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It is demonstrated how in principle the energy losses of charged particle beams in a plasma or gas can be 
decreased as a result of "collective" effects due to collisions. The phenomenon, which is called 
autorecuperation, may take place in a medium at thermodynamic equilibrium when a suitably modulated 
beam passes through it. As a result of periodic heat evolution in the medium, oscillations are built up, which 
in turn may impart energy to the beam particles and decrease in this way the effective losses and hence the 
energy losses in the reactions involved in the collisions. 

PACS numbers: 51.10. + y, 52.40.Mj 

INTRODUCTION beam particles with the medium particles turns out to 
be less  for  such a modulated beam than for an  unmodu- 

The question of the energy lost when a beam of lated one. Since the number of collisions determines 
charged particles passes through mat ter  has by now the number of nuclear reactions generated by the beam 
been investigated in sufficient detail (see, e.g., Refs. in the medium, the energy eonsumed by one nuclear 
1-4). This loss, disregarding the fine points, can be reaction i s  therefore decreased in this case. 
divided into a part  due to collisions of beam particles 
with the medium particles, and the so-called,"collec- 
tive" loss due to the fact  that oscillations can build up 
in the beam + medium It is regarded a s  ob- 
vious, since collective processes in a medium in ther- 
modynamic equilibrium decrease in principle the beam 
energy, that the loss can in no way be less  than that due 
only to collisions. 

It will be shown in the present paper that situations 
a r e  possible in which this statement i s  incorrect. 
Namely, when a sufficiently monochromatic beam whose 
current  is  modulated in a definite manner passes 
through a medium in thermodynamic equilibrium, the 
energy loss due to  collective processes may turn out 
in many cases  less  than those due to collisions. This 
can be qualitatively visualized a s  follows. The wave ex- 
cited by the modulated beam loses energy to heat the 
medium. It might seem that if the medium is in thermo- 
dynamic equilibrium, it is possible to excite the wave 
only a t  the expense of work performed by the beam par- 
ticles on the wave field. Therefore, at  any form of 
modulation, the energy loss should be la rger  than in the 
absence of modulation. This reasoning, however, does 
not take into account one other possibility: If the modu- 
lated beam passes through some section of the medium 
and releases in it heat periodically, via collisions, then 
the pressure in this section will also vary periodically; 
the pressure oscillations, which a r e  phased in a definite 
manner in all sections through which the beam passes,  
can also generate waves in the medium.') The wave is 
built up here  a t  the expense of the energy lost by the 
beam to collisions in the medium. If the damping is 
small  enough, then a suitable modulation can bring 
about a situation in which the field of the wave built up 
in the medium, even when such a generation mechanism 
is taken into account, performs work on the beam par-  
ticles and returns thereby part  of the heat-loss energy. 
In this case  the field of the wave effectively decreases,  
as it were,  the friction force connected with the colli- 
sions. Therefore the energy loss pe r  collision of the 

I t  is natural to cal l  such a phenomenon autorecupera- 
tion. Thus, autorecuperation, if we attempt to define 
i t  formally, is a phenomenon in which part  of the energy 
released in the medium in the form of heat by a beam 
modulated in a special  manner goes to build up oscilla- 
tions which in turn can  provide energy to accelerate the 
beam particles, decreasing thereby the effective loss. 
Autorecuperation can be of interest  in principle for  
problems in which the heating of the medium i s  an un- 
desirable side effect, such a s  in the passage of a t r i t i -  
um beam through a deuterium target  (Ref. 8);) in muon 
generation, etc., decreasing the energy loss per nu- 
c l ea r  reaction. 

Autorecuperation can be quantitatively characterized 
by the aid of a coefficient q which i s  the rat io of the 
energy W ,  returned by the beam particles to the total 
energy W, (without allowance for  the return) lost by the 
beam in the target. For  W, we can write 

where A P  i s  the change of the target  energy after  pas- 
sage of the beam, and Q is the heat loss (in the general 
case,  energy loss) of the target. Obviously, qarc < 1. 
Next, if T, and T, a r e  the maximum and minimum 
temperatures that a r e  reached in some sections of the 
target  a t  some  instants of time, then qarc <(TI - T,)/T~. 
The same principal limitations on the energy recupera- 
tion hold here  a s  for  heat engines of any other type, but 
s ince the medium (plasma o r  gas)  is in this case  not 
only the working medium, but a l so  serves  a s  the heat 
engine itself, i t  i s  possible to avoid here  certain purely 
technological limitations imposed on TI, by the thermal 
endurance of the materials  used in the existing heat 
engines, etc. A modulated beam, since i t  makes it 
possible to obtain relatively easily any required law of 
heat-input to the target ,  also offers certain advantages 
in comparison with many other methods of heating the 
medium. One can hope that because of these advantages 
the autorecuperation, regardless of the formulation of 
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the problem, will be equally or  even more effective 
than the usual energy recuperation wherein the target 
simply serves as a heating source, the beam is not 
modulated (since there is  no need for it in principle), 
and any one of the ordinary type heat engines converts 
part of the released heat into electricity. From among 
the existing methods, perhaps the most suitable for the 
recuperation of energy released by a beam in a target 
might be an MHD generator, but even that is subject 
to major technical limitations on the maximum and 
minimum temperatures which a re  connected, for ex- 
ample, with the interaction of plasma with electrodes.1° 

When considering autorecuperation, we confine our- 
selves in the present article to situations herein, first, 
the waves built up in the medium can be investigated in 
the linear approximation and, second, one can neglect 
the change of the beam-particle velocity (this condition 
can be satisfied, for example, in those cases when a 
beam of sufficiently heavy particle loses a small frac- 
tion of its energy to light particles in a medium). Al- 
though in the linear approximation, because of the 
small amplitudes of the oscillations, we have T =(T, 
-T,)<< T, and qarc << 1, which i s  of little interest from 
the practical point of view, nevertheless even in this 
case i t  is possible to demonstrate, f irst ,  the feasibility 
in principle of autorecuperation and, second, those 
concrete examples of systems in which autorecupera- 
tion is possible. 

In the first  section we consider the simple possible 
example, autorecuperation in an unbounded plasma with 
infinitely heavy ions in the absence of a magnetic field. 
This variant, apparently by virtue of a number of 
causes, in particular such as the high rate of damping 
of the oscillation, the need of modulating the beam at  a 
frequency close to the plasma frequency, etc., is of 
purely methodological interest. Another somewhat 
more complicated but also more interesting variant is 
autorecuperation in a plasma located in a constant and 
homogeneous magnetic field, is considered in the 
second section. For  autorecuperation to occur in this 
variant it is desirable that the magnetic field be "frozen" 
in the plasma. The waves built up in the plasma be- 
cause of the alternating heat release due to themodula- 
ted beam cause in this case corresponding oscillations 
of the intensity of the "frozen-in" magnetic field. These 
oscillations should in turn generate an alternating elec- 
t r i c  field which, under suitable conditions indicated in 
the second section, performs work on the beam par- 
ticles. In contrast to the plasma without a magnetic 
field, it is possible here, by increasing the length of 
the excited wave, to decrease both the contribution 
from the damping and the frequency of the beam modu- 
lation. Finally, in the third section, we consider auto- 
recuperation in a gas target. This last example calls 
for an additional explanation. On the one hand, in many 
cases it is much simpler to work with a gas target than 
with a plasma target, there is  no need for magnetic 
containment, the temperature of a gas is much lower, 
etc. Next, if we compare, for example, the energy lost 
to Coulomb collisions when fast charged particles pass 
through a low-temperature3 (but almost fully ionized) 
plasma with the energy loss in a gas of the same den- 

sity, the loss in the gas is smaller by an amount equal 
approximately to the Coulomb logarithm A, making the 
gas, naturally, preferable for the problems considered. 
On the other hand, the oscillations in the gas cannot 
transfer their energy directly to the beam particles. 
One can, however, propose a number of schemes in 
which the oscillations in the gas transfer their energy 
to excitation of oscillations in some other system, for 
example (see 53) in the walls of acoustic resonators and 
in an associated electric circuit, from which this energy 
can already be used to compensate for the beam losses, 
o r  to feed the accelerator that produces the beam. The 
example given in $3 is not the only one. It would be 
possible in principle to consider a situation wherein the 
energy is transferred through a vibrating or  rotating 
conducting piston, metallic or plasma. Such an indirect 
autorecuperation, while somewhat more complicated 
then the ordinary one, offers also a number of advan- 
tages. For  example, by adding external energy to the 
intermediate system, it is possible in a number of 
cases to keep the beam-particle energy from decreas- 

.ing a t  all, and to cause the energy to be optimal at all 
time from the point of view of the ratio of the cross 
sections for the useful and parasitic processes. 

In the Conclusion we discuss, on a qualitative level, 
the situation in the nonlinear region. In most cases,  
when attempts a re  made to excite oscillations with high 
amplitude, shock wave discontinuities a re  produced and 
lead to a substantial energy dissipation. Shock waves 
in an unbounded medium might not be formed in the 
presence of dispersion. Thus, for those cases when 
the oscillations can be described with the aid of a 
Korteweg-de Vries equation, it is known that there 
exist finite-amplitude solutions that give no shock 
waves. Oscillations with relatively large amplitudes 
can be obtained in resonators having finite volumes, 
provided that the natural frequencies of the oscillations 
are  not multiples of one another. For example, will be 
stable in a oscillation with small (but finite) amplitudes 
cylinder, since the natural frequencies determined by 
the zeros of the Bessel function a re  not multiples of 
one another, unlike in an unbounded medium without 
dispersion. For plasma with a "frozen-in" magnetic 
field, placed in a cylinder (the autorecuperation coeffic- 
ient for this case i s  calculated in the linear approxima- 
tion in §2), it is possible to estimate approximately the 
wave amplitude at which discontinuities begin to be 
formed (the calculations connected with this estimate 
a re  not presented in this article). By using such an 
estimate, we can obtained the following restriction on 
q ,  ; q , 5 0.2. No optimization of the system or  
modulation were considered here at all. 

Appreciable A T  can be obtained without shock-wave 
formation also if i t  is possible to change the resonator 
volume substantially within times much shorter than 
the characteristic times connected with the thermal 
conductivity. 

5 1. AUTORECUPERATION IN A PLASMA WITHOUT 
A MAGNETIC FIELD 

We consider a one-dimensional problem. A beam 
whose particle density is  a periodic function of one 

1028 Sov. Phys. JETP 55(6), June 1982 V. A. Namiot 1028 



coordinate and is independent of the two others is 
present in an unbounded plasma with infinitely heavy 
ions. The beam-particle velocity v,  is constant and 
it directed along this chosen coordinate. In the hydro- 
dynamic approximation, the equations take the form 

an, a - + -(n.v) =0, - - = 4ne(n,-no-N(x; t ) ) ,  
at ax as2 

Here n, is the electron density, v  is their velocity, m 
is their mass,  T is the temperature, n. is the Boltz- 
mann constant, v  is the frequency of the electron-ion 
collisions, Q is the heat loss, N(x; t )  is  the density of 
the beam particles, u is the cross section for beam- 
particle collisions with electrons, @, is the average 
energy transferred to the electron in this collision, and 
e = - 1 e ( i s  the electron charge. 

We assume that N(x;t) is of the form 

[here and N are  real quantities; ~ ( x ;  t )  2 01. 
After linearization of (I), the oscillating part of the 

solution of the obtained equations must be sought in the 
form 
v ( x ;  t )  =v exp(ik(x-vat))+ c.c., cp(x; t )  -rpexp(zk(x-vat))+ c.c.. 

6n(x;  t)-in,(x; t ) - n 0 4 n  exp(ik(x-vat)) +c.c. 
(3) 

We have 

5 xTo Cnn0ea V ~ O  t ) - ' ,  2 naoZo 4nnoe2 ) (uoa . - --- 6.- (-- 3 km 
mk" 3 m mkz k 

(4) 

We write down the expression for qarc: 

Substituting (4) in (5) we obtain 

[the condition for the applicability of (6) is qarc << I]. If 
the damping of the oscillations in the plasmais relative- 
ly small, i.e., if mvv,/n,o&',~~ 1, it is always pos- 
sible, by proper modulation of the beam, to choose the 
value of k such that qarc is positive. The phase velocity 
of plasma oscillations having the same k turns out to be 
in this case larger than v,. This, generally speaking, 
agrees with the known intuitive concepts: To give up 
energy to the particles, the wave must have a velocity 
somewhat larger than the velocity of these particles. 

To describe the autorecuperation process i t  is  
meaningful to introduce besides qarc one other quantity 
qLc, which is the ratio of the energy lost by the beam 
(with allowance for the recovery) per "useful" nuclear 
reaction that takes place when the beam passes through 

the target, to the energy 8, lost in this target in one 
such reaction by an unrnodulated beam. In other words, 
qLc =(Wa - W,)/~,N,, where N, i s  the number of "use- 
ful" nuclear reactions that have taken place in the tar- 
get. In those cases when all the beam particles have 
the same velocity that remains constant during the 
flight through the target, and the oscillations produced 
in the medium do not violate its neutrality (we assume 
f o r  simplicity that only one species of nuclei is present 
in the medium), then W, = EP,N, and the identity 1 -qUc 
zqiIc holds. When the neutrality of the medium is vio- 
lated, if the losses take place on electrons, and the 
"useful" nuclear reactions take place, naturally, on 
nuclei, the inequality of n, and n4 makes q',, generally 
speaking, not equal to 1 - q,, . In our case q& is 
given by 

(7) 
We consider the situation when v - 0. To obtain a gain 
compared with the unmodulated beam, it is necessary 
to  satisfy the inequality q',, c 1. If we choose k to satis- 
fy this condition, we find in contrast to the previous 
situation, that the phase velocity of the f ree  oscillations 
with this k should be less than v,. This paradox is 
explained by the fact that in this case, in addition to 
autorecuperation, there is one other mechanism where- 
by the "parasitic" energy losses a re  decreased. The 
energy lost to collisions with electrons is decreased if 
the maxima of the beam particle density occur a t  the 
minima of the electron density. But oscillations in 
which this condition would be satisfied can be excited in 
this problem only when the beam, in contrast to auto- 
recuperation, performs work against the field of the 
excited waves. Naturally, in this case v, must exceed 
somewhat the phase velocity of the waves. Since the 
second mechanism of decreasing the "parasitic" losses 
is more considerable in our problem, it determines the 
choice of k. 

52. AUTORECUPERATION IN  A PLASMA WITH A 
HOMOGENEOUS MAGNETIC FIELD 

We consider an unbounded plasma placed in a homo- 
geneous magnetic field. We consider an unbounded 
plasma placed in a homogeneous magnetic field H, di- 
rected along the z axis. A modulated beam is present 
in the plasma. The particle density in the beam varies 
in accord with the law 

The velocity v, of the beam particles is constant but is 
nat directed along the x axis: 

(here i, j , and k a re  unit vectors along the directions of 
x, y ,  and 2).  We shall consider only those cases when 
the inequality v, >> v, is satisfied. The change of the di- 
rection of the beam-particle velocity under the influence 
of an external magnetic field will be disregarded. 

In the hydrodynamic approximation, the equations 
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(for singly charged ions) a re  of the form 
dv 1 ( e l  

nm.-=-V(2nxT)+--[rota X H ] - - N ( x ;  t )  [v,X HI, 
' dt 4n 
aH c le l  ca - =rot[vxH]+ -rot(N (s; t ) v o )  + -AH, 
at ab 4x0, 

an/dt+div nv=0, (10) 

here rr is the plasma density, v the velocity, H the 
magnetic field, u, the plasma conductivity, and E the 
electric field. For q, we can write 

Linearizing (10) and solving the resultant equations, we 
get 

10 
qe..=(21 e l R H o  (j %Tono-nom,vl' 1 

c'k' 
' O  )z ]}  -'. +-(nomzv: - - 3 ~ T O ~ O  

In order for qarc to be larger than zero it is necessary 
to require, for example, f i rs t  that m,v? be larger than 
(10/3)x To and, second, satisfaction of the inequality 

lel 10 d p c  - (m,v:- - x ~ , , )  E - 
Ho 3 6nv1 ' 

To increase q,, it is advisable apparently to choose 
sufficiently small k and, in addition, choose v, to 
satisfy the relation 

We consider one more problem: We have an infinitely 
long plasma-filled cylinder of radius R, and a magnetic 
field directed along the cylinder axis; a modulated 
beam propagates along the axis. Assume that the 
Larmor radius r,  of the beam particles is equal to 
c ~ v , / l e l ~ ,  (here M is the mass of the beam particles 
and v, is the velocity component perpendicular to the 
magnetic field) is much less not only than R,, but also 
than the characteristic lengths of the waves excited in 
the cylinder. 

The density of the particles in the beam can be rep- 
resented in the form 

N(r; z; t )  = [Z+N exp (ik (z-v,t) ) 
8 (r-rJ 

+$ exp(4k(z -v l t )  ) ] - . 
2nrL (15) 

Here 6 is a delta function and v i s  the velocity com- 
ponent parallel to the axis. We assume that k i s  small 
enough ( R i l > >  k) to be neglected everywhere in the 
equations except in terms of the type k v l l ,  where it is 
multiplied by a sufficiently large vll. In order not to 
write out the cumbersome equations, we consider the 
limiting case 0,- m. In the case of modulation of the 
type (2), many modes can be excited in the cylinder, 
but at a definite choice of k only one of them can turn 

out to be close to resonance. Taking into account the 
contribution of only this one mode, we have 

where Jo is a Bessel function and v, satisfies the 
equation 

$3. AUTORECUPERATION IN  A GAS TARGET 

Assume that the gas fills a system of acoustic resona- 
tors of the type shown in Fig. 1. The resonators a re  
coupled to each other through inductances L. The walls 
of the resonators a re  acoustic membranes that can be 
displaced by the gas oscillations. Each zth resonator 
has a capacitance C ,  to ground, which can be represen- 
ted in the form 

Here C ,  is  a constant independent of the displacement 
of the membrane, the part 6 R ,  is the change of the 
radius of the ith resonator (in this case the displace- 
ment of the membrane is in fact the change of the 
resonator radius), and j3 is  a coefficient (@ > 0 for the 
situation shown in the figure). The voltage on the ith 
resonator (relative to ground) can be written in the 
form 

with u,>> 624,. 

Assume that a modulated beam of fast particles with 
transverse dimension R' much smaller than both Ro 
and the characteristic lengths of the excited waves, 
travels along the system axis.4) Let R i l > >  z-'>> k; 
We write down the linearized equations 

We a re  considering here a monatomic gas, ma is the 
mass of the atoms, v is the velocity (directed along the 
radius), Az is the distance between the centers of the 
resonators (the gap between the resonators is assumed 
negligibly small), is the mass per unit surface of the 

FIG. 1. 
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membrane, and q is  the elast ic  coefficient per  unit su r -  
face. 

We choose L and C, to satisfy the condition 

The propagation velocity of the electr ic  signal along the 
chain of resonators becomes then equal to the beam 
velocity. Equation (21) is greatly simplified and can 
now already be solved: 

We assume that k is  chosen close to the resonance of 
the nth mode. Solving in this case  (20) and (21), and 
taking (23) into account, we obtain 

Here v, sat isf ies (17). To avoid large overvoltages in 
the system (which a r e  shifted in phase relative to the 
beam-modulation phase in such a way that their contri- 
bution to qarc i s  zero  and they are therefore not taken 
into account there) ,  i t  is necessary to choose q from 
the condition 

We consider at the s ame  time also a simplier  system 
with one acoustic resonator, in which the returned 
energy is  used to feed the accelerator  that produces 
the beam. Let now the inductance L, previously joining 
the resonator, be connected to ground through a capa- 
citance c'>> C,. The beam i s  pumped by the returned 
energy when it passes through the capacitor C,  (C,<< C,), 
one electrode of which is connected to the resonator 
and the other to the ground. The distance I between C, 
and the resonator is  chosen to satisfy the condition kl 
=n/2 needed for  optimal matching of the phase of the 
oscillations in C, and in the resonator. 

In place of (21) we have in this case  

d26u dz6R d 
G ~ = - L C ~ - - L ~ P ~ - +  LV~I~I~- 2nrNI,-,dr. 

atz dt' (2 6) 
a 

Choosing in analogy with (22) L and C, f rom the condi- 
tion 

we obtained in analogy with (23) 

If we use (28) and take into account the condition for 
kl, then the obtained qm, i s  determined by Eq. (24), 
in which Az must be replaced by k". 

In conclusion, I am grateful to G. A. Askar'yan and 
E. A. ~ o m a n o v s k G  for  helpful discussions. 

')The question of detecting a particle by means of the acoustic 
wave produced by it as  it passes through a medium is  consid- 
ered in Refs. 5-7. 

2)~utorecuperation can in principle improve substantially the 
estimates given in Ref. 8; it i s  of interest to be able to obtain 
a nonneg?tive energy yield (see the start of the article by 
Vysdskii et aL9) when the energy released in the reaction 
(with appropriate use of the reaction products) becomes com- 
parable with the lost energy. 

this case we have in mind the fact that the beam-partide 
velocity v o  is  much larger than the thermal velocity v of 
the electrons in the plasma. 

4 ) ~ e  are not considering a number of technical questions such 
as transverse focusing of the beam or  the differential evacua- 
tion of the gas from the gaps between the resonators, the 
latter needed to prevent breakdowns. 

5)This is  a continuity equation without sources; in the case of 
greater interest from the point of view of obtaining high 
q,,, , it makes sense (besides optimizing the beam modula- 
tion) to introduce cold gas from the outside into the region 
near the axis of the resonators (and simultaneously provid- 
ing for removal of the gas), so as to produce density and 
temperature profiles that are the optimal for autorecupera- 
tion. 
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