 
tion frequency. 

At high electron and ion densities, such a s  obtain in a 
laser plasma, the shift (4.13) can be quite substantial, 
and allowance for such a shift i s  important for the 
spectroscopy and diagnostics of a dense plasma. In a 
superdense plasma (i.e., a plasma for which 1 S N ~ ~ U ,  
< 2) with a sufficiently high degree of nonideality 

the blue shift (4.13) of the spectral line for the transi- 
tions into the ground state, AV,,,/V:~,', can attain a 
value of the order of 1-10%. We can, by making sim- 
ple estimates, easily verify that a t  sufficiently high 
values of 2, N,,, and N., the shift (4.13) i s  significantly 
greater than the line width. 

If the charge of the ion in question i s  sufficiently high, 
the perturbing action of the bound electron on the 
charged particles of the plasma background in the 
Debye sphere can be neglected. In this case the domi- 
nant contribution to the self-consistent field i s  made 
by the free plasma electrons and ions (N,, >> 1, Nao >> I), 
which distort the potential of the nucleus of the ion 
under consideration. The spectrum of the localized 
electron states i s  then determined by the eigenvalues 
of the Schrodinger equation (4.4) with the screened 
Coulomb potential 

U(r) =-em ( r )  =-Zeze-br/r .  (4.14) 

We shall determine the depth of the ground s level with 
the aid of the variational method with the trial wave 
function16 

where 6 i s  the Ritz variational parameter. Minimizing 
the total energy 

we easily find the ground-state energy E,: 

The formula (4.16) determines the dependence of the 
ionization potential of the ground state on the tempera- 
ture and density of the plasma background. When rD 
> > a , / ~  the expression (4.16) goes over, a s  i t  should, 
into the unperturbed formula (4.2) with the correction 
(4.121, i.e., 

For rD a,/2 the potential (4.14) does not admit of a 
single bound state. 
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Thus, the ion energy levels with the lowest principal- 
quantum- number values 

can be classified with the aid of the normal hydrogenic 
spectrum (4.2). For higher n values, i.e., those such 
that 

the depth of each level decreases in accordance with 
the expression (4.12), and, consequently, the Debye 
screening leads in the case of the transitions between 
such states and the states with small n(<<nl) to blue 
spectral-line shifts proportional to r; a (N,/T)"~. 
Finally, for the high quantum-number values, i.e., 
for n -no, the classification of the levels of the one- 
electron ion in question differs very greatly from the 
hydrogenic classification. If no i s  sufficiently high, 
then the spectrum of the states with n 2  no can be deter- 
mined with a high degree of accuracy from the quasi- 
classical quantization conditions: 

The energies of the high-lying s levels, for example, 
a r e  given by the following equations: 

C-I Ze' 
yr--i=g, YE--. 

IElrD 

In contrast to the hydrogenic spectrum, the potential 
field U(r), (4.14), has, in any case, a finite number of 
discrete levels. Since for small values of n, i.e., for 
n <<no, the deviation of the potential field (4.14) from 
the Coulomb field can be neglected in the leading ap- 
proximation, and the use of the quasiclassical method 
in the case of the Coulomb field yields an exact result, 
the total number S/of discrete levels for no >> 1 can be 
found, using the quasiclassical formula1: 

FIG. 2. 

action which i s  important for the states with F > > N - ' / ~ .  
For the low-lying states (i.e., for the states with Z/n 
>> I), perturbation theory i s  always applicable to the 
Coulomb interaction between the bound electron and the 
free electrons. For high quantum-number values h e . ,  
for Z/n << I ) ,  the use of perturbation theory i s  justified 
when T >> Ry. The level shift due to the exchange inter- 
action is then determined by a simple first-order dia- 
gram (Fig. 2). In order not to interrupt the discussion, 
we perform all  the calculations in the Appendix, and 
give only the result here: 

In (4.20) the first  term gives the level shift, while the 
second term gives the level splitting if by chance the 
system of plasma electrons is magnetically polarized 
with degree of polarization a. The distance between 
the components of the Zeeman doublet will also change 
to the same extent (see Sec. 1). 

The energy of a free electron of the plasma back- 
ground also change in proportion to these same ex- 
change corrections: 

(4.21) 
which i s  now a complicated function of the momentum 
p. The function F ( z )  can be expressed in terms of the 
probability integral u i ( y )  of the complex variable: 

(4.22) 
For high momentum values, i.e., for p2 >> mT, the ex- 
change correction (4.21) to the energy is proportional 
to p-? 

In this case there a r e  no bound states with n>>no. As and for B / ~ ,  <<p<< ( m ~ ) l ~ Z  the expression (4.22) co- 
the density of the surrounding ionized gas increases, incides with (4.20). The correction (4.21) to the free- 
the number N o f  discrete levels decreases, and the electron energy also affects the macroscopic equations 
spectral lines corresponding to the transitions from the for the self-consistent field, i.e., it also makes its 
highest levels disappear. The value of no in a dense own contribution to the shift of the bound-electron 
laser plasma with N, = loz4 cm-= and T = 750 eV turns leveL For the states in which N;" << T<< r,, this in- 
Out to be rather when '= lo 14): In direct contribution is, however, proportional to a pro- 
a superdense plasma, for which rDc a,/', a nucleus duct of two small parameters: ( ~ / r , ) .  (RY/T) << 1, and 
with charge 2 loses completely all  i ts  discrete electron therefore turns out to be significantly smaller than the 
levels a s  a result of the electrostatic screening, i.e., direct exchange correction (4.20) for the bound elec- 
S/= 0 in this case. tron. Thus, allowance for the correction (4.20) to- 

Thus far, we have been interested only in the purely 
classical nonlocal effects of the long-range correlation 
between the bound electron and the particles of the sur- 
rounding plasma. On the other hand, a definite con- 
tribution to the level energy i s  made also by the essen- 
tially quantum local Fermi-liquid-type corrections 
similar to the corrections considered in Sec. 1, and 
due to the exchange interaction of the localized electron 
with the electrons of the plasma background, an inter- 

gether with (4.12) does not go beyond the needed ac- 
curacy, and we can write 

AE=Zez/rD- (fiQ.)VZT. (4.23) 

Notice that the contribution of the effects of the interac- 
tion of the bound electrons with the plasma background 
to the level energies of many-electron ions can be 
more important than the shift due to the interaction of 
the bound electrons with each other. 
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5. INSTABILITIES. PHASE TRANSITIONS, HIGH- 
FREQUENCY OSCILLATIONS 

Let us investigate the stability of a gaseous medium 
of neutral particles, in which a system of highly-ex- 
cited atoms has been placed, so that the condition (1.1) 
is fulfilled. The free energy of each of the components 
is given by the well-known formula of statistical phys- 
ics17: 

Assuming for simplicity that the atoms of the medium 
a r e  in the ground state, while all the excited atoms a r e  
in a definite state In) (the excitation i s  effected by 
means of resonance radiation, for example), we find 
with the aid of (1.15) the total free energy F: 

eg, McT " a h z  
F = - T i  N ,  ln [- (-z) ] + N , ~ o , - N ~ ~ ~ +  8 n ~ 8 ~ "  N,N,.  

( - 1  
N .  2 n 5  

(5.2) 
where the subscript i = 1 pertains to the medium, i = 2 
pertains to the system of excited atoms, and q, is the 
statistical weight. In (5.2) we have dropped the virial 
corrections that a r e  quadratic in N,, which a r e  due to 
the interaction of the heavy atoms with each other, 
since even a t  very low temperatures they contain the 
small factor m / ~ ,  << 1 in comparison with the last term 
in (5.2). Allowance for such virial corrections does not 
present any difficulties; it only makes the subsequent 
computations tedious. The thermodynamic condition 
for the system to be stable i s  violated if 

det lla%/t?N,aN.Jl GO. (5.3) 

From (5.3) we find with the aid of (5.2) the critical 
temperature T, upon the attainment of which the given 
two-component system of unexcited and excited atoms 
becomes unstable: 

The use of the formulas of the Boltzmann statistics i s  
justified if T, >> %,(i = 1,2), where E,, i s  the quantum- 
degeneracy temperature. It i s  not difficult to see that, 
because of the smallness of m/M, << 1, there always 
exist ranges of N ,  and N, values where the condition TI 
>> zdf i s  fulfilled. Thus, at high values of n this condi- 
tion is  fulfilled if 

(5.5) 
The above-considered instability can occur if the 

usual first-order phase transition connected with the 
condensation into the liquid phase of one or both com- 
ponents does not occur at T > T, a s  the temperature is 
lowered, i.e., if 

$) (N,, T )  <kti':"' (N, ,  T )  

where piG' and pjL' a re  the chemical potentials for the 
gaseous and liquid phases respectively. Unfortunately, 
the experimental observation of such an instability in 
an excited gas meets with certain difficulties, since, in 

order for the T ,  not to be too low, i t  i s  necessary that 
the pressure of the medium be high, i.e., that Nl - loz1  
cmq3, and the highly excited atoms be of equally high 
concentration N, - loz0 ~ m - ~  and have a lifetime longer 
than the relaxation time 7. In charged-particle systems 
(a cold plasma, the electron gas in a semiconductor), 
the development of a similar instability leads to the 
appearance of a charge-density wave.13'18 

Treating the interaction of an atom in the ground state 
with a highly excited atom a s  scattering on a compound 
particle (similarly to the scattering of neutrons by 
molecules), we can easily verify that, a s  in Refs. 13 
and 18, there appear in the kinematic part of the ki- 
netic equations for the two components a Fermi-liquid- 
type gradient correction due to the mutual zero-angle 
scattering of a particle of the medium and an optical 
electron in an excited atom: 

The eigenvalues of the system of collisionless kinetic 
equations (5.7) give the dispersion law o(k) for the high- 
frequency (wr >> 1) vibrations of the zero-sound type 
with I w l>>  ka,, ,  where v,, = (T/M,)"~ i s  the thermal 
velocity: 

From the consistency of the conditions Iwl>> kv,, and 
T > T , we find the inequality 

upon the fulfillment of which weakly-damped high-fre- 
quency density oscillations can propagate in the excited 
gas. Actually, the inequality (5.9) i s  equivalent to the 
conditions 

( h 2 / m )  la ,  1 ( n f  A,) ' /x<Ry,  a,<O. (5 . lo)  

If the photoexcitation of the atoms occurred in a spin- 
polarized gas, then the excited two-component system 
can also propagate high-frequency spin waves with a 
quadratic dispersion law, which in this case formally 
coincides with the spectrum of the magnetization inten- 
sity oscillations in a weakly ionized gas13: 

If the magnetic polarization of the system was pro- 
duced through the injection of spins, then we must set 
H=O in the formulas (5.11) and (5.12). At k=O the ex- 
pressions (5.11) and (5.12) yield two electron-para- 
magnetic-resonance frequencies in accordance with the 
two types of uniform oscillations of the magnetic mo- 
ments of the sub~ystems. '~  

The experimental observation of such effects i s  sig- 
nificantly easier in semiconductors with shallow im- 
purity levels and point magnetic defects provided that 
F>> (see Sec. 3). There will occur in such a 
semiconductor a t  a sufficiently low temperature a phase 
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transition connected with the magnetic ordering of the 
impurity levels and the point defects. All the calcula- 
tions here turn out to be the s ame  a s  in the case  of the 
interaction of a gas of free electrons with magnetic 
point defects.13 Indeed, the magnetic f ree  energy of the 
semiconductor in the present case  has the same form 
a s  the corresponding energy in Ref. 13: 

where Mi and Mu a r e  respectively the magnetizations 
of the impurity-level and defect systems and N ,  i s  the 
number of impurity levels in a unit volume. 

The  minimization of the f r ee  energy (5.13) enables us  
to find the critical temperature of the ferromagnetic, 
M, 4 t  M, (when a, > O), ordering: 

At T > T, the detection of the double EPR signals, 

is experimentally possible even when the number of im- 
purity levels i s  relatively small. At T < T, i t  i s  also 
experimentally possible to observe a homogeneous anti- 
ferromagnetic resonance a t  a frequency equal to 

where the plus sign corresponds to the ferromagnetic 
order, the minus sign corresponds to the ferrimag- 
netic type of structure, and the equilibrium values of 
the degrees of polarization a, and CY, are,  when al- 
lowance i s  made for the fact that N, >> F'3 >>N,, given 
by the following expressions: 

" ( N ' ) " ,  w-i-erp[-2(>)2]  , ad=- T ~d - 
N d  To - 

T .  Nd T N  T I N "2 

".=I-exp[-2 T(T-], &=I - erp I -2- T(~:)"']. - c~ 6) 
i.e., the inequality Nua,>>Niai i s  always fulfilled. 

The author i s  grateful to A. F. Andreev for a thorough 
discussion of the results  of the paper and to the partici- 
pants of I. I. Sobel'man's seminar for a useful and im- 
portant discussion. 

APPENDIX 

The electron-electron interaction Hamiltonian has the 
form 

where the field operators &(r) and i~ ' ( r )  can be  ex- 
pressed in t e rms  of the creation and annihilation op- 
e ra tors  6; and a, for the electrons in the usual manner: 

Gr ( I )  =z rp,=(r) a,., + + ( I )  ==C h. (r)ak,+. (A 2) 
L L 

In (A2) the Latin and Greek subscripts number re-  
spectively the orbital and spin states, summation over 
repeated spin indices i s  implied, and Jlia(r) is the wave 

function describing the state I ia). 

Let  u s  substitute (A2) into the expression (Al) ,  and 
compute the mean value (h,,) = E,,,. Performing the 
averaging with the aid of Wick's theorem, and taking 
into account the fact that the Coulomb interaction i s  
spin independent, we finally find the contribution of 
the exchange effects to the total interaction energy: 

where we have introduced the polarization density ma- 
tr ix 

and the matrix element UImm' i s  computed with the pure- 
ly orbital wave functions $,(r). 

Varying E:;) from (A3)  with respect  to nii', and 
taking into account the fact that, because of the isotropy 
in the system, Urnmk = Urn?, we obtain the correction to 
the electron energy, that s t ems  from the electron- 
electron exchange interaction: 

Assuming that the state 1 k)  describes the localized 
electron, while al l  the states Im) pertain to the f ree  
electrons of the plasma background, we have in f i r s t  
order the expression 

where m(= p, n ~ ) ~ n a , ( p )  i s  given by the formulas (1.3)- 
(1.6) for the electrons, and the $,, a r e  the unperturbed 
hydrogenic functions from (4.2). 

Let us  se t  r = r, - r,, 2R = r, + r, in (A6), and perform 
the integration over the angle between the vectors k 
and r. The single integration by parts  with allowance 
made for the relation kF>> 1 leads to the result  

Now integrating (A7) by par t s  with the use of the nor- 
malization condition 

j l$,~(R)l"-l (A8 

for the wave functions of the bound electron, we find 

Substituting (A9) and (1.4) into (A5), we a r r ive  at  the 
formula (4.20), which is valid a t  high temperatures. 
If by chance the temperature i s  so  low that the atomic 
velocity of the bound electron i s  significantly higher 
than the thermal velocity for the free-electron gas, 
then 

where UkOob i s  given by the formula (A6) with keO. If 
the state 1 k)  pertains also to the f ree  electron, then 
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