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We consider kinetic phenomena in a singlecomponent gas that is velocity-selectively excited by narrow-band 
resonant radiation. The stationary velocity distribution function is calculated for a model in which the 
differential cross sections for the collisions of excited and unexcited particles are similar. The stability of the 
stationary state to arbitrary perturbations is analyzed. The macroscopic equations of state are found. The 
microscopic stationary state of the gas in the entire volume of the vessel is calculated. The pressure 
anisotropy, the spatial temperature and density inhomogeneities, as well as the macroscopic vortical flows in 
such a gas are considered. The influence of the spatial inhomogeneity of the radiation and of the external force 
fields is analyzed. 

PACS numbers: 05.20.Dd 

The discovery of self-induced drift in a gas  mix- 
ture'~' has  stimulated research  resulting in the predic- 
tion of a substantial change in the state of a single- 
component gas  under conditions of selective optical ex- 
citation3-? with account taken of the change of the gas- 
kinetic c ros s  section of the particles. The resultant 
stationary state of the gas  i s  characterized by a non- 
uniform distribution of the energy over the translational 
degrees of freedom and, a s  a result of the anisotropy 
of the pressure  and of the thermal proper tie^.^*^ Other 
manifestations of a system in thermodynamic disequi- 
librium a r e  macroscopic stationary gas  streams4 and 
spatial inhomogeneities of the temperature and den- 
~ i t y . ~ - ?  In all these ca ses  we have an interaction be- 
tween two thermodynamic sys tems (the g a s  and the ra-  
diation), wherein their energy remains unchanged in the 
course of the interaction (the radiation absorbed by the 
gas is spontaneously emitted subsequently), but an en- 
tropy flux from the gas  into the radiation exists  (the 
light absorbed i s  coherent and the emitted noncoherent). 

inelastic collisions and the light-pressure effect, we 
write down the kinetic equations for the excited ( e )  and 
unexcited (g) molecules in the form 

where f =f (v), fl =f (v,), f' -f (v'), f,' =f (vll),  
w(vl, vll; v, v,) is the probability of a collision that 
changes the molecule velocities from v and v, to v' and 
vll; wee describes the collisions of two excited mole- 
cules, we, of an unexcited and excited one, and wgg of 
two unexcited molecules; a i s  the molecule acceleration 
in the external force field, x i s  the saturation parame- 
ter:  

The present paper i s  devoted to a systematic analysis BM(o) do 
x(v)= j- and a theoretical description of the aforementioned ef- 7 ' I+[  ( w - u ~ - ~ v ) / A o ~ ] ~  ' ( l a )  

fects  in a single-component gas. In all the ca ses  con- 
sidered in the paper we have succeeded in obtaining in 
explicit form the particle velocity distribution function, 
making it possible, besides the analysis of the phe- 
nomena themselves, to obtain simultaneously a connec- 
tion (which is sometimes universal) between the macro- 
scopic properties of the gas  and i t s  microscopic pa- 
rameters.  All the calculations of the distribution func- 
tions a r e  therefore made in the f i r s t  part of the article. 

1. MOLECULE-VELOCITY D~STR~.BUT~ON FUNCTION 

w is the frequency, k i s  the wave vector, M ( w )  i s  the 
spectral density of the radiation, B is the Einstein co- 
efficient, w, i s  the frequency of the working transition, 
Aw, i s  the homogeneous line width of the radiation, and 
y i s  the reciprocal lifetime of the molecules on the up- 
per level. We consider a situation wherein the colli- 
sions have the following properties: 

 he conditions (2) a r e  valid, for example, for  the 
In ear l ie r   article^^'^ some of us  advanced qualitative hard-sphere model-the first for arbitrary values of 

premises that yielded the particle stationary velocity and the second in the case  I B - 1 1 << 1.l 
distribution in the spatially homogeneous case  under 
certain simplifying assumptions. We use in what fol- We add the right- and left-hand s ides  of (1).  The 
lows the Boltzmann kinetic equation, which enables us  t e rms  that describe the interaction with the electro- 
to corroborate rigorously the obtained solution, to for-  magnetic field cancel each other, and we ar r ive  at the 
go certain assumptions, and to obtain the molecule vel- equation 
ocity distribution function f (v) in the spatially inhomo- 
geneous and the nonstationary cases  a s  well a s  in the -= df j ~ ~ ~ ( f ~ ~ ~ f : ~ ~ - f ~ ~ ~ f ~ ~ ~ ~ ) d ~ ~ ~  dSvl d3vl', 

dt 
(3) 

presence of external force fields, and finally to obtain 
an analog of the Boltzmann H-theorem. Confining our- where f =  f,+ f,, f,, = f g +  Pf,. We note that (3)  i s  valid 
selves to the two-level approximation and neglecting the also when the second condition of (2) i s  violated, if the 
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total number of excited molecules i s  small  enough to be 
able to neglect their collisions with one another. 

It follows from (3) that the stationary spatially-homo- 
geneous solution at  a =  0 i s  such that f,,, i s  the Max- 
wellian distribution f,: 

It i s  convenient to express  the constants N,,,, a,,,, and 
V,,, in t e r m s  of the total densi t ies  of the part icles (N),  
of the energy, and of the momentum: 

where T = m / 2 a  = mvT2 i s  the temperature (the average 
kinetic energy of the molecule in a reference f rame 
where V = 0) ,  V being the macroscopic velocity of the 
gas. With the light pressure  neglected and the gas  heat- 
ed by the radiation, the values of N, T, and V at  the 
initial instant coincide with their values pr ior  to 
turning on the light. 

Equation (4) allows us  to eliminate from the system 
(1) one of the unknowns, f, o r  f,, and by the same token 
simplify substantially the calculation of the distribution 
function; this can be of importance, for example, when 
a computer and a specific model of the collisions a r e  
used. In the general case,  however, the problem re-  
mains too complicated to solve analytically. Further 
progress i s  possible if the gas  density i s  not too high, 
so that y i s  large compared with the collision frequency 
v. The induced and spontaneous transitions a r e  then 
much more frequent than the molecule collisions. The 
rat io of the populations of the ( e )  and (g) levels should 
therefore be approximately the same a s  in the case  of 
an isolated molecule, i.e., fe and f, satisfy, besides (4), 
also the relation 

In this  case f (v) i s  uniquely expressed in t e r m s  of 
fe,,(v): 

where 

In particular, in the absence of force fields the spatially 
homogeneous stationary solution i s  of the form 

f = f,, + f, characterizes the kinetic propert ies of the gas. 
Of interest t o  spectroscopy is the quantity f, - f,, which 
describes, in particular, the shape of the absorption 
line: 

f.-fs=-f.t1[1+(1+B)~I-'. (10) 

It is seen from ( l a ) ,  (91, and (10) that by suitably shap- 
ing the spectrum of the exciting radiation it is possible 
to vary the particle velocity distribution in a wide 
range, a factor of importance for  the shape of the ab- 
sorption line of a gas. 

At Aw, A w , ~  kv, ( a w  i s  the width of the exciting- 
radiation spectrum) and for a gas  excited by a traveling 
wave, the form of the distribution function f(v,) i s  
shown in Fig. 1.l) From the normalization conditions 
(5) we have in this  case  

where 
'I, vov 

&-cpoq, ~ = A V *  (+) exp I-. (va  --)I vo , 

E and cpO a r e  respectively the relative a r e a  and the rela-  
tive depth of the dip in the distribution of the total num- 
ber  of particles, and 

v o = k / ( o - o n )  k', kAu.,=max (Am, Awn). 

If the excitation i s  by a standing wave (that t ravels  to 
some degree) and at  V, = 0 the quantity cp, must be re-  
placed by Zcp, in the f i r s t  and second equations of (11), 
and by 2cp, in the last  equation (cp, and cpa a r e  the ampli- 
tudes of the par t s  of d u x )  that a r e  respectively sym- 
metrical  and antisymmetrical about the Doppler con- 
tour. For  a purely traveling wave cp, = cp,= cp0/2, while 
for  a purely standing one cp, = 0 and cp, = cp,. 

We llote that the stationary solution (9), just a s  the 
Maxwellian distribution, i s  independent of the form of 
the function w(vt, v,'; v, v,), i.e., of the concrete model 
of the collisions [this model must satisfy only the con- 
ditions ( z ) ] .  In the presence of a spatial inhomogeneity 
o r  a t  a #  0 (o r  if the inequality ) >> v is violated), this  
statemeat i s  incorrect for  approximately the same rea- 
sons a s  in an ordinary spatiaily inhomogeneous gas  
(see,  e.g., the calculation of the thermal conductivity 
and of the viscosity in Ref. 8). T o  find the distributioa 
f ~ n c t i o n  in these cases  we have used therefore the 
strong-collision model. It i s  kil0wA1 that one of the con- 
ditions for  the applicability of this model i s  proximity 
off to a Maxwellian d i s t r i b ~ t i o n . ~  In our case  i t  suf- 
f ices that f,,, be close to f,. In fact, although at  f,,, 
= f, the vaiue off, can differ noticeably from f,, the dis -  

FIG. 1. Distribution of the gas particles in velocity (in vJ 
under selective excitation. The dashed curve i s  the distribu- 
tion function in the absence of excitation. 
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tribution of the probabilities of a collision-induced 
transition of a given molecule illto an arbitrary velocity 
interval i s  the same, a s  follows from (2) and (4), a s  in 
some gas with @ =  1 and f = fo [if (2) and (4) a r e  satis- 
fied, each molecule "senses" the entire remaining gas  
a s  ~axwe l l i an ] .  

With the foregoing taken into account, Eqs. (1) take 
the form 

Since the density, temperature, and macroscopic vel- 
ocity of the aforementioned "auxiliary" gas  a r e  known 
beforehand, the parameters  N', at,  and Vt  should be 
specified beforehand a s  f ree  ones and then obtained 
after f i s  determined from the conservation laws for  
the total particle densities, for  the energy, and for  the 
momentum. 

Equations (12) yield for  the distribution function at  
df,,,/dt = 0 an expression that i s  valid also if the condi- 
tion 7 >> v i s  violated: 

where 8 = v,/y. With the aid of (13) we a r r ive  at the 
conclusion that if A cv, Amo<< kv, the distribution func- 
tion takes the same form (9), (11) a s  a t  8 << 1 ,  but the 
depth of the dip i s  smaller;  cp(u,) i s  determined by the 
expression 

where H, i s  the meall value of x in the interval &I,,. We 
see  that at  8 << 1 Eq. (14) goes over into ( l l a ) .  When 8 
iacreases,  but still  8 S vT/uxo, i t s  increase can be off- 
set  by suitably increasing n. (If the iacrease of 8 i s  due 
t a  a decrease of 7, then K var ies  with 7 in the required 
manner with practically no change in the intensity M . )  
Starting with 8 -vT/avx0, i t s  increase lowers cp mono- 
tonically independently of M. This  q(8) dependence can 
be physically readily explained. The increase of v 
leads to a "smearing" of the dip in the gap of the dis- 
tribution off by the collisions. So long a s  o<~,/AII,,, 
this "smearing" does not extend over the entire Max- 
wellian contour and it can be offset by strengthening 
the cause of the dip. At 8>> vT /~vsO the radiation-ex- 
cited particle i s  immediately "smeared" by the colli- 
sions over the entire Maxwellian contour. The excita- 
tion selectivity then practically vanishes and cp tends to 
zero with increasing 8. 

We consider now the influence of the spatial inhomo- 
geneity and of the external force fields on the distribu- 
tion function. From (3) and (7) we obtain by the same 
means a s  in Ref. 8 an equation for  x = fe,,/fo - 1 in the 
weak-inhomogeneity approximation x<< 1: 

d ~ f f  
'v-v.")~] dr 

a e f f  +2aetf (v-v.,~) (T - a)) - (1 5) 

where 

The conservation laws for  the densities of the particles, 
of the momentum, and of the energy take the form 

If the optically-induced effects a r e  weak, we can ne- 
glect when transforming the right-hand side of (15) the 
difference between N,,, and N, a,,, and a, and V,,, and 
V in all the coefficients of the derivatives and of a ,  and 
use the hydrodynamic equations for  an ideal medium in 
analogy with the procedure used in Ref. 8 to calculate 
the viscosity and the thermal conductivity. Taking (11) 
into account, we have at  the point V =  0 

5 9 
" (  3 

av av, 
I = (I-TI {(= - u2) vx  + a w, - - 6%, )(k+d-) 

where the subscripts  i and j number the Cartesian com- 
ponents of the corresponding vectors. In contrast to 
the situation considered in Ref. 8 ,  the last  te rm of (17) 
allows us  here  to advance farther  only by using the 
strong-collision model (we confine ourselves here and 
elsewhere to the case  when cp, and hence c ,  does not 
depend on the time): 

where A,= N 1 / N -  1,  A,= a'/@ - 1 ,  acd AV = V' - V  
a r e  determined by expressions that follow from (16): 

At I uol+ I Au,, 1 < ncu,/k we must take into account the in- 
terference between the opposing waves. The case of a 
standing wave with the frequency at the center of the 
Doppler line i s  described by Eqs. (19) with v, = 0, p, 
= 0, and cp, = 2p0 sin2kx, where cp, i s  the amplitude of 
the dip produced by one of the traveling waves that make 
up the standing one. Before we proceed to discuss the 
characterist ics  of the gas  on the basis  of the obtained 
distribution function, we examine the stability of the 
obtained solutions of the kinetic equation. 

2. THE BOLTZMANN H-THEOREM 

The problem of the stability of the stationary and 
equilibrium distributions f,, in an ordinary gas  is known 
to be solved by the Boltzmann H-theorem.' Let us  at- 
tempt to analyze the stability of the stationary solution 
(9). To  this end we use Eq. ( I ) ,  in which we express  f 
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in  t e r m s  off,,, with the aid of relation (5). We can then 
a r r i v e  by the s a m e  method a s  in Ref. 8 a t  an equation 
analogous to the Boltzmann H-theorem: 

dS - = L~ ~.f..f.~~, (Xln X-l)d3vIf d'v' dsv, d% 8, 
dt 2 

where 

plays the ro le  of the  entropy of the gas ,  and  

the r o l e a f  the "entropy" flux density. 

It i s  assumed that the fo rce  field h a s  the property 
a ~ , / a v ~  = 0 (F = ma)  ( this  is t rue ,  fo r  example f o r  a 
Lorentz force). Therefore  the right hand s ide  of (20a) 
does  not contain the t e r m  

It follows from the express ions  (20) that in the c a s e  
of a spatially homogeneous time-constant radiation and 
in the absence of a n  "entropy" flux through the sur face  
'T: that surrounds the g a s  (for  the Latter to  be valid it  
suffices, for  example, that f and cp n e a r  the boundary 
be symmetr ical  about the component of v perpendicular 
to the boundary) the s tat ionary solution (9) is stable  to 
a rb i t ra ry  deviations. If these conditions a r e  not sat is-  
fied, and a l so  if 5 v ,  the question of the stability of 
the stationary distribution r e m a i n s  open. 

It should be noted that in an ordinary g a s  the cause  
of the instability of the stationary solution (9) can be not 
only a ze ro  entropy flux through t h e  walls  of the vessel  
with the gas.  In the c a s e  of select ive excitation there  
ex i s t s  a volume source  of instability, namely the spatial 
inhomogeneity of the exciting radiation, a s  well a s  the 
external fo rce  f ie lds  [the l as t  t e r m  of (20a)J. In addi- 
tion, the conditions f o r  the entropy flux through the 
walls to  be z e r o  become m o r e  s t r ingent .  Thus,  in the 
model where the molecules a r e  specular ly reflected 
from the wall, the aforementioned flux is obviously ze-  
r o  in the usual situation at  any vesse l  configuration. 
Under selective excitation it  is necessary  even in this  
model that cp(v,j by a symmetr ic  function (otherwise T 
and N become spatially inhomogeneous, s e e  below), and 
also that the wall vesse l s  be only perpendicular o r  
paral le l  to  the exciting-radiation propagation direct ion 
(in the c a s e  of oblique walls  macroscopic fluxes of N 
appear ,  s e e  below). 

3. MACROSCOPIC LOCAL PARAMETERS OF THE GAS 

Starting from the obtained distribution function of the 
molecules of the selectively excited g a s ,  we now de te r -  
mine i t s  macroscopic charac te r i s t i cs ,  i .e . ,  the fluxes 
of the momentum (pressure )  and energy densi t ies .  

In the absence of excitation the stationary s ta te  of the 
g a s  i s  character ized by a uniform distribution of the 

energy over  the d e g r e e s  of f reedom, Pasca l ' s  law 
holds, and there  a r e  no energy or part ic le  fluxes. -In 
our c a s e ,  a s  follows f rom the form of the distribution, 
the differences in the dependences off on  v,, v,, and v, 
cause  a nonuniform distribution of the energy over  the 
d e g r e e s  of f reedom, (v;)# (vV2), (v:). We note that, in 
contrast  to  the previously known c a s e s ,  thls  distribu- 
tion is caused only by the  redistribution of the energy 
contained in t h e  g a s  p r io r  t o  the onset of the excitation, 
inasmuch a s  in the derivation of the distribution func- 
tion we  did not take into account any of the effects that 
lead to the heating of the g a s  by the light wave. In the 
upshot, the p r e s s u r e  P,,  = m(v,v,) is a t ensor ,  and be- 

cause  of the asymmetry  of the dependence off on v, the 
heat flux q =  $m(vv2) may not be  z e r o  a t  v, # O  even i n  
the absence of spat ial  inhomogeneity. The  anisotropy of 
the distribution function leads  apparently to  anisotropy 
of the thermal  p roper t i es  of the g a s ,  which manifests  
itself in the fact that the thermometer  readings will de- 
pend on  i t s  mate r ia l ,  shape,  and orientation. 

T o  calculate the macroscopic p a r a m e t e r s  of the g a s  
we use express ions  (9) ,  ( l l ) ,  ( l a ) ,  and (19): 

a 2 5 aT 
qV,,=NTvTE+b, - a,7 ( - cp, + - w2+cpa') 2 - - N u i G .  (Zlb) 

Here  b, = b, - *b2v,2/v$, b4 = b1 - b2vO8/uTZ, and 1 is the 
mean f r e e  path of the unexcited molecule. We reca l l  
that the t e r m s  due to acp/ar+o and a# 0 w e r e  obtained 
i n  (21) and (22) only i n  the strong-collision model. A s  
f o r  the remaining t e r m s  [the second in (21a) and the 
f i r s t  in  (22a)], they a r e  valid in any collision model that 
sa t i s f ies  the conditions (2).  

It is seen  f rom (21) and (22) that the presence o r  ab- 
sence of anisotropy of the p r e s s u r e  and of the heat flux 
is determined by the symmetry  proper t i es  of the de-  
pendence of cp on n,, meaning, a t  s m a l l  M ,  a l s o  by the 
symmetry  of the spec t ra l  distribution of the intensity 
relat ive t o  the  center  of the Doppler contour. Thus,  in  
the spatiaily homogeneous c a s e  and a t  a =  0 the symme- 
t r i c  p a r t  of cp de te rmines  the presence  of the anisotropy 
of the p r e s s u r e ,  and the ant isymmetr ic  that of the heat 
flux. The p a r t s  of Pi, and q due t o  the weak inhomo- 
geneity and to the external  fo rce  f ie lds  have just the 
opposite dependence on the symmetry  of cp. The  fore-  
going, in principle, allows us  to  obtain in succession 
various kinetic effects  by shaping the spec t ra l  and spa- 
t ia l  charac te r i s t i cs  of the radiation. It  is physically 
obvious that the influence of the symmetry  propert ies  of 
cp h a s  the s a m e  charac te r  a l so  when the approximation 
a&<< kv, used in Eqs. (21) and (22) does  not hold. 
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4. NONLOCAL OPTICALLY INDUCED PHENOMENA 
IN  A GAS 

The considered change of the local characterist ics  of 
a gas  under velocity-selective excitation leads obviously 
to a change of the gas  macroscopic propert ies a s  a 
whole. Among these phenomena a r e  the heat-fiux-gen- 
erated (22) stationary inhomogeneities of the tempera- 
ture  and and also the macroscopic particle 
fluxes due to violation of Pascal 's law in conjunction 
with the interaction with the walls o r  to the spatial in- 
homogeneity of the We now consider these 
effects in succession. 

We begin with the optically induced macroscopic flux- 
es .  They can be arbitrari ly attributed to  two causes. 

The f irst  i s  the spatial inhomogeneity of Pi,,  due to 
grad cp# 0. Fo r  the macroscopic state of a gas  t o  be 
stationary a t  V =  0 in the entire vessel we must have 
d ivq=  0 and api,/axi = 0. At acp/ar#O i t  i s  generally 
speaking impossible to satisfy both conditions simul- 
taneously by variation of the two sca lar  parameters  N 
and T (since Pi, i s  a tensor). This means that the gas  
contains macroscopic density fluxes. It i s  easily seen 
from (21) that, for example, if t ransverse and longitu- 
dinal radiation inhomogeneities a r e  simultaneously 
present, a stationary state with V(r) = 0 is impossible. 
Vortices a r e  then produced in the gas,  shown in Fig. 2 
for the case v, = 0. F rom the expression for  the vis- 
cosity' 

[u i s  the total c r o s s  section of the collisions of the un- 
excited molecules and c,  i s  a coefficient of the order  of 
unity; in the strong-collision model c, = 1 (21b)], and 
from Eqs. (21) in the specutar-wall models at  L,>> L, 
(L, and L, a r e  respectively the longitudinal and trans-  
verse  dimensions of the cell with the gas) ,  we can ob- 
tain a s  an estimate the following equation for  the flux 
velocity V,( y): 

where E,,,,,,, a r e  respectively the values of c at  the 
points 1 ,  2, 3, and 4 (see  Fig. 2). 

The second cause of the density fluxes i s  the presence 
of off-diagonal pressufe-tensor components that tend to 
move the gas  layers  in a direction parallel to the 

FIG. 2. Macroscopic density vort ices produced in a gas- 
filled vesse l  in  the  presence of simultaneous longitudinal and 
t r a n s v e r s e  inhomogeneities of t h e  exciting radiation. The c a s e  
i l lustrated i s  > E ~ > E ~  <E,  C E ~ ;  1 ~ g - ~ 3 1 d c ~ - ~ 1 1 .  

boundary between them. The decisive factor here  i s  the 
influence of the vessel wall that produces a tangential 
force insufficient to maintain equilibrium in the layer 
next to the wall.') Using the widely used approximation 
of specular reflection of the molecule from the vessel 
wall, we a r r ive  at  the conclusion that the wall ac ts  on 
the adjacent gas  layer only in a normal direction. Since 
P,,,,#O, a tangential force i s  exerted on this layer by 
the r e s t  of the gas. As a result  the wall layer begins to 
accelerate, followed by the adjacent layers ,  until a 
stationary flux is established, in which the optically in- 
duced component P,,,, is cancelled by the friction force 
determined by the viscosity and by the V derivative 
perpendicular to the wall. 

We consider f i r s t  the case  when the exciting radiation 
i s  spatially homogeneous, but certain vessel walls a r e  
oriented a t  an  angle 5 +0,  n/2 to the light propagation 
d i r e ~ t i o n . ~  Since P,,#P,,, the pressure  tensor ex- 
pressed in a coordinate frame connected with the wall 
acquires off-diagonal components 

P,.,.=-6P sin E cos E, (25) 

where [see (21)] 

Let the vessel have the shape shown in Fig. 3. Then 
the condition for  the equilibrium of the tangential forces 
acting on the gas  layer parallel to the walls a t  the point 
y ' takes at  V << v, and v, = 0 the form 

av.. 2 m ~  3 v,,~ 
v-+- uT .,ns p. ( I  - T T ~ ~ ~ 2  i sin t cos r -~onst-  (26' 

ay (2n)'" ) 
Actually (26) i s  the f i r s t  integral of the Navier-Stokes 
integral in this case. From (23), (26), and the condi- 
tion that the total momentum of the gas  in the entire 
vessel be zero we obtain (see  aiso Fig. 3) 

As seen from (27), the macroscopic velocity V can be 
of the same order a s  the thermal. The characteristic 
value y f  at  which the velocity reaches the value v, at 
cp,- 1 i s  of the order  of I/& sin25. The longitudinal di- 
mension x' over which the selected gas  volume i s  ac- 
celerated to a value of V of the order  of the stationary 
velocity can be estimated a t  L,</c sin25, where L,, i s  
the width of the cell. Cbviously, if the cell length L,, 
>> L,/E s ina t ,  the values of V in the regions far  from 
the end faces of the cell will be determined by (27), and 

FIG. 3. Macroscopic gas-density fluxes result ing from oblique 
orientation of the vesse l  walls  re la t ive  to the  propagation 
direct ion of the  exciting radiation. 
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stationary circulation of the g a s  i s  establ ished in the 
cell. To  understand the appearance of an angular mo- 
mentum of the g a s  when the radiation is turned on, we 
can consider the p r e s s u r e  on the vessel  w a l l s  (Fig.  3) 
a t  the t ime during which two o r  th ree  col l is ions occur  
af ter  the radiation is turned on, when Eqs .  (21) a r e  al- 
ready valid, whereas  the macroscopic motion in the g a s  
h a s  in  fact not yet s e t  in. It  is easi ly  seen  then that 
since P,, #Pyy the g a s  e x e r t s  on the vesse l  a torque that 
tends to  ro ta te  the vesse l  in  a direct ion opposite t o  the 
circulation of V determined by (27). 

We now consider  the  macroscopic fluxes, due to  a p /  
ay and considered qualitatively in Ref. 6. F r o m  (21b), 
assuming as before a specular  wall,  we easi ly  obtain an 
equation for  the dependence of the macroscopic velocity 
on the t ransverse  coordinate in a rectangular  o r  cylin- 
d r ica l  vessel  whose wal l s  a r e  paral le l  and perpendicu- 
l a r  t o  the light propagation direction: 

av. v.-V, AV, 
= - -  (v.-~,)~ a ~ .  T. 

ay (2n)jh o, ~xP{--]-. 2vT ay 

In the c a s e  of cylindrical symmetry  it is necessary  to  
replace v in (28) by Y .  In the approximation I v,- V, I 
<< v, we obtain f rom (28) and f r o m  the condition that the 
total momentum of the g a s  in the en t i re  v e s s e l  be z e r o  

where the b a r  denotes averaging over  the t r a n s v e r s e  
coordinate in  the vessel .  At v o 2  v, we can regard  (29) 
a s  an upper bound of V,. We s e e  that in  contrast  to the 
preceding c a s e  the l imit  of macroscopic velocity (29) 
is -cv,= A ~ L , .  It follows f rom (24) that the foregoing 
pertains  to the fluxes due to  the spat ial  inhomogeneity 
of the diagonal components of the p r e s s u r e  tensor .  

We consider now the s tat ionary s ta te  of the g a s  in the 
absence of macroscopic fluxes N .  It follows f rom the 
foregoing that th i s  s ta te  is possible if the vesse l  wal ls  
a r e  only paral le l  o r  only perpendicular to the radiation 
propagation direct ion in the spatially homogeneous case ,  
and a l so  in the presence of only a t r a n s v e r s e  (at  q a =  0) 
o r  only a longitudinal inhomogeneity of the radiation. 
(We note that a stationary s ta te  with V(r) = 0 at  acp/ax 
# 0 o r  acp/ay # 0 is possible only when near-wall per tur-  
bations of the distribution function a r e  neglected.) The 
presence of the heat flux (22), if i t  depends on the co- 
ordinates, does  not by itself upset the stability of the 
spatially homogeneous s tat ionary s ta te  (9). Such a situ- 
ation i s  real ized,  f o r  example a t  Vcp= 0 in  a vessel  with 
thermostatically controlled walls.  However, if  a ther-  
mally insulated wall is presen t  in  the path of the ther-  
mal flux (22), o r  if i t  i s  found to depend on the coordin- 
a tes  because of Vcp # 0 even at  VN = 0 and VT = 0, the 
gas  will obviously begin to be heated in  the correspond- 
ing places,  and will expand a s  a resul t .  T h i s  p r o c e s s  
will continue until the opposing heat-conduction flux due 
to the produced tempera ture  inhomogeneity [the last  
t e r m  of (22)] balances the optically induced flux. A new 
stationary s ta te  is then established in the gas ,  with the 
temperature and density inhomogeneous. The  density is 
determined by the equation of s ta te  (21) and by the fact 
that a ~ , , / a x ,  = 0 in the absence of microscopic fluxes in 
the gas. To  simplify the analysis  of th i s  s t a t e  we  con- 

s i d e r  separately the influence of the asymmetry of 
cp(u,l re lat ive to  the center  of the Doppler contour [the 
f i r s t  t e r m  in the right hand s ide of (22a)], and a l so  of 
the t r a n s v e r s e  [f i rs t  t e r m  in (22b)l and of the longitudin- 
a l  [second and third t e r m s  in (22a)] spat ial  inhomogenei- 
t i e s  of the radiation in  the external  fo rce  field [fourth 
t e r m  in (22a)l. Taking the foregoing into account, and 
approximating the thermal  conductivity n, of the g a s  by 
the equation8 

[c, is a coefficient of o r d e r  1 ,  and i n  the strong-colli- 
s ion model c, = 5/2, s e e  (22)], the equation f o r  the spa- 
t ia l  distribution of the t empera ture  can be written at  
vcp = 0 and a = 0 in the  f o r m  

where c,' = (n/54)1'2c,, T,,, = r n ( ~ v , , ) ~ ,  To is the tem- 
pera ture ,  and I, i s  the mean  f r e e  path a t  the point x 
= x,. The behavior of the solution of Eq. (31) is shown 
in Fig.  4. If the wall opposite to the direct ion of v, ( the 
right-hand wall a t  v, >. 0 and the left a t  vo< 0) is thermo- 
statically controlled, the t empera ture  approaches T,, 
r a t h e r  than deviating f r o m  it. 

At L,>> ( l /pa) (~ , , , /~o)1 '2  we have T =T,, in the major  
par t  of the vesse l  with the gas ,  and i s  practically inde- 
pendent of To. Di rec t  calculations show that a d e c r e a s e  
of aT/ax with increasing T can be avoided by exciting 
the en t i re  right ( o r  left) half of the Doppler contour by 
broadband radiation. In th i s  c a s e  the tempera ture  in- 
c r e a s e s  ( o r  decreases )  l inearly with increasing x.  

A s  stated above, once the spat ial  distribution of the 
t empera ture  is determined,  the density distribution can  
be  calculated f rom the condition a~, , /ax using the form- 
ula [written h e r e  in a form that is valid in the c a s e  Vp 
# O  considered below; h e r e  we must  put in it c,(x) 
= E,(X,~I 

where  No is the density a t  the point x,, determined from 
the condition that the total number of the par t i c les  in  
the en t i re  vesse l  be conserved: 

FIG. 4. Character of the coordinate dependence of the gas 
temperature in the c a s e  when the excitation i s  not symmetri- 
ca l  about the center of the Doppler line. 
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where Nof i s  the gas  temperature before the light i s  
turned on. 

The temperature inhomogeneity due to Vq#O and a 
#O can be analyzed similarly with the aid of Eqs. (22). 
It i s  reasonable to res t r ic t  oneself to the case  q,= 0, 
for  otherwise macroscopic density fluxes a r i s e  at  a q /  
ay # 0 [see (29)], and a temperature inhomogeneity un- 
connected with aq/ax # 0 a r i s e s  a t  acp/ax # 0 [see (31)]. 
Knowing T(r) we can find N(r) from Eq. (32). In the 
presence of only transverse inhomogeneity we have 

In the presence of only longitudinal inhomogeneity and 
a t  

$ J (2-q4)qsadx<l 

we have 

where b, = b, - $b,v~/vT2. 

At v q  = 0, v0 = 0,  and arbitrary values of a, we have 
9 

T (x)"=T?+ - rn"~u., (2-q,) q. J a,(z)dx, 
10 (2n)  

(36) 

The quantity No in (34)-(36), just a s  in the preceding 
case, i s  determined from the condition (33). We see  
that at vo = 0 the gas  i s  "pushed out" from the region of 
large M in the longitudinal direction, and "drawn" into 
this region in the transverse direction. With increas- 
ing deviation vo, these effects a r e  interchanged. 

If one of the cell walls is a thermostat, then Eqs. (31) 
and (34)-(36) describe directly the temperature and 
density distributions, with To the temperature of the 
thermostat wall and xo (or  yo, 2,) i t s  coordinate. Turn- 
ing on the light changes in this case  not only P,,, but 
the total pressure 

If the vessel i s  completely adiabatic, the energy of the 
gas in the entire vessel is not changed after the light i s  
turned on: 

(To1 i s  the gas  temperature before the light i s  turned 
on) and Eqs. (33) and (37) allow us  to calculate the 
quantities No and To in Eqs. (31) and (34)-(36). 

Let us  dwell briefly on the experimental realization 
of the considered effects. In all the cited cases  the 
changes in the quantities that characterize the macro- 
scopic state of the gas (pressure,  temperature, density) 
can be of the same order  a s  the quantities themselves, 

and can be even la rger  in the presence of cumulative 
effects. The main difficulty l ies  in the need for optical- 
ly exciting a sufficiently large number of molecules. 
The total number of excited part icles NtOte i s  deter-  
mined by the power p of the absorbed radiation and by 
the relaxation rate: 

We consider now the optimal arrangement of these 
particles, i.e., the optimal (at  a given temperature) gas  
pressure.  (We shall not touch upon the question of the 
optimal shape of the vessel ,  since it depends on the par- 
ticular effect observed and on the specific variant of the 
experimental realization.) It follows from (14) that the 
depth of the dip in the particle velocity distribution i s  a 
maximum if 

where L i s  the characteristic dimension of the vessel ,  

i s  the rat io of the total number Ntot to the number Ntote 
of the excited particles. Upon collision with the vessel 
walls, the excited and unexcited particles a r e  approxi- 
mately equally maxwellized. To obtain the largest pos- 
sible depth of the dip in f(v) we must satisfy besides 
(39) also the conditions 

Conditions (39) and (40) a r e  compatible if 

We see that (41) can be satisfied at relatively small  
Ntot,, for  example, by defocusing the radiation so  a s  to 
decrease no, and by increasing the total amount of the 
gas  if Ntote i s  to be preserved.  The rat io Ntote/Ntot 
and the relative magnitude of the effects a r e  then de- 
creased. If (41) i s  not satisfied and (39) and (40) a r e  in- 
compatible, the second of these conditions can be dis- 
pensed with, and the vessel walls replaced by the unex- 
cited gas. In this case,  however, the influence of the 
spatial inhomogeneity of the radiation can not be elim- 
inated. 

It makes sense to increase the gas density to satisfy 
condition (40) only so long a s  the collision broadening 
does not exceed the Doppler broadening. This takes 
place at pressures  of severa l  t o r r  for  a vibrational- 
rotational transition that i s  at resonance with the 
emission of a C02 laser .  

If the conditions (39) and (40) a r e  satisfied and A o - a  
(the change of the c ros s  section upon excitation from 
the ground state can be largeA0), the anisotropy of the 
pressure  i s  of the order of the partial pressure  AP 
-N,T of the excited particles. F o r  an allowed transition 
in the optical band ( y  - 10' sec-') at  p - 1 W we have Ntote 
-loi1, 0.3 x 10% cm < L s lo2 cm, and at T-300°, nP 
-1 Torr .  If we attempt to obtain the corresponding 
est imates for  long-lived vibrational-rotational transi- 
tions in molecular gases  (the rea l  possibility of observ- 
ing optically induced kinetic phenomena in this region 
was f i r s t  pointed out in Ref. l l ) ,  we can ar r ive  at the 
following. Condition (39) cannot be satisfied, inasmuch 
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as a t  P T o r r  the value of 7 is determined mainly 
by the quenching collisions, whose c r o s s  section is al- 
ways s m a l l e r  than the c r o s s  section for  collisions that 
change the velocity of the molecule. At p r e s s u r e s  on 
the o r d e r  of s e v e r a l  t o r r  a l l  the effects wil l  the re fore  
be decreased by a factor  y / v -  lo-*. T o  sat isfy condition 
(39) we must  opera te  with p r e s s u r e s  T o r r .  In this  
region () - 10 sec-') we  have: NtOtS - loz0,  L  - lo3  cm 
and AP-10-6 T o r r  a t  ~ o / u -  1, and 0 - 1  and AP-lO-' 
T o r r  a t  AU/U-0 .1 .  The  use  of deactivating additives 
can bring the ra t io  y / v  c l o s e r  tounity a l s o f o r  relat ively 
high p r e s s u r e s .  By specifying the value 2 - v ,  we have 
an expression f o r  L: 

where 5 = v / y .  The  condition (40) t akes  the f o r m  

At y - 10' sec-' the condition (43) is sat isf ied,  and we 
get fo r  L and AP the values L - 0 . 5  c m  and AP-0.1 
T o r r  at  Au/u-1,  and AP-10-3 T o r r  a t  AU/U-0.01 .  

' Here  and elsewhere i t  i s  assumed,  in c a s e s  where  this i s  of 
principal importance,  that the light propagates along the x 
axis. 
If PXynr i s  spat ial ly inhomogeneous [see e. g., (21b)l, the 
macroscopic fluxes N can a r i s e  a l s o  independently of the wall 
propert ies ,  for in this  c a s e  the s h e a r  f o r c e s  exer ted  on a 

given gas  layer by i t s  two neighboring layers  do not canel 
each other .  
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