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Approximate expressions are obtained for the Coulomb dipole matrix elements, radiative transition 
probabilities, and photoionization cross sections for highly excited atomic states. The results are valid for 
n-n '> l and are different for small ( I  <n) and large (I -n ) orbital momenta. They are identical in the common 
region of applicability. The results agree also with the. well-known expressions for the case In-n'l<n in the 
common region of applicability. A quasiclassical substantiation of the empirical Bethe quantum-number 
selection rules for radiative transitions is presented: upon variation of the principal quantum number n the 
orbital quantum number I varies with an overwhelming probability in the same direction as n .  It is shown that 
the rule is valid for I>n2" and holds better the larger the difference between the principal quantum numbers, 
n-n'. It is shown that upon photoionization of highly excited atomic states the orbital momentum 
predominantly increases. A generalization of the quantum-mechanical correspondence principle is proposed 
for the calculation of the matrix elements between states whose principal quantum numbers differ greatly. 

PACS numbers: 32.70.Fw, 32.80.Fb, 31.50. + w 

5 1. INTRODUCTION 

The interest in spectroscopy of highly excited atomic 
states is due to many applications: the investigation of 
interstellar hydrogen, the development of masers and of 
detectors for long-wave radiation on transitions between 
highly excited atomic states, and a few others. 

In the theoretical analysis of highly excited atomic 
states, the wave function of the valent atomic electron 
can be assumed with good approximation to be hydro- 
genlike and characterized in the discrete spectrum by a 
principal quantum number n,  an orbital number 1, and 
a magnetic number M. This approximation is justified 
because a t  n >7 1 the electron is on the average far from 
the atomic residue, whose influence can be taken into 
account by replacing n with n* =n - 6 , ,  where 6, is the 
quantum defect. We shall not distinguish below between 
n and n*, although the results remain valid also when 
the quantum defect is taken into account. The condition 
n>> 1 means a t  the same time that the states of the de- 
generate energy level n can be described by usinga 
quas iclassical approximation. 

approximate expressions for the matrix elements. 

Thus, it was found in Ref. 3 that for highly excited 
states that differ little in energy, i.e., when An =n -n' 
<< n, n', the matrix element (1) reduces in accordance 
with the correspondence principle to a Fourier com- 
ponent of the classical coordinate as  a function of the 
time. In Ref. 4, the Landau method5 yielded the argu- 
ment of the exponential in an exponentially small matrix 
element of a transition with An -n,nf Isee (10) below)]. 

In this paper we obtain, within the framework of the 
quasiclassical approximation, approximate expressions 
for the matrix elements and for the transition probab- 
ilities, which allow us to describe transitions between 
states with greatly differing principal quantum number 
An-n, n'. The equations obtained differ in form for 
small (l<<n, n') and large (I-n,n') orbital angular mo- 
menta. In the region nZJ3 << I<< n, however, which is 
common to both cases,  they coincide. In addition, a t  
I<< An<< n the obtained formulas coincide with the 
result of Ref. 3 (a summary of th: results of Ref. 3 is 
contained in the book by ~a insh te in  et a1.'). 

The probabilities between the radiative transitions The amplitude of a transition from the discrete to the 
between excited atomic states are expressed in continuous spectrum can be obtained from the amplitude 
terms of the reduced dipole-moment matrix element of a transition in the discrete spectrum by means of an 
(here and below e =ti = m = 1) analytic continuation, in energy, effected for one of the 

(1) 
states by making the substitution n' - i/p, where P is  
the electron momentum in the continuous spectrum. 
Quasiclassical states with n' >> 1 go over thus into the 

If the R,, a re  Coulomb radial functions, this integral states with small momentum 1. On the other hand, 
can be calculated analytically in general form. The the detailed balancing principle make it possible to 
exact answer contains in this case hypergeometric 

connect the probabilities of the direct and inverse pro- functions. ' For transitions between highly excited atom- 
cesses. By the same token, the approximate formulas 

ic states, both qualitative estimates and direct calcula- 
obtained in the present paper can be used to describe 

tions using the exact formula a re  difficult, since gen- all radiative transitions between states with energies 
erally speaking all three parameters of the hypergeo- near the boundary of the discrete and continuous spec- 
metric functions a re  large. The available oscillator- 

t ra ,  including the description of f ree-free transitions. 
strength tables (see, e.g., Ref. 2) make it possible to 
calculate the probabilities of transitions between rela- In 52 we present the calculations of the matrix ele- 
tively low states. However, the quasiclassical charac- memts for small and large orbital angular momenta 
ter of the highly excited atomic states can yield simpler and discuss the approximate Bethe selection rules for 
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them. These results a re  used in $3 to determine the 
probabilities of radiative transitions and the photo- 
ionization cross sections; their connection with the 
Kramers formulas a re  discussed. Section 4 is devoted 
to a generalization of the correspondence principle of 
quantum and classical mechanics for matrix elements 
in the case of states with greatly differing quantum 
numbers. 

$2. QUASlCLASSlCAL MATRIX ELEMENTS 

We deal f i rs t  with the matrix element (1) in the case 
of small orbital angular momenta I<< n, n'. We recall 
that no restrictions a re  imposed on the difference An 
between the principal quantum numbers. For the sake 
of argument we put An > 0, i.e., n>nl.  We substitute 
in (1) the radial functions in the quasiclassical approxi- 
mation 

where the radial momentum and the normaiization 
constants a re  equal, respectively, to 

As will be verified below, the significant integration 
region r -(n1)*I3 is much less than the region of the 
classical motion -(nl)'. The radial momentum (3) in the 
significant region is then weakly dependent on the 
principal quantum number, and a strong overlap of the 
wave functions R,, and R,,,, , takes place. The phase 
shifts of the wave functions a re  in this case of the order 
of (n')3/2, i.e., they are  large. To calculate the integral 
(1) we can therefore replace the cosine products by 

We have neglected here the difference between the left- 
hand turning points, which is small a t  n, n' >> 1. The 
difference of the momenta in the significant region is 
of the form 

It is seen therefore that by equating the phase of the 
cosine in (4) to unity we obtain the significant integra- 
tion region indicated above. 

At the same time, the significant integration region 
is located in the classically accessible region; the con- 
tribution to the matrix element (1) from the region of 
the left-hand turning point, where the quasiclassical 
approximation does not hold, can be easily verified to 
be smaller than (6) by a factor I/n. 

Substituting (2) and (4) in (1) and replacing the upper 
limit of integration with respect to r by m, we obtain 
after certain transformations 

Here K,(F) are  MacDonald functions and we have put 

Equation (6) is valid for I<< n' and An >> 1. The second 

inequality ensures the possibility of replacing the upper 
limit of integration by m. 

At n -nf and 1 sn2I3 the matrix elements (6) a re  of the 
order of d l 3 ,  i.e., they a re  quasiclassically large, a s  
follows from the strong overlap of the wavefunctions at 
small r. At l>> n2I3 they become exponentially small. 

Using various expansions of the MacDonald functions, 
we can simplify (6) in various limiting cases. Thus, in 
the case of very small orbital angular momenta 1 
<< (n1)'13, when 5 << 1, we obtain from (6) 

Here r ( x )  is the gamma function. It is seen from (7) 
that in this limiting case the matrix element does not 
depend on 1 a t  all. Equation (7) is  valid not only at 
I>> 1, but also a t  small values I- 1 (s, p, d, and f 
states). Its importance is due to the fact that highly 
excited atoms with small orbital angular moments a re  
produced selectively in the experiments. 

Even for the lower states of the hydrogen atom, 
where the quasiclassical approximation is formally not 
applicable, it leads to results that do not differ greatly 
from the exact ones. For example, for the 2s- 4p 
transition the ratio of the quasiclassical matrix radial 
dipole element calculated from Eqs. (7) to the exact 
value [see Eq. (63.4) of Ref. 61 i s  0.73. 

We note that under the condition 1 << An<'= Eq. (6) 
coincides with the asymptotic form of the result of Ref. 
3 ,  in which we must put I<< n (for details see ,  e.g., 
Ref. 4). 

Introducing in (6) the substitution n1 - i/p in accord 
with the statements made in the introduction, we obtain 
the matrix element of the bound-free transition 

Here 

i s  the energy of the absorbed photon. The condition for 
the applicability of (8) is  that the inequalities I/n<< 1 
and lp<< 1 be satisfied. We note that in the vicinity of 
the threshold, namely a t  pG: l /n,  the matrix dipole 
element depends on the momentum p like p3''. Next, 
in the limiting case E<< w-lJ3, just as for bound-bound 
transitions, the matrix element (8) does not depend on 
the orbital angular momentum I.  

The matrix element of bound-bound transitions, ob- 
tained under the assumption An <<n, was continued in 
Ref. 3 [see also Eq. (24.2) of Ref. 21 into the continuous 
spectrum with the aid of the substitution An-on3. This 
continuation was not justified, inasmuch as  analytic 
continuation into the continuous spectrum calls for 
passage through the region An -n,  where the equation 
of Ref. 3 do not hold. Thus, the validity of the equa- 
tions of Ref. 3 for the cross sections for photoioniza- 
tion from the states (n, L) remains unclear. Compari- 
son with (8) shows, however, that the prescription 
proposed in Ref. 3 for obtaining the matrix element of 
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a bound-free transition gives the correc t  result a t  I<< n. 

We turn now to the case of large orbital angular mo- 
menta, when I/n, l/n' - 1. The corresponding dipole 
matrix elements a r e  exponentially small ,  so that the 
significantregion of integration with respect  to r cor-  
responds not to smal l  values of r but to complex r. As 
noted in the Introduction, the argument of the exponen- 
tial was determined in Ref. 4 by the Landau quasiclas- 
s ica l  method. 

To find the pre-exponential factor, we s t a r t  from 
the exact expression for the matrix element,' although 
the result  could be obtained here,  too, with the aid of 
the generalized correspondence principle (see 14), on 
the basis of classical  Coulomb trajectories (taken only 
in the complex domain of the coordinate r and of the 
time t). We present €he hypergeometric functions in 
the exact expression for  the matrix element in the 
form of a contour integral [see Eq. (e.3) of Ref. 5)] and 
make the following change of the integration variable 

(n-n')l a=--- 1 n+n' 
*nnf ( I + - - )  w n-a' ' 

if the conditions 

a r e  satisfied the resultant integral can be calculat- 
ed by the saddle-point method. Numerous factor- 
ials  can be expressed by using the Stirling formu- 
la. In the case  of the matrix element R",' ", account 
must  be taken of the te rms that follow the principal 
te rm of the expansion near  the saddle point. Leaving 
out the cumbersome calculations, we present only the 
final result  

where x = l/n, x' = 1/n1 and 

The pre-exponential factors a r e  (we assume, a s  before, 
n > n') 

Thus, f- corresponds to the case when the principal 
quantum number n and the orbital momentum I change 
in the same direction in the course of the transition, 
while f+ corresponds to changes in the opposite direc- 
tion. 

At I<< An<<n, as expected, Eq. (10) coincides with the 
corresponding asymptotic form of Ref. 3. 

For  the orbital angular momenta n2I3<< E<< n ,  Eqs. (10) 
and (8) yield the same answer with account taken of the 
pre-exponential factor. This confirms the validity of 
the calculations of the exponentially smal l  matrix ele- 
ments by the method described a t  the beginning of this 
section. 

The matrix elements of bound-free transitions a r e  

obtained by analytic continuation of (10). We do not 
present here  the corresponding results ,  since the 
method of obtaining them from (10) is obvious. In the 
s ame  manner we can determine from (8) and (10) the 
dipole matr ix  elements of the free-free transitions of a 
small-momentum electron. 

If x' - 1 ,  then the obtained expressions (10) must be 
slightly modified to take into account the fact that the 
quantity (n' = I )  ! , contained in the exact formula of Ref. 
1, cannot be replaced by using Stirling's formula a s  
was done in the derivation of (10). We then obtain 

In this form,  the formula is  valid for  values of I close 
to n'. In particular, we obtain from i t  the well-known 
exact value of the matrix element R',';' (in which 
Stirling's formula was used for  n! and 11) .  We obtain 
similarly XI'+' for  1 close to n'. 

Bethe (Ref. 6, p. 420 of Russ. transl.) formulated an 
empirical selection rule for  Coulomb dipole matr ix  
elements: when the principal quantum number n 
changes, the orbital momentum I changes with over- 
whelming probability in the s ame  direction as n. 

This rule was deduced from an analysis of transitions 
in which a t  least  one of the principal quantum numbers 
was small. By the same token, the orbital momenta 
were smal l  and comparable with the smal ler  principal 
quantum number. As to the application of this rule to 
transitions between highly excited atomic states 
with n ,  nl>> 1, i t  can be seen from (11) that it holds 
for  transitions with large orbital momenta I-n,  n'. 
Indeed, in this case  we have from (11) 

f+ nn' 1 ----- 
f- I' n '  

A s imi lar  statement is  valid for  bound-bound transi- 
tions: At l s > ~ - ' / ~  the transition from the bound to the 
f r e e  s t a t e  i s  accompanied by an increase in the orbital 
momentum. 

The Bethe rule, however, is violated a t  smal l  orbital 
momenta 1s n2I3, and particularly strongly for l<< n2I3, 
where, a s  seen from (7), the matrix element does not 
depend on I a t  al l ,  and by the s ame  token i s  the same 
for transitions with = 1 i  1. 

If we consider the corresponding matrix elements for 
the case  1 << An << n,  we s e e  easily (this was demonstra- 
ted in Ref. 4) that in this case  their rat io is of the order  
of l / ~ n .  Thus, the larger An the better is the Bethe 
rule satisfied; in this  case  the orbital momenta should 
be large enough: I>>n2I3. 

As for  bound-free transitions, we obtain from (11) a t  
1 >> w -'I3 

i.e., on going to the continuous spectral  the orbital 
quantum number predominantly increases. Jus t  a s  in 
the case  of bound-bound transitions, the larger I, the 
better this rule manifests itself. 
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$3. PROBABILITIES OF RADIATIVE TRANSITIONS 

We obtain first  the probability of the spontaneous 
transitions from the state n with fixed orbital momen- 
tum l e  n into a state with principal quantum number 
n' <n. It is obtained by summing two probabilities 
with 1' = 1k 1. Starting from (6), we obtain 

Here c is the speed of light (c  = 137 in atomic units). 
In particular, it follows from (13) that for very small 
orbital momenta I<< (~2')''~ the spontaneous-transition 
probability, as well a s  the corresponding matrix ele- 
ment (7), does not depend on 1. On the contrary, at 
(n')'I3<< I<< vz the transition with 1' = 1 + 1  makes a small 
contribution to (13) in accord with the Bethe rule. 

Averaging (13) over the orbital angular momentum 1 
and replacing summation over 1 by integration we ob- 
tain, as  expected, the known Kramers formula [see, 
e.g., Eq. (23.1) of Ref. 21. Thus, the main contribution 
to the average transition probability is made by ma- 
trix element with 1 -n2I3; the contribution of transitions 
with l<<n2I3 is small because of the small statistical 
factor (21 + 1) which arises upon averaging because of 
the degeneracy with respect to the projections of the 
orbital momentum, and the contribution of transitions 
with l>>n2I3 is small because of the exponential small- 
ness of the matrix elements. 

Expression (13) makes it possible to determine the 
radiative lifetime of the highly excited state nl. It is 
determined from the formula 

Substituting (13) in (14) and replacing the summation 
over n' by integration, we obtain for the case 1>> 1 

3"nc3 
T,I" = 4 (15) 

We note that the relation T,, -n3 agrees with the one 
known from the numerical calculations (see page 422 
of the Russian transition of Ref. 6). If, however, 1 is  
not too large compared with unity, then expression 
(15) must be replaced by the more accurate result of 
the substitution of (13) in (14): 

The probability of the spontaneous radiative transi- 
tion from a state with large orbital momentum 1-n is 
determined, according to the Bethe rule,  only by the 
matrix element f- [see (l l)] ,  and is equal to 

In the case of bound-free transitions, we a re  dealing 
with the cross section for the photoionization of the 
state nl  with a transition into the continuous-spectrum 
state with energyp2/2. If l<<n, then, using the matrix 
element (81, we obtain 

where w is the frequency of the absorbed photon. The 
photorecombination cross section can be easily ob- 
tained from (18) with the aid of the detailed balancing 
principle, and is not presented here. We note once 
more [see the discussion following Eq. (8)] that the 
photoionization cross section (18) was correctly in- 
tuited in Ref. 3 [see Eq. (24.1) of Ref. 21. 

It is easy to verify that when the cross  section (18) 
is averaged over the orbital momentum I we obtain the 
known Kramers formula [see Eq. (24.4) of Ref. 21, as 
should be the case. 

We now turn to transitions with 1-n. The photoioniza- 
tion cross section is determined then by analytical con- 
tinuation of the matrix element (lo), and in accord with 
the Bethe rule only the transition with I' = 1 + 1 makes 
a contribution. We obtain 

where F is given by 

Of course, Eqs. (19) and (20) cannot be obtained by any 
analytic continuation of the equations of Ref. 3. 

We note that Eqs. (19), (20), and (18) coincide in the 
common region of validity of n2I3 << LC< n. 

54. GENERALIZED CORRESPONDENCE PRINCIPAL 

By tracing the procedure used in the beginning of 82, 
we can see  that the calculation method used for small 
angular momenta can be formulated a s  a certain exten- 
sion of the correspondence principal for the calculation 
of the matrix elements with large change of the prin- 
cipal quantum number. We note for this purpose that 
in the essential integration region, corresponding to 
small values of R,  the momenta p,, and PnPt,, a r e  prac- 
tically equal. This means that the classical trajec- 
tories a re  almost the same for the initial and final states 
a t  small Y. We designate this classical coordinate of 
the electron by r,(t). From an analysis of the f i rs t  part 
of 02 it is seen then that 

Here T, and T,,, are  the classical periods of motion for 
the initial and final states, and depend on the corres- 
ponding quantum numbers n and n', while the quantity 

takes into account not only the change of the energy in 
the transition, but also the change of the centrifugal 
energy (1+$)'/2g with increasing (+ sign) or  decreas- 
ing (- sign) orbital angular momentum I. The region of 
the integration with respect to the time t in (21) cor- 
responds formally to one of the periods of motion of the 
particle, but the actual integration in (21) takes place 
only over the region where the initial and final trajec- 
tories are  close to each other. For example, for small 
orbital angular momenta l<<n, a contribution is made 
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only by the region of small  r ,  and the upper limit of 
the integration in (21) can be extended to infinity, since 
the integral converges soon enough. 

Actually, the result  (21) is valid not only for the case  
of small  orbital momenta I<< n, but a l so  in the general 
case. At I-n, by calculating the integral in (21) by the 
saddle-point method, we verify that the essential inte- 
gration region i s  in the complex plane of the t ime t ,  and 
the initial point to is obtainedfrom the condition w (to) = 0. 
In the vicinity of this point, obviously, the initial and 
final t rajectories a r e  the same,  despite the strong 
difference between n and n'. I t  is  the corresponding 
coordinate that should be substituted in (21) (it i s ,  
of course,  complex in this case). 

In the case  of close values of n and n', Eq. (21) goes 
over,  a s  it should, into the well-known formula of the 
correspondence principle f o r  quantum-mechanical 
matrix elements. 

Of course, a l l  the foregoing is closely connected with 
Landau'ss general theory of calculating quasiclassical 
matrix elements. In the case  of smal l  orbital angular 
momenta it is important to take into account the point 
where the potential energy becomes infinite in the con- 
sidered problem, i.e., the point r =O. In the case  of 
large orbital momenta I, it is important to take into 
account the point where the difference En - En,  between 
the effective potential energies U, - U, ., which take 
into account the centrifugal ba r r i e r  [see Eq. (51.7) of 
Ref. 51. Those sections of the classical  trajectories 
which differ greatly in the initial and final s ta tes  make 
no substantial contribution to the sought quasiclassical 
matrix element: the only important region is where 
these trajectories a r e  close to one another, and it does 

not matter  whether this takes place in the region of the 
r e a l  motion of the particle o r  in the region of the analy- 
t ical  continuation of the rea l  t rajectories into the com- 
plex space-time plane. 

We note in conclusion that the equations derived, 
together with known results  (see Refs. 3 and 71, pro- 
vide a comprehensive description of the transitions 
between quasiclassical s tates in ei ther  a discrete o r  
continuous spectrum characterized by definite orbital 
momenta, for  the Coulomb problem. 

The authors a r e  most grateful to I. L.  man, 
B. M. Smirnov, and B. N. Chichkov for  a useful discus- 
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