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We find smooth solutions in the form of toroidal vortices, which decrease exponentially rapidly at infinity, in 
contrast to solutions known previously. They are self-similar and are therefore possibly the structural 
elements for hydrodynamic and magnetohydrodynamic turbulence. We suggest a numerical method to find 
such solutions and give their classification. 

PACS numbers: 47.30. + s, 47.25. - c 

1. INTRODUCTION 

In connection with the slowing down in the progress in 
the strong-turbulence theory based upon the assumption 
of complete stochasticity of all degrees of freedom in 
a fluid medium, and also in connection with the appear- 
ance of a number of experimental indications, it has 
become ever clearer that one should consider turbul- 
ence a s  a random set  of ordered formations (struc- 
tures). These structures realize extrema of the Ham- 
iltonian in phase space and therefore, even if they a r e  
unstable, the system spends considerably more time in 
their neighborhoods than far from them. Solutions in 
the form of solitary waves (if such exist) can serve a s  
the most appropriate structures in such a model of tur- 
bulence. An illustrative picture of such structural tur - 
bulence is observed in the boundary layer of Poiseuille 
flow,' in a film of a viscous fluid which is  draining off ,2 
and in other cases. 

In three-dimensional hydrodynamic and magnetohydro- 
dynamic turbulence (in particular, in the turbulent-dy- 
namo problem), the structures in the form of the soli- 
tary vortices, considered in what follows, must play an 
important role. 

Two basic kinds of vortex motions a r e  known-filamen- 
tary (open) and toroidal (closed). A study of such mo- 
tions is  of general physical interest. The first  studies 
of vortex motions were carried out back in the last 
century. Filamentary vortices have by now been thor- 
oughly studied. However, the theory of toroidal vor- 
tices is  far from its completion. Its development has 
been hindered by the complexity of the equations de- 
scribing these vortices. Well known is the solution in 
the form of Hill's toroidal vortex;v4 in which the vor- 
ticity is  proportional to the distance from its axis in- 
side a sphere, outside of which the velocity field is  
potential. The problem is then reduced to the solution 
of two linear equations and the joining of the solutions 
on the surface of the sphere. The perturbed velocity 
with increasing distance from such a vortex decreases 
a s  the inverse cube of the distance. 

In theoretical studies of the containment of plasma in 
magnetic traps,  solutions have been obtained in the form 
of toroidal equilibrium configurations. 5 ~ 6  The magnetic 
field in those was found for a given coordinate-depen- 
dence of the vorticity (electrical current). These solu- 
tions also decrease insufficiently rapidly and it is  im- 
possible to consider them to be solitary. 

One can also give a different statement of the problem 
when the vorticity is  given in the form of a function of 
the stream function. In that case the vortex equation be- 
comes similar to a soliton equation and the toroidal vor- 
tices themselves can be considered to be solitons. 

In the present paper we propose a simple method for 
obtaining solutions of the equations for toroidal vortices 
in the form of three-dimensional solitons with axial 
symmetry. A study of toroidal vortices has become 
particularly topical in connection with the development 
of powerful quasistationary plasma-static and plasma- 
dynamic traps,  where the hydrodynamic motion co- 
exists with a vortical magnetic field. 5 3 7  In our dis- 
cussion we use therefore as an example the magneto- 
hydrodynamic plasma equations. 

2. TYPES OF TOROIDAL VORTICES 

We look for a stationary solution of the magneto- 
hydrodynamic equations in the form of a solitary toroi- 
dal vortex with axial symmetry. By solitary we mean 
here that the plasma parameters tend to constant values 
with increasing distance from the vortex. 

In the res t  frame of the vortex we can write the mag- 
netohydrodynamic equations in the form 

[q xrotq] - [BX rot B] =V (4np+q2/2) ; (2.1) 
q=(4np)"v, qVp=O, 

div q=0, BVp=O, rot [qXB] =O. 

We have assumed here that the plasma density p i s  
constant along the stream lines and along the magnetic- 
field lines, i.e., these lines lie on the constant density 
surfaces. There a re  three possibilities. The first  one 
is when q and B a r e  proportional to one another. We 
call such vortices parallel. (This case was considered 
for the first  time in Refs. 8 and 9). In the other cases 
either the velocity o r  the magnetic field has only a 
toroidal component. We shall call them, respectively, 
a magnetic or a dynamic nonparallel vortex. We note 
that these configurations a re  particular cases of helical 
plasma flow in a magnetic field with helical symmetry, 
considered in Ref. 10. 

Parallel vortex. In a parallel vortex we have q = cr B, 
where cr = const is the Mach number-the ratio of the 
flow velocity to the Alfv6n speed. The components of 
the magnetic field in a cylindrical coordinate system 
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can then be expressed in t e rms  of the s t r eam function 
I according to the formulae 

where f(@) i s  an arb i t ra ry  function of I. In that ca se  
(2.1) and (2.2) a r e  reduced to the Grad-Shafranov equa- 
tion5v6 

The pr ime indicates here  differentiation with respect  to 
I, and the arbitrary function F ( I )  i s  connected with the 
plasma pressure  p through the relation 

4np=( l -a ' )  F ( Y )  -q2/2.  (2.5) 

Hence it follows that at  nonzero velocity (a, #0)  the plas- 
ma pressure  i s  not a surface function. 

Magnetic vortex. Here q, = q ,  = 0, and q ,  = rg(*) 
where g ( I )  i s  an arbitrary function of I, while the mag- 
netic field has a l l  components. We then get from (2. I ) ,  
(2.2) 

while the pressure  i s  given by the formula 

Dynamic vortex. In that case  the components of the 
vector q can be expressed in t e rms  of the  sur face  func- 
tion \k by the relations 

The magnetic field can have only a toroidal component 

Using (2.81, (2.9) we get from (2. I) ,  (2.2) an equation 
similar  to (2.6) : 

The toroidal equilibrium of a plasma in a magnetic 
field is thus described by equations of the type (2.4) o r  
(2.6). 

3, SOLUTION OF THE EQUATIONS 

We look for the simplest solitary solutions of Eqs. 
(2.4) and (2.6). To do this we assume that the right- 
hand sides of these equations a r e  quadratic polynom- 
ials in I. The following cases  a r e  then possible 

AY =FY-Y',  (3.1) 
6Y = r k Y - F Y 2 ,  (3.2) 
6Y=r"f-Yz ,  (3.3) 
A Y = Y - r Z Y 2 ,  (3.4) 

A Y  = ? Y - F Y 2 ,  (3.5) 
AY = F Y - r y Z .  (3.6) 

A characteristic feature of the equations which we have 
selected is  self-similarity. This means that any coef- 
ficient in them can  be removed by a similari ty t rans-  
formation. Because of this we have given these equa- 
tions in dimensionless form. As an example we de- 
scribe the transition from Eq. (2.4) to Eq. (3.1). In 

(2.3) we put f =a*"' and in (2.5) F = -bIz  + 4np,. Sub- 
stituting these values into Eq. (2.4) and performing the 
transformation 

'V+ (8b )">Y/3a2 ,  r+ ( 2 b )  -'$r, 

we get Eq. (3.1). 

We assume the function I to be smooth and to tend to 

zero at  infinity together with i ts  derivatives. We show 
that the last  three  equations do not have such solutions. 
To do that we multiply them by F 3 a I / a r  and integrate 
over the whole volume. After integrating by par t s  we 
get on the left-hand side a negative quantity and on the 
right-hand side a non-negative one, whence follows that 
these equations cannot have solitary solutions. To solve 
Eqs. (3.1) to (3.3) we write @ a s  a Fourier  integral 

Y=S d k e x p ( i k z ) Y , ( r ) .  (3.7) 

Substituting this expression, for example, in (3.1) we 
get the  following integro-differential equation 

It is reduced by using a Green function to an  integral 
equation 

Yk= J G, ( r ,  r')  N, ( r ' )  dr', (3.9) 

where G ,  can be expressed in t e rms  of confluent hyper- 
geometric functions and can be found more  simply by 
numerical methods. After this we solve Eq. (3.1) by 
a modified iteration method-the method of the stabil- 
izing  multiplier^' i. e. , we introduce the auxiliary func- 
tional S: 

S= (s , /s?)  st= I Y I I Z d k  dr, 

sz-j Y- ,GAN,  dk  drdr'.  

Here n i s  the degree of the nonlinear right-hand side of 
Eq. (3.9) (in our case  n = 2 ) .  

We note that S = 1 if I i s  a solution of Eq. (3.9). We 
solve instead of (3.9) the equation 

which has the s ame  solution a s  (3.91, but the degree of 
non-linearity of i ts  right-hand side i s  zero. In view of 
this ,  Eq. (3.11) solved by the iteration method gives, 
in contrast to (3.91, a convergent sequence 

FIG. 1.  Constant-level lines of the solution of Eq. (3.1). The 
maximum value @= 8.1 i s  reached at r = 1.41. The ratios of 
the levels here and in Fig. 2 and Fig. 3 to the maximum value 
are, respectively, 0. 75, 0.5, 0.2, 0.1, 0.05, 0.02, and 0.01. 
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FIG. 2 .  Constant-level lines of the solution of Eq. ( 3 . 2 ) .  The 
maximum value 9 = 6 .9  i s  reached in the point r = 1 .54 .  

After performing these transformations on a computer 
we get a solution of Eq. (3.9) and afterwards, using 
(3.71, a solution of Eqs. (3.1) to (3.3). We give in 
Figs. 1 to 3 the contour map of the solution of Eqs. 
(3.1) to (3.3) with quadratic nonlinearity. The_se equa- 
tions give the distribution of the vorticity D = AQ/r over 
an axial c ross  section of the vortex. The sign of the 
term which i s  linear in Q on the right-hand side is chos- 
en such that it leads to a screening of the main part of 
the azimuthal current which is  described by the nonlin- 
ear  term. As in the case  of Debye screening this leads 
to an  exponential decrease of the field with increasing 
distance from the vortex. We give in Figs. 4 to 6 the . 

distribution of the vorticity D which i s  (depending on the 
kind of vortex) equal to cur1,v o r  cur1,B after having 
been made dimensionless. From them i t  is clear that in 
the central part 52 is negative, while around it D is pos- 
itive and is distributed such that there occurs a complete 
screening of the vortex. Such a screening did not ap- 
pear in previously known solutions. 

4. TOROIDAL VORTICES IN A PLASMA 

1. We consider a parallel vortex in the limiting cases 
when the plasma velocity vanishes and when the magne- 
tic field vanishes. Both these cases a r e  described by 
Eq. (3.1). It follows from (2.4) and (2.5) that when 
q=o 

F=-Y1/2+4xpo,  f= ('1 3 )'"Y" . (4.1) 
p=po-Yz/8n.  (4.2) 

It is clear from (4.2) that the pressure  inside such a 
vortex is a minimum at  the center of the vortex where 
Q is  a maximum. Such a vortex i s  contained by the 
external plasma pressure p,. This possibility was al- 
ready indicated in Ref. 5. 

In the case when the magnetic field vanishes we have 
a hydrodynamic vortex in which F and f have the same 
form (4.1) while the pressure  in it equals 

FIG. 4 .  Constant level lines for the vorticity 59/r  in the 
case of Eq. ( 3 . 1 ) .  The maximum value i s  1 7 . 5  for r= 2 . 4 ,  the 
minimum value i s  -61.1 and i s  reached at r = 1 . 4 .  The ratios 
of the levels here and in the next figures to the minimum value 
are, respectively, 0 .  75 ,  0 . 5 ,  0 . 2 ,  0 . 1 ,  0 . 0 5 ,  0 . 0 2 ,  0 . 0 1 ,  0 ,  
-0 .001 ,  -0 .005 ,  -0 .01 ,  -0 .05 ,  and -0 .75 .  

The constant a has been eliminated here by means of a 
similarity transformation. 

This vortex can therefore likewise not exist without 
a toroidal velocity component and an external pressure  
p,. Usually one observes vortices without a toroidal 
component (vortex rings) which a r e  described by Eq. 
(3.5). Calculations show that this equation has no sol- 
itary solution. Hence it follows that vortex rings ap- 
parently a r e  supported by the external velocity field and 
by viscosity effects. 

At a Mach number equal to unity degeneracy occurs,  
i. e . ,  stationary solutions of a rather arbitrary form a r e  
possible. Chandrasekhar8 has shown that small  per- 
turbations of such a flow have only rea l  eigenfrequen- 
cies.  From this it follows apparently that the unity 
Mach number separates the region of stable and of un- 
stable vortices, i. e. , super-Alfv6nic vortices (a > 1) 
a r e  stable and sub-Alfv6nic vortices ( a  < 1)  a r e  un- 
stable. 

2. We consider a magnetic vortex in which the mag- 
netic field has only a poloidal component. After a sim- 
ilarity trknsformation the equation of such a vortex r e -  
duces to (3.2). Then 

where go i s  an integration constant. Its physical mean- 
ing consists in that f a r  from the soliton where \k - 0 the 
toroidal component of q ,  equal to rg, takes the form 
rg,, i. e. , outside the soliton the motion has the form of 
solid rotation. Of course, such a motion must be bound- 
ed in space. Such a soliton recalls  the magnetic field of 
a rotating planet with a liquid conducting core, except 

FIG. 3. Constant-level lines of the solution of Eq. ( 3 . 3 ) .  The 
maximum value lk= 9.45 is reached in the point r =  1 .09 .  

FIG. 5 .  Constant-level lines for the vorticity in the case of 
Eq. ( 3 . 2 ) .  The minimum value,is -15 .5  at r = 1 . 2 7 ,  the maxi- 
mum value i s  18.6 at r = 1 . 9 .  
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FIG. 6. Constant level l ines for  the vorticity in the case of 
Eq. (3.3). The minimum value i s  -82.4 a t  Y =  0.89, the maxi- 
mum value i s  1.7 a t  r=1 .9 .  

that in our case the rotation axis i s  the same a s  the 
magnetic axis. 

3 .  In the dynamic vortex the velocity has all compon- 
ents. We res t r ic t  ourselves to the consideration of the 
case where there is only a poloidal velocity. The mag- 
netic field has only a toroidal component. Such a vor- 
tex i s  described by the same  Eq. ( 3 . 2 )  a s  the magnetic 
vortex. For it we have 

j=(foz-yZ)% (4 .6 )  
p=Y3/3-?(fa2-YZ)-I VY 12/8n+p0. (4 .7)  

Here rf, i s  the magnetic field far  from the soliton, 
where * - 0, i. e .  , it goes over into the magnetic field 
of a current of constant density. In contrast to the 
magnetic vortex the pressure  in the dynamic vortex de- 
creases away from the axis and tends to zero at the 
boundaries of the plasma. 

5. TOROIDAL VORTICES IN AN EXTERNAL FIELD 

We gave above examples of magnetic and dynamic 
vortices in an external magnetic field o r  in a velocity 
field, but in them the stream function Ik decreased ex- 
ponentially with increasing distance from the soliton. 
Vortices in which the transit ion to the external field 
does not take place so  smoothly a r e  also possible. In 
the general case  the region of the vortex field can be 
surrounded by a vortexless field in which the equation 
for the stream function has the form 

In the vortex region, on the other hand, we have one of 
Eqs. ( 3 . 1 )  to ( 3 . 5 ) .  On some surface *=const the vor- 
tex solution must be joined to the vortexless solution. 
 ill's vortex is  an example of such a vortex. The gen- 
eral  axisymmetric solution of Eq. ( 5 . 1 )  has the form 

I 

Here l , ( z )  i s  a modified Bessel function, K , ( z )  a Mac- 

donald function, e,, and @,, a r e  arbitrary functions of 
k ,  and b and c a r e  arbitrary constants. This field i s  
produced by external sources. Such a solution can be 
joined both to arbitrary solutions of Eqs. ( 3 .  I )  to ( 3 . 6 )  
and to solitary solutions of Eqs. ( 3 . 1 )  to ( 3 . 3 ) .  We 
s e e  that there is here a great variety of configurations. 

6. CONCLUSION 

The analysis given here reveals the great variety of 
vortex equilibrium configtlrations. In most of them 
there is no screening and the velocity decreases ac- 
cording to a power law when one goes away from the 
center of the vortex. We have found in the present pap- 
e r  a class of stationary double layer vortex solutions 
in which the vorticity in the inner layer is screened by 
the vorticity of opposite sign in the outer layer. As a 
result the vortex decreases exponentially rapidly at in- 
finity. These solutions a r e  distinguished also by the 
fact that they a r e  self-similar, i. e. , when there is 
damping or  buildup they a r e  changed according to a 
similarity law. Therefore such solutions a r e  realized 
more often than others and may serve  a s  the structural 
elements of turbulent motion. 

We express our gratitude to V.D. Shafranov for use- 
ful discussions. 
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