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The approximate integral of motion A = 4A - 5A: (A is the Runge-Lenz vector) is obtained for a hydrogen 
atom located in a weak magnetic field of intensity H in first-order perturbation theory in terms of H'. The 
existence of this invariant makes the atom's variables in ellipsoidd-cylindrical coordinates on a sphere in four- 
dimensional momentum space separable, accurate to H4. The phenomenon, recently found in experimental 
and theoretical investigations, whereby the level energy splitting at the points of quasi-intersection decreases 
exponentially as the principal quantum number increases is explained. A new classification of the states of the 
hydrogen atom in a weak magnetic field is proposed. 

PACS numbers: 32.60. + i, 31.30.Gs, 3 1.15. + q 

1. INTRODUCTION of the system in the subspace of the hydrogenic wave 
functions with a fixed principal quantum number value, The problem of the hydrogen atom in a magnetic field 
this result being valid for any n, and not just in the is of general theoretical interest, and has been the 
quasiclassical region, which corresponds to large n subject of a large number of papers. It has important 

applications in astrophysics and solid state physics (ex- values. In the fifth section we discuss the exponential 

citons in a magnetic field). Recently there has been a decrease of the energy level splitting, which is most 
simply explained in the quasiclassical approximation. significant upsurge in interest in this problem a s  a re- 
The existence of the approximate symmetry gives r ise  sult of the discovery of the exponential decrease with 
to a new classification of the states of the hydrogen increasing principal quantum number n of the level 
atom in a weak magnetic field and to approximate selec- energy splitting at the points of quasi-intersection. 
tion rules. These questions a r e  also considered in the This behavior of the splitting was discovered both theo- 

retically (in a numerical computation),' and experimen- fifth section. 

tally. To explain this phenomenon, Zimmerman et al. ' 
and Delande and Gay2 postulated the existence of an ap- 
proximate hidden symmetry. In Refs. 3 and 4 an at- 
tempt is  made to find this symmetry by analogy with the 
already known approximate symmetry of alkali atoms in 
an electric field. A consistent description of the ap- 
proximate symmetry and an explanation of the exponen- 
tial decrease of the splitting a r e  presented in Ref. 6, 
where there is obtained in first  order perturbation 
theory in terms of H 2  (H is the magnetic field intensity) 
the approximate integral of motion A=4A2 - 5A2, (A is 
the Runge-Lenz vector), the existence of which makes 
the variables for the hydrogen atom in the magnetic 
field separable within an accuracy of H  in the ellipsoi- 
dal-cylindrical coordinates on a sphere in four-dimen- 
sional momentum space. This symmetry, which in- 
deed obtains in the problem of the hydrogen atom in a 
weak magnetic field, differs essentially from the sym- 
metries considered in Refs. 3 and 4. 

In the present paper we carry  out a systematic in- 
vestigation of the problem of the hydrogen atom in a 
weak magnetic field. A preliminary report dealing with 
some of the results of this investigation has already 
been published.' In the second section we find the in- 
tegral of motion A with the aid of classical perturba- 
tion theory, and also discuss the character of the per- 
turbed classical trajectories. In the third section we 
formulate the Eohr-Sommerfeld quantization conditions 
for these trajectories. and derive approximate expres- 
sions for the quadratic-in H-corrections to the en- 
ergy. The fourth section is devoted to a quantum-me- 
chanical treatment of the problem, and i t  is shown there 
that the operator A commutes with the total Hamiltonian 

2. THE CLASSICAL PERTURBATION THEORY 

A hydrogen atom located in a homogeneous magnetic 
field H is invariant under rotations about the z axis, 
along which the magnetic field is oriented. Arising 
from this symmetry is the conservation of the z com- 
ponent of the angular momentum I. The existence of 
the integral of motion 1, allows us to reduce the three- 
dimensional problem to  a two-dimensional one. Fur- 
ther simplification is possible only in certain limiting 
cases. Below this problem is considered in the limit 
of weak magnetic fields. 

In the Hamiltonian 

(p2 = x 2  + y2, m = e = h = 1) describing the hydrogen atom 
in a magnetic field, the last  term, which is connected 
with the linear Zeeman effect, can be eliminated by 
going over to the coordinate system rotating about the 
z axis with frequency w =H/2c (c is the velocity of 
light). The resulting Hami l ton ianr  contains only a 
potential interaction, which splits up into the Coulomb 
interaction with the nucleus and a diamagnetic interac- 
tion [the third term in (I)]. The difference between the 
energy in the new coordinate system and the energy in 
the original system is equal to mw (I, = m; m = 0, * 1, 
i 2, . . . ), and this exhausts the contribution of the mag- 
netic field in terms of the azimuthal variable p. Be- 
low we shall consider only the nontrivial part of the 
interaction with the magnetic field: the diamagnetic 
interaction. 

The quasiclassical perturbation theory in terms of 

1017 Sov Phys. JETP55(6), June 1982 0038-5646/82/061017-06$04.00 O 1982 American Institute of Physics 1017 



the small parameter w2 for the discrete spectrum of 
the Hamiltonian 

splits up into two parts: the first  part consists in the 
computation of the evolution of the classical Coulomb 
trajectories under the action of the magnetic field; the 
second, the formulation of the Bohr-Sommerfeld quan- 
tization rules for the trajectories obtained, the deter- 
mination of the parameter values a t  which the trajec- 
tories satisfy the quantization conditions, and the com- 
putation of the energy spectrum. 

In the unperturbed problem the electron moves along 
elliptic trajectories that a r e  the solution to the Kepler 
problem. To compute the change that occurs in these 
trajectories under the action of the diamagnetic inter- 
action V, we use the method of secular  perturbation^,^ 
which was actively used in the old Bohr theory. In the 
method of secular perturbations the electron motion 
splits up into motion along an unperturbed elliptic t ra-  
jectory and a slow variation of the parameters of the 
ellipse under the action of the perturbation. Let us 
choose a s  the parameters specifying the shape and 
orientation of the ellipse the angular momentum 
1 = r X p and the Runge-Lenz vector A = [ pl] - r/r. The 
radius vector of the electron can be represented in 
terms of these parameters a s  follows: 

where 

xo ( t )  =a(cos g-e) ,  yo ( t )  =a(l-eqV'sin E (3) 

i s  the solution to the Kepler problem in the XoYo plane, 
with the X, axis directed along the Runge-Lenz vector8 
A ,  a is the semimajor axis of the ellipse, and e is the 
eccentricity. The dependence of the coordimates on the 
time is realized through the Kepler anomaly 5 ,  which is 
connected with the time by the relation8 

t=a" (E-e sin E) . 
Differentiating 1 and A with respect to the time, we 

obtain the equations of motion for these quantities 
(p=x+y):  

As w2 + 0, the changes that occur in 1 and A over a 
period of rotation of the electron along the ellipse tend 
to  zero; therefore, we can average the right members 
of the equations (4) over the period, assuming in the 
first  approximation that 1 and A a re  constants. It is 
the replacement of the right members of the equations 
of motion by their values averaged over the period that 
forms the basis of the method of secular perturbations. 
Using (2) and (3), we obtain, after the averaging, a 
closed system of equations describing the variation of 
the parameters of the ellipse in time under the action 
of the diamagnetic interaction: 
d 02az A [AXkl + (I-A') ( k S ( [ k A ] )  [ [ IXAIXk]  
-= dt - { ( U ~ + I ) _  8 At 

1'A2 1, 

Here k is the unit vector along the z axis. At f i rs t  
glance the system of equations (5) appears to be quite 
complicated, but it can be verified that the following 
three independent integrals of motion follow from it: 

Here 2, is the above-indicated exact integral of motion 
for a hydrogen atom in a magnetic field, while Q and A 
a r e  approximate integrals of motion, which a re  conser- 
ved within an accuracy of w4. The quantity Q = - 1/2E0 
is equal to the semimajor axis of the ellipse, and its 
conservation reflects the fact that in the first  ap- 
proximation the particle wanders the se t  of ellipses 
corresponding to the unperturbed energy value. This 
property is a natural one, and i t  is analogous to a 
well-known fact from perturbation theory for the de- 
generate case in quantum mechanics, where the wave 
function of the particle is constructed in the first-order 
theory from the se t  of wave functions corresponding to 
the unperturbed energy value. 

The third integral of motion A i s  nontrivial. Taking 
into account the fact that 0 s A 2  a 1, we obtain the range 
of A values: - 1 s A a4. The possibility of A's having 
positive and negative values leads to an interesting pro- 
perty for the perturbed trajectories. Let us choose a s  
the generalized coordinate the angle 19 between the 
Runge-Lenz vector and the z axis. Then we can write 
A in the form 

For  A= 0 the Runge-Lenz vector lies on the surface of 
the double cone SZ specified by the condition cot8,=2. 
For  AfO all  the trajectories split up into two classes: 
the trajectories with A<0 librate inside the double 
cone SZ (0 s I9 G 19, o r  n - 19, < I9 <nj and the trajectories 
with A>O librate outside this cone (8, a 8 an - 8,). Thus, 
al l  the states a re  localized in the two nonoverlapping I9 

domains, the boundary between which is a universal 
boundary, not dependent on the energy of the particle. 
This unique property leads to  a number of qualitative 
results, a consequence of which is the effect dis- 
covered by Zimmerman et al. ' and Delande and Gay. 

3. THE BOHRSOMMERFELD RULES 

The existence of the three independent integrals of 
motion (I,, Q, A) allows an analytic description of the 
caustic and the formulation of the Bohr-Sommerfeld 
quantization rules. Two of the three quantization rules 
give the obvious results: I, = m (m i s  the azimuthal 
quantum number) and the unperturbed energy value 
E ,  = -1/2n2 (n = Q''~ is the principal quantum number). 
The third quantization rule, from which the value of the 
integral of motion A can be determined, i s  nontrivial. 
It is convenient, in formulating this quantization rule, 
to choose from among the topologically equivalent con- 
tours lying on the invariant torus the contour that de- 
pends on the generalized coordinate 8 ,  the angle be- 
tween the Runge-Lenz vector and the z axis. The gen- 
eralized momentum conjugate to this coordinate i s  the 
angular momentum component I ,  perpendicular to the 
plane passing through the z axis and the Runge-Lenz 
vector A.  Using the condition 
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FIG. 1. The effective potential Uefi(i9): 1, (9) = 6z2 - ~ ~ ~ ~ ( - 9 ) ) " ~ ;  
a) for the case A  < 0 ;  b) for the case > 0 .  

(A2 =A: + A :  and 1 = 1 + 1 ;  + 1 z ) ,  we express I ,  in terms 
of the integrals of motion (6) and the angle s :  

A Z  " )--lY'. mZ ( 7 )  
1-5 sinZ O sin' d 

The expression under the radical sign in ( 7 )  has two 
first-order poles a t  e  = 8,  and s = n  - a,, which specify 
the double cone 51, whose role was discussed a t  the end 
of the preceding section. 

To formulate the Bohr-Sommerfeld rules, we must 
analyze the roots of 1,(6). Let us first  discuss the case 
m #O. Figure 1 shows the effective potential in which 
the s motion occurs. Let us denote by a, ,  s , ,  s , ,  and 
8, the l,(t9) roots corresponding to the negative values of 
A  and by 8,  and 8,  the roots for positive A.  The roots 
lie in the interval [ 0 ,  n ]  in the following order: 

and are  symmetric about the value 9  = n / 2 :  

To determine the domain where the s motion i s  classi- 
cally allowed, we must take into account the sign of the 
quantity A  besides the fact that l , ( s )  is real. 

For negative values of A, the motion in the intervals 
[a , ,  a , ]  and [a , ,  a , ]  is classically allowed. Classical mo- 
tion in the interval [so, n - a,]  i s  impossible, although 
l , ( s )  i s  real there (see Fig. 1 ) .  The exclusion is due to 
the fact that the integral of motion A  cannot, by defini- 
tion, assume negative values in this interval. Thus, 
we obtain for negative A  two alternative quantization 
rules corresponding to the two potential wells in the in- 
tervals [O, s,] and [n - s,, n ] :  

8, 

I ,  ( A )  = 1, (6)dO=n (k+' / , ) ,  
81 

( 8 )  

e, 
12(A)= lL(6)d+=n(k+I/ , ) ,  k=0 ,1 ,2 , .  . . . 

8. 
( 9 )  

The exact wave functions of a hydrogen atom in a 
magnetic field have a definite parity with respect to the 
XY plane. Let us follow how the states with a definite 
parity arise in the present case. Since the potential 
wells in (8) and (9) are  identical, the A  values turn out 
to be doubly degenerate (see Fig. 1) .  The first  quan- 

tization condition describes a state localized in the 
upper part of the double cone 51 (0  <6 < so); the second, 
a state with the same A  value in the lower part  of the 
cone {n - s o <  19 < a ) .  Owing to the degeneracy, we can 
construct from these states a quasiclassical wave func- 
tion that is symmetric o r  antisymmetric with respect 
to the XY plane. The analysis of the roots of the func- 
tion E,(s) shows that the states with A<O exist only when 
m < n / 6 .  

When A  >O, the region of classically allowed motion 
is the interval Is, ,  a,]. Classical motion with positive 
A  is impossible in the intervals [O, a,]  and [n - so,  n ] .  
The A  values in this case a r e  nondegenerate, and can be 
determined from the quantization conditions 

8, 

I , ( A ) =  l l (0)d+=n(k+l/ l ) ,  k=0 ,1 ,2 , .  . . . (10)  
$3 

These states a re  localized outside the double cone 52 
( 8 ,  < s < n  - s o ) ,  and their parity with respect to the XY 
plane is equal to (-1)'. 

The situation with m = 0  is somewhat different from 
the above-analyzed situation. In this case the roots 8,  
and 8,  do not occur, and, instead of them, we must 
consider the singular points a t  s = 0  and 8  = n,  which 
a r e  due to the geometry of the problem. For m = O  the 
trajectory of the electron lies in the fixed plane passing 
through the z axis, and characterized by the azimuthal 
angle cp,. The quasiclassical state is represented by 
an ensemble of trajectories with an equiprobable cp, 
distribution; therefore, al l  the trajectories of the en- 
semble in question intersect on the z axis, and the z 
axis is a caustic. The crowding of the trajectories on 
the z axis has a geometric character, and reflects the 
crowding of the coordinate surfaces of the azimuthal 
angle in spherical coordinates. This is the cause of the 
singularities of the Lam6 coefficients of the Laplace 
operator, that ar ise  when the three-dimensional prob- 
lem is reduced to a two-dimensional problem in spheri- 
cal coordinates. The role of such singular points in 
the formulation of the quantization conditions is consid- 
ered in, for example, Ref. 9  (049) ,  where i t  is shown 
that they a r e  characterized by the same Morse index 
that characterizes an ordinary reversal  point. There- 
fore, the quantization conditions for m = 0 ,  A < 0  are 
formally obtained from the quantization conditions ( 8 )  
and ( 9 )  by setting 8 ,  = 0  and a, = n.  The quantization 
conditions for positive A  remain unchanged. 

The integrals entering into the quantization conditions 
( 8 ) ,  ( 9 ) ,  and (10)  cannot be computed analytically, but 
certain approximate expressions can be derived which 
provide a practically complete picture. Let us, to be- 
gin with, compute the number of states obtainable from 
the quantization conditions ( 8 ) ,  ( 9 ) ,  and (10)  for fixed 
values of n and m. The number N of states is deter- 
mined by the highest value of the variables I i (A)  that is 
attained a t  A = 0  for a l l  I ,  ( A ) .  The integrals in this 
case can be evaluated without difficulty, and we find a s  
a result that 

1 
N = - [ I ,  ( 0 )  +Iz ( 0 )  f Is (0) ] =n-m. 

1T 

This value coincides with the exact number of states 
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with given n and m,  but we must take into account the 
fact that this number i s  distributed among the three 
quantization conditions, and instead of I ,  we should take 
the integral part of [I, ++I; therefore, we actually have 
N = n  - m, n - m * 1. The deviation by one of the number 
of states from the exact value is due to the fact that the 
states localized inside the cone a r e  doubly degenerate, 
and, therefore, when n is increased by one, new states 
of this type either do not appear a t  all, o r  they appear 
in pairs. The number of states will apparently turn out 
to be the correct  one if we take into account the degen- 
eracy-lifting exchange interaction between states with 
the same value of A< 0. 

The energy in first  order perturbation theory can be 
expressed in terms of the value of pz averaged over the 
orbital period of the electron. Using (2) and (3), we 
obtain 

The A, values a r e  determined from the quantization 
conditions. The energy levels fan out from the unper- 
turbed value a s  the magnetic field intensity is increased. 
Of greatest interest a r e  the outermost levels in a given 
nm multiplet, since they a r e  the first  to undergo quasi- 
intersection in the course of the approach to  each other 
of two neighboring multiplets. These energy levels 
correspond to the lowest levels in the effective potential 
wells in the quantization conditions (a), (9), and (10). 
For the levels lying a t  the bottom of a well, we can use 
the parabolic approximation for the effective potential. 
For m = 0 the minimum of the effective potentials is at- 
tained for the quantization conditions (8), (9), and (10) 
a t  values of dequal respectively to  0, n, and n/2. Com- 
puting A, in this approximation, and substituting the 
result into ( l l ) ,  we obtain for the lowest energy levels 
in the multiplet ( q < O  and the levels a re  doubly de- 
generate) the expression 

For  the upper energy levels in the multiplet (A, > 0 and 
the levels a r e  nondegenerate) we obtain the following 
approximate expression: 

The boundary between the degenerate and nondegenerate 
energy levels in the quasiclassical approximation is 
the value of E for A =0: 

It is not possible to compute analytically the negative 
values of A& for m # 0 in this approximation. 

4. THE QUANTUM PERTURBATION THEORY 

The integral of motion A was obtained above in first  
order quasiclassical perturbation theory in terms of HZ. 
The equivalent procedure in quantum mechanics is to 
prove the assertion that the operator i=4Az-5ii: com- 

mutes with the total Hamiltonian of the system in the 
subspace of hydrogenic wave functions with a fixed n 
value for highly excited states. But, a s  will be shown 
below, a stronger assertion is valid, namely, the 
operator h commutes with the total Hamiltonian of the 
system in an n-layer for any n. For  this purpose i t  is 
sufficient to prove that the operator 1 commutes yith 
the operator PZ in an n-layer, since the operator A is 
an exact integral of motion for the hydrogen atom in the 
absence of a magnetic field. 

The matrix elements of the operator PZ in the basis of 
hydrogenic wave functions a r e  given in, for example, 
Ref. 10. In spherical coordinates the nonzero matrix 
elements a r e  the diagonal elements and the elements 
connecting states that differ in their orbital quantum 
numbers I by twolo: 

For  the computation of the matrix elements of the 
operator az let us use the operational equation1': 

whence we find that the only nonzero matrix elements 
in the spherical basis a r e  the diagonal elements, which 
a r e  equal to 

It is conve_nient to compute the matrix elements of the 
operator A: first  in parabolic coordinates, in which this 
operator is diagonal, and then go over to spherical co- 
ordinates. The coupling between the hydrogenic wave 
functions in spherical and parabolic coordinates is 
realized through the Clebsch-Gordan coefficients, and 
a r e  given in, for example, Refs. 9 and 11. The infor- 
mation about the Clebsch-Gordan coefficients that is 
necessary for the computations can be found in Ref. 12. 
In spherical coordinates t$e matrix elements that a r e  
nonzero for the operator Af turn out to be the same 
matrix elements that a r e  nonzero for the operator Pz. 
After simple computations, we obtain 

1 (1'-m2) (n2-12) + 1 (l+l)z-mZ] [nZ-(I-I)'] 
(nlmlA,zlnlm)= - [ n2 (Z+1) (21-1) (21+2) (21+3) 1 .  

(1 5) 

By gathering (12), (14), and (15) together, we can 
easily verify the following operational equation: 

which is satisfied in the subspace of hydrogenic wave 
functions with a fixed value of n. This relation differs 
from the quasiclassical relation (11) by a constant 
term. The appearance of such a discrepancy when we 
go over from classical to  quantum mechanics is nor- 
mal; for example, the equation (13) is obtained from the 
correfponding classical equation by formally replacing 
F by F + 1. It is evident that the relation (16) i s  violated 
in the complete basis, since the matrix elements con- 
necting hydrogenic states with different principal quan- 
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tum numbers a r e  nonzero in the case of the operator p, 5. CONCLUSION 
but zero in the case of the operator A. The equation 
(16) is similar to the well-known operational equati_on 
in an n-layer r =  -$n& which allows us to choose 1, 
and 2, a s  the independent integrals of motion in the 
solution of the problem of the hydrogen atom in a homo- 
geneous electric field and separate the variables in 
parabolic coordinates. The operational equation (16) 
leads to a similar result. In Ref. 13, which is devoted 
to the separation of the variables for the hydrogen atom, 
among the various alternatives considered is one in 
which the independent integrals of motion a r e  I ,  and an 
operator that is quadratic in the components of the 
Runge-Lenz vector, a particular case of which is the 
operator h. Using the results of that paper, we find 
that the Schradinger equation for the hydrogen atom in 
a magnetic field admits of the separation of the vari- 
ables accurate to H 4  in ellipsoidal-cylindrical coordi- 
nates on a sphere in four-dimensional momentum 
space. 

The ellipsoidal-cylindrical coordinates on a sphere 
S, ( x : + x ~ + x ~ + x : = l )  in momentum space a r e  speci- 
fied a s  follows: 

x,=sn a dn p cos cp, x,=sn a dn p sin v, 
r ,=dna  sn  p, x,=cn a cn p, (17) 

OCaGZK, -KfCPCK', OCrpS2n. 

When the operator A is chosen a s  an independent inte- 
gral of motion, the elliptic Jacobi functions of the 
variables a and 0 have the moduli k = 1/G and k' = 2 / 6  
respectively. The real  and imaginary periods of the 
Jacobi functions with modulus k a r e  denoted by 4K and 
4iK'. As is well known, the Schrijdinger equation for 
the hydrogen atom reduces in momentum space to an 
equation for the eigenfunctions of the angular part  of 
the four-dimensional Laplacian. Representing the ei- 
genfunctions of the Laplacian on the sphere S, in the 
form 

'P=A (a )  B(B) e'"", 

we obtain the following equations for the functions 
A(a ) and B(P )IS: 

where b is the eigenvalue of the operator 

Equations (18) and (19) can be reduced to the Lamb 
equations, and the solution of these equations is analy- 
zed in detail in Ref. 13. We can, by going over to the 
new variable by setting a =K + iK' + ia, easily verify 
that Eq. (18) coincides with Eq. (19), and therefore 
the eigenfunctions \k have the form1' 

where F,d,(x) is a polynomial of degree s in x. The 
eigenfunctions @,,, a re  the correct  wave functions in the 
zeroth approximation for the hydrogen atom in a weak 
magnetic field. 

In Refs. 1 and 2 the exponential decrease of the ener- 
gy level splitting a t  the points of quasi-intersection is 
related to the existence of an approximate symmetry, 
but i t  should be noted that the presence of an approxi- 
mate symmetry per se cannot yet explain such behavior 
of the splitting. For  example, the problem of the Stark 
effect for the alkali atoms also possesses an approxi- 
mate symmetry, which is used in Ref. 5 to compute the 
energy level splitting a t  the quasi-intersection points, 
but in this case the splitting behaves like n". The ex- 
ponential decrease of the splitting in the problem of the 
hydrogen atom in a magnetic field is caused by the sep- 
aration, peculiar to the present problem, of the states 
into two classes (A, <0 and A, >0) localized in the qua- 
siclassical approximation in two nonoverlapping re- 
gions, and therefore the splitting is determined by the 
product of wave functions in a classically forbidden re- 
gion, where they a r e  exponentially small. This situa- 
tion is similar to the quasi-intersection in the one-di- 
mensional problem of two energy levels corresponding 
to states localized in different potential wells, which 
problem is characterized by the exponential dependence 
of the splitting on i ts  parameters. If we consider two 
states belonging to the same class (i. e . ,  with the same 
sign of A), then in this case the splitting should de- 
crease in a power-law fashion with increasing n (appar- 
ently like n-'). It is evident that any matrix element 
connecting states from different classes will be expo- 
nentially small. This pertains, for example, to oscil- 
lator strengths, for which there thus ar ise  additional 
approximate selection rules. 

The results obtained indicate that, besides the well- 
known separation of states with a fixed m according to 
parity, there exists an approximate separation con- 
nected with the sign of A. Thus, it is natural to dis- 
tinguish four classes of states: I)+,, $,, I)',., and I),, 
[the subscripts g and u specify, a s  usual, the parity of 
the states, while the superscripts (i) specify the sign 
of A]. If the subscripts of two states a r e  different, 
then, a s  is well known, quasi-intersection becomes ex- 
act  intersection for these states. For  states that differ 
only in their superscripts, the splitting is exponentially 
small  when the parameter n is large. And, finally, 
when a l l  the three indices coincide, the splitting is a 
power function of n. 

The results obtained in the present paper allow us to 
qualitatively explain the exponential decrease, reported 
in Refs. 1 and 2, of the energy level splitting, but it is 
a t  present not clear how the magnitude of this splitting 
can be analytically estimated. To obtain such estimates 
in the quasiclassical approximation, we must distinguish 
the effective barr ier  separating the states localized in- 
side and outside the cone S2, and compute the subbarrier 
factor, but there ar ises  in this procedure an unusual 
situation in which under the quantization conditions (8) 
and (9) motion in the region 8, < 8 < n - 8 ,  is, on the one 
hand, classically allowed on the basis of the require- 
ment that l,(s) be real  (see Fig. I), and, on the other, 
impossible for a chosen sign of A. A similar picture is 
obtained in the case of the quantization condition (10). 
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The quantum perturbation theory a l s o  does  not provide 
u s  with a natural  procedure by which the splitting can be 
analytically estimated. The  point is that states local- 
ized in different regions are obtained not in momentum 
space,  in which Eqs. (18) and (19) are written, but f o r  
the generalized coordinate 8 .  Thus, we have left the 
possibility of a numer ica l  computation of the splitting i n  
t e r m s  of the total Hamiltonian's mat r ix  element  connec- 
t ing correct wave functions (20) of the zeroth approxi- 
mation. In fact,  such  a computation is performed in 
Ref. 1. It yields a resu l t  that is in good agreement  with 
the experimental  data. 

The  author e x p r e s s e s  h i s  gratitude to Yu. N. Demkov 
and I.V. Komarov f o r  a discussion of the resu l t s  of the  
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Note added in proof (27 March 1982). As analysis of the 
Schr'6dinger equation in ellipsoidal-cylindrical coordinates 
shows, the energy level splitting a t  a quasi-intersection point 
can be computed a s  the subbarrier factor in the effective po- 
tential shown in Fig. l. The subbarrier factor should be com- 
puted in the interval 0<9<9,  with A=-1 and in the interval 
B0<9<r /2  with A=4. We then obtain for the splitting the esti- 
mate 

which i s  in good agreement with the results of the numerical 
computation and the experimental data.'12 

A convincing demonstration of the existence of the approxi- 
mate symmetry i s  contained in Clark and Taylor's papers. 
[J. Phys. B 13, L737 (1980); Nature (London) 292, 437 (198111, 
in which the oscillator strengths of hydrogen in a magnetic 
field a re  computed. The author i s  deeply grateful to C. W. 
Clark for the communication concerning these papers. 
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